CD36 overexpression predisposes to arrhythmias but reduces infarct size in spontaneously hypertensive rats: gene expression profile analysis
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
HL-35018
NHLBI NIH HHS - United States
HL-56028
NHLBI NIH HHS - United States
HL-63709
NHLBI NIH HHS - United States
PubMed
22128087
PubMed Central
PMC3289117
DOI
10.1152/physiolgenomics.00083.2011
PII: physiolgenomics.00083.2011
Knihovny.cz E-zdroje
- MeSH
- antigeny CD36 genetika metabolismus MeSH
- genetická predispozice k nemoci MeSH
- infarkt myokardu genetika metabolismus patologie MeSH
- krevní tlak MeSH
- krysa rodu Rattus MeSH
- potkani inbrední SHR MeSH
- srdeční arytmie genetika metabolismus MeSH
- stanovení celkové genové exprese * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- antigeny CD36 MeSH
CD36 fatty acid translocase plays a key role in supplying heart with its major energy substrate, long-chain fatty acids (FA). Previously, we found that the spontaneously hypertensive rat (SHR) harbors a deletion variant of Cd36 gene that results in reduced transport of long-chain FA into cardiomyocytes and predisposes the SHR to cardiac hypertrophy. In the current study, we analyzed the effects of mutant Cd36 on susceptibility to ischemic ventricular arrhythmias and myocardial infarction in adult SHR-Cd36 transgenic rats with wild-type Cd36 compared with age-matched SHR controls. Using an open-chest model of coronary artery occlusion, we found that SHR-Cd36 transgenic rats showed profound arrhythmogenesis resulting in significantly increased duration of tachyarrhythmias (207 ± 48 s vs. 55 ± 21 s, P < 0.05), total number of premature ventricular complexes (2,623 ± 517 vs. 849 ± 250, P < 0.05) and arrhythmia score (3.86 ± 0.18 vs. 3.13 ± 0.13, P < 0.001). On the other hand, transgenic SHR compared with SHR controls showed significantly reduced infarct size (52.6 ± 4.3% vs. 72.4 ± 2.9% of area at risk, P < 0.001). Similar differences were observed in isolated perfused hearts, and the increased susceptibility of transgenic SHR to arrhythmias was abolished by reserpine, suggesting the involvement of catecholamines. To further search for possible molecular mechanisms of altered ischemic tolerance, we compared gene expression profiles in left ventricles dissected from 6-wk-old transgenic SHR vs. age-matched controls using Illumina-based sequencing. Circadian rhythms and oxidative phosphorylation were identified as the top KEGG pathways, while circadian rhythms, VDR/RXR activation, IGF1 signaling, and HMGB1 signaling were the top IPA canonical pathways potentially important for Cd36-mediated effects on ischemic tolerance. It can be concluded that transgenic expression of Cd36 plays an important role in modulating the incidence and severity of ischemic and reperfusion ventricular arrhythmias and myocardial infarct size induced by coronary artery occlusion. The proarrhythmic effect of Cd36 transgene appears to be dependent on adrenergic stimulation.
Zobrazit více v PubMed
Abarbanell AM, Hartley JA, Herrmann JL, Weil BR, Wang Y, Manukyan MC, Poynter JA, Meldrum DR. Exogenous high-mobility group box 1 improves myocardial recovery after acute global ischemia/reperfusion injury. Surgery 149: 329–335, 2011. PubMed
Aitman TJ, Gotoda T, Evans AL, Imrie H, Heath KE, Trembling PM, Truman H, Wallace CA, Rahman A, Doré C, Flint J, Kren V, Zidek V, Kurtz TW, Pravenec M, Scott J. Quantitative trait loci for cellular defects in glucose and fatty acid metabolism in hypertensive rats. Nat Genet 16: 197–201, 1997. PubMed
Andrassy M, Volz HC, Igwe JC, Funke B, Eichberger SN, Kaya Z, Buss S, Autschbach F, Pleger ST, Lukic IK, Bea F, Hardt SE, Humpert PM, Bianchi ME, Mairbaurl H, Nawroth PP, Remppis A, Katus HA, Bierhaus A. High-mobility group box-1 in ischemia-reperfusion injury of the heart. Circulation 117: 3216–3226, 2008. PubMed
Asemu G, Neckář J, Szárszoi O, Papoušek F, Ošt'ádal B, Kolář F. Effects of adaptation to intermittent high altitude hypoxia on ischemic ventricular arrhythmias in rats. Physiol Res 49: 597–606, 2000. PubMed
Bélichard P, Pruneau D, Rochette L. Influence of spontaneous hypertension and cardiac hypertrophy on the severity of ischemic arrhythmias in the rat. Basic Res Cardiol 83: 560–566, 1988. PubMed
Bielen E, Fagard R, Amery A. The inheritance of left ventricular structure and function assessed by imaging and Doppler echocardiography. Am Heart J 121: 1743–1749, 1991. PubMed
Bonnet D, Martin D, de Lonlay P, Villain E, Jouvet P, Rabier D, Brivet M, Saudubray JM. Arrhythmias and conduction defects as presenting symptoms of fatty acid oxidation disorders in children. Circulation 100: 2248–2253, 1999. PubMed
Chavan CB, Sharada K, Rao HB, Narsimhan C. Hypocalcemia has been suggested as a cause of reversible cardiomyopathy with ventricular tachycardia. Ann Intern Med 146: 541–542, 2007. PubMed
Corr PB, Creer MH, Yamada KA, Saffitz JE, Sobel BE. Prophylaxis of early ventricular fibrillation by inhibition of acylcarnitine accumulation. J Clin Invest 83: 927–936, 1989. PubMed PMC
Dai W, Simkhovich BZ, Kloner RA. Ischemic preconditioning maintains cardioprotection in aging normotensive and spontaneously hypertensive rats. Exp Gerontol 44: 344–349, 2009. PubMed
Dawn B, Guo Y, Rezazadeh A, Wang OL, Stein AB, Hunt G, Varma J, Xuan YT, Wu WJ, Tan W, Zhu X, Bolli R. Tumor necrosis factor-α does not modulate ischemia/reperfusion injury in naïve myocardium but is essential for the development of late preconditioning. J Mol Cell Cardiol 37: 51–61, 2004. PubMed
Doggrell SA, Brown L. Rat models of hypertension, cardiac hypertrophy and failure. Cardiovasc Res 39: 89–105, 1998. PubMed
Durgan DJ, Pulinilkunnil T, Villegas-Montoya C, Garvey ME, Frangogiannis NG, Michael LH, Chow CW, Dyck JRB, Young ME. Ischemia/reperfusion tolerance is time-of-day-dependent. Mediation by the cardiomyocyte circadian clock. Circ Res 106: 546–550, 2010. PubMed PMC
Erdmann J, Linsel-Nitschke P, Schunkert H. Genetic causes of myocardial infarction: new insights from genome-wide association studies. Dtsch Arztebl Int 107: 694–699, 2010. PubMed PMC
Folch J, Lees M, Sloan-Stanley GH. A simple method for the isolation and purification of total lipids from animal tissue. J Biol Chem 226: 497–509, 1957. PubMed
Gasparri C, Curcio A, Torella D, Gaspari M, Celi V, Salituri F, Boncompagni D, Torella M, Gulletta E, Cuda G, Indolfi C. Proteomics reveals high levels of vitamin D binding protein in myocardial infarction. Front Biosci (Elite Ed) 2: 796–804, 2010. PubMed
Hajri T, Ibrahimi A, Coburn CT, Knapp FF, Jr, Kurtz T, Pravenec M, Abumrad NA. Defective fatty acid uptake in the spontaneously hypertensive rat is a primary determinant of altered glucose metabolism, hyperinsulinemia, and myocardial hypertrophy. J Biol Chem 276: 23661–6, 2001. PubMed
Harshfield GA, Grim CE, Hwang C, Savage DD, Anderson SJ. Genetic and environmental influences on echocardiographically determined left ventricular mass in black twins. Am J Hypertens 3: 538–543, 1990. PubMed
Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4: 44–57, 2009. PubMed
Irie H, Krukenkamp IB, Brinkmann JF, Gaudette GR, Saltman AE, Jou W, Glatz JF, Abumrad NA, Ibrahimi A. Myocardial recovery from ischemia is impaired in CD36-null mice and restored by myocyte CD36 expression or medium-chain fatty acids. Proc Natl Acad Sci USA 100: 6819–6824, 2003. PubMed PMC
Kim JB, Porreca GJ, Song L, Greenway SC, Gorham JM, Church GM, Seidman CE, Seidman JG. Polony multiplex analysis of gene expression (PMAGE) in mouse hypertrophic cardiomyopathy. Science 316: 1481–1484, 2007. PubMed
Kingma JG., Jr Cardiac adaptation to ischemia-reperfusion injury. Ann NY Acad Sci 874: 236–253, 1999. PubMed
Kolář F, Ježková J, Balková P, Břeh J, Neckář J, Novák F, Nováková O, Tomášová H, Srbová M, Ošt'ádal B, Wilhelm J, Herget J. Role of oxidative stress in PKC-delta upregulation and cardioprotection induced by chronic intermittent hypoxia. Am J Physiol Heart Circ Physiol 292: H224–H230, 2007. PubMed
Kolář F, Parratt JR. Antiarrhythmic effect of ischemic preconditioning in hearts of spontaneously hypertensive rats. Exp Clin Cardiol 2: 124–127, 1997.
Kuang M, Febbraio M, Wagg C, Lopaschuk GD, Dyck JRB. Fatty acid translocase/CD36 deficiency does not energetically of functionally compromise hearts before or after ischemia. Circulation 109: 1550–1557, 2004. PubMed
Lam A, Lopaschuk GD. Anti-anginal effects of partial fatty acid oxidation inhibitors. Curr Opin Pharmacol 7: 179–185, 2007. PubMed
Leenen FH, Yuan B. Mortality after coronary artery occlusion in different models of cardiac hypertrophy in rats. Hypertension 37: 209–15, 2001. PubMed
Lindpaintner K, Lee M, Larson MG, Rao VS, Pfeffer MA, Ordovas JM, Schaefer EJ, Wilson AF, Wilson PW, Vasan RS, Myers RH, Levy D. Absence of association or genetic linkage between the angiotensin-converting-enzyme gene and left ventricular mass. N Engl J Med 334: 1023–1028, 1996. PubMed
Luiken JJFP, Coort SLM, Koonen DPY, van der Horst DJ, Bonen A, Glatz JFC. Regulation of cardiac long-chain fatty acid and glucose uptake by translocation of substrate transporters. Pflügers Arch 448: 1–15, 2004. PubMed
Malínská H, Oliyarnyk O, Hubová M, Zídek V, Landa V, Šimáková M, Mlejnek P, Kazdová L, Kurtz TW, Pravenec M. Increased liver oxidative stress and altered PUFA metabolism precede development of non-alcoholic steatohepatitis in SREBP-1a transgenic spontaneously hypertensive rats with genetic predisposition to hepatic steatosis. Mol Cell Biochem 335: 119–125, 2010. PubMed
McDermot-Roe C, Ye J, Ahmed R, Sun XM, Serafín A, Ware J, Bottolo L, Muckett P, Cañas X, Zhang J, Rowe GC, Buchan R, Lu H, Braithwaite A, Mancini M, Hauton D, Martí R, García-Arumí E, Hubner N, Jacob H, Serikawa S, Zidek V, Papousek F, Kolar F, Cardona M, Ruiz-Meana M, García-Dorado D, Comella JX, Felkin LE, Barton PJR, Arany Z, Pravenec M, Petretto E, Sanchis D, Cook SA. Endonuclease G is a novel determinant of cardiac hypertrophy and mitochondrial function. Nature 478, 114–118, 2011. PubMed PMC
Mlejnek P, Kren V, Liska F, Zídek V, Landa V, Kurtz TW, Pravenec M. The CD36 protein functions as an immunogenic domain of the RT8 alloantigen. Eur J Immunogenet 30: 325–327, 2003. PubMed
Neckář J, Papoušek F, Nováková O, Ošt'ádal B, Kolář F. Cardioprotective effects of chronic hypoxia and ischemic preconditioning are not additive. Basic Res Cardiol 97: 161–167, 2002. PubMed
Nguyen T, El Salibi E, Rouleau JL. Postinfarction survival and inducibility of ventricular arrhythmias in the spontaneously hypertensive rat: effects of ramipril and hydralazine. Circulation 98: 2074–2080, 1998. PubMed
Oliver MF. Prevention of ventricular fibrillation during acute myocardial ischemia: control of free fatty acids. J Cardiovasc Pharmacol Ther 6: 213–217, 2001. PubMed
Oliver MF. Sudden cardiac death: the lost fatty acid hypothesis. Q J Med 99: 701–709, 2006. PubMed
Oxman T, Arad M, Klein R, Avazov N, Rabinowitz B. Limb ischemia preconditions the heart against reperfusion tachyarrhythmia. Am J Physiol Heart Circ Physiol 273: H1707–H1712, 1997. PubMed
Pantos CI, Malliopoulou VA, Mourouzis IS, Karamanoli EP, Paizis IA, Steimberg N, Varonos DD, Cokkinos DV. Long-term tyroxine administration protects the heart in a pattern similar to ischemic preconditioning. Thyroid 12: 325–329, 2002. PubMed
Pecina P, Čapková M, Chowdhury SKR, Drahota Z, Dubot A, Vojtíšková A, Hansíková H, Houšt'ková H, Zeman J, Godinot C, Houštěk J. Functional alteration of cytochrome c oxidase by SURF1 mutations in Leigh syndrome. Biochim Biophys Acta 1639: 53–63, 2003. PubMed
Pecinová A, Drahota Z, Nusková A, Pecina P, Houštěk J. Evaluation of basic mitochondrial functions using rat tissue homogenates. Mitochondrion 11: 722–728, 2011. PubMed
Post WS, Larson MG, Myers RH, Galderisi M, Levy D. Heritability of left ventricular mass: the Framingham heart study. Hypertension 30: 1025–1028, 1997. PubMed
Pravenec M, Gauguier D, Schott JJ, Buard J, Křen V, Bílá V, Szpirer C, Szpirer J, Wang JM, Huang H, St Lezin E, Spence MA, Flodman P, Printz M, Lathrop GM, Vergnaud G, Kurtz TW. Mapping of quantitative trait loci for blood pressure and cardiac mass in the rat by genome scanning of recombinant inbred strains. J Clin Invest 96: 1973–1978, 1995. PubMed PMC
Pravenec M, Landa V, Zídek V, Musilová A, Křen V, Kazdová L, Aitman TJ, Glazier AM, Ibrahimi A, Abumrad NA, Qi N, Wang JM, St Lezin EM, Kurtz TW. Transgenic rescue of defective Cd36 ameliorates insulin resistance in spontaneously hypertensive rats. Nat Genet 27:156–158, 2001. PubMed
Samani NJ, Thompson JR, O'Toole L, Channer K, Woods KL. A meta-analysis of the association of the deletion allele of the angiotensin-converting enzyme gene with myocardial infarction. Circulation 94: 708–712, 1996. PubMed
Schunkert H, Brockel U, Hengstenberg C, Luchner A, Muscholl MW, Kurzidim K, Kuch B, Doring A, Riegger GA, Hense HW. Familial predisposition of left ventricular hypertrophy. J Am Coll Cardiol 33: 1685–1691, 1999. PubMed
Sheehan TE, Kumar PA, Hood DA. Tissue-specific regulation of cytochrome c oxidase subunit expression by thyroid hormone. Am J Physiol Endocrinol Metab 286: E968–E974, 2004. PubMed
Snoeckx LH, van der Vusse GJ, Coumans WA, Willemsen PH, van der Nagel T, Reneman RS. Myocardial function in normal and spontaneously hypertensive rats during reperfusion after a period of global ischemia. Cardiovasc Res 20: 67–75, 1986. PubMed
Sood S, Reghunandanan R, Reghunandanan V, Gopinathan K, Sood AK. Effect of vitamin D deficiency on electrocardiogram of rats. Indian J Exp Biol 33: 61–63, 1995. PubMed
Splawski I, Timothy KW, Tateyama M, Clancy CE, Malhotra A, Beggs AH, Cappuccio FP, Sagnella GA, Kass RS, Keating MT. Variant of SCN5A sodium channel implicated in risk of cardiac arrhythmia. Science 297: 1333–1336, 2002. PubMed
St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD. Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 277: 44784–44790, 2002. PubMed
Suleiman MS, Singh RJR, Stewart CEH. Apoptosis and the cardiac action of insulin-like growth factor 1. Pharmacol Therapeut 114: 278–294, 2007. PubMed
Tanaka T, Nakata T, Oka T, Ogawa T, Okamoto F, Kusaka Y, Sohmiya K, Shimamoto K, Itakura K. Defect in human myocardial long-chain fatty acid uptake is caused by FAT/CD36 mutations. J Lipid Res 42: 751–759, 2001. PubMed
Turer AT, Stevens RD, Bain JR, Muehlbauer MJ, van der Westhuizen J, Mathew JP, Schwinn DA, Glower DD, Newgard CB, Podgoreanu MV. Metabolomic profiling reveals distinct patterns of myocardial substrate use in humans with coronary artery disease or left ventricular dysfunction during surgical ischemia/reperfusion. Circulation 119: 1736–1746, 2009. PubMed PMC
Virag JA, Dries JL, Easton PR, Friesland AM, Deantonio JH, Chintalgattu V, Cozzi E, Lehmann BD, Ding JM, Lust RM. Attenuation of myocardial injury in mice with functional deletion of the circadian rhythm gene mPer2. Am J Physiol Heart Circ Physiol 298: H1088–H1095, 2010. PubMed PMC
Wu C, Yan L, Depre C, Dhar SK, Shen YT, Sadoshima J, Vatner SF, Vatner DE. Cytochrome c oxidase III as a mechanism for apoptosis in heart failure following myocardial infarction. Am J Physiol Cell Physiol 297: C928–C934, 2009. PubMed PMC
Yano T, Miki T, Tanno M, Kuno A, Itoh T, Takada A, Sato T, Kouzu H, Shimamoto K, Miura T. Hypertensive hypertrophied myocardium is vulnerable to infarction and refractory to erythropoietin-induced protection. Hypertension 57: 110–115, 2011. PubMed
Yao Z, Tong J, Tan X, Li C, Shao Z, Kim WC, Vanden Hoek TL, Becker LB, Head CA, Schumacker PT. Role of reactive oxygen species in acetylcholine-induced preconditioning in cardiomyocytes. Am J Physiol Heart Circ Physiol 277: H2504–H2509, 1999. PubMed
Young ME. Anticipating anticipation: pursuing identification of cardiomyocyte circadian clock function. J Appl Physiol 107: 1339–1347, 2009. PubMed PMC
Yu Q, Nguyen T, Ogbi M, Caldwell RW, Johnson JA. Differential loss of cytochrome-c oxidase subunits in ischemia-reperfusion injury: exacerbation of COI subunit loss by PKC-ϵ inhibition. Am J Physiol Heart Circ Physiol 294: H2637–H2646, 2008. PubMed
Zentilin L, Puligadda U, Lionetti V, Zacchigna S, Collesi C, Pattarini L, Ruozi G, Camporesi S, Sinagra G, Pepe M, Recchia FA, Giacca M. Cardiomyocyte VEGFR-1 activation by VEGF-B induces compensatory hypertrophy and preserves cardiac function after myocardial infarction. FASEB J 24: 1467–1478, 2010. PubMed