Genetic, physiological and comparative genomic studies of hypertension and insulin resistance in the spontaneously hypertensive rat
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
Grantová podpora
MC_U120061454
Medical Research Council - United Kingdom
MC_U120097112
Medical Research Council - United Kingdom
PubMed
28130354
PubMed Central
PMC5374317
DOI
10.1242/dmm.026716
PII: dmm.026716
Knihovny.cz E-zdroje
- Klíčová slova
- Congenic, Genomic, Hypertension, Insulin resistance, Rat,
- MeSH
- celogenomová asociační studie MeSH
- energetický metabolismus genetika MeSH
- genomika * MeSH
- homeostáza MeSH
- hypertenze genetika patofyziologie MeSH
- inzulin farmakologie MeSH
- inzulinová rezistence genetika MeSH
- játra účinky léků metabolismus MeSH
- jednonukleotidový polymorfismus genetika MeSH
- kalorimetrie MeSH
- kardiomegalie genetika patofyziologie MeSH
- kosterní svaly účinky léků metabolismus MeSH
- krevní tlak účinky léků MeSH
- lidé MeSH
- lokus kvantitativního znaku genetika MeSH
- potkani inbrední SHR MeSH
- regulace genové exprese účinky léků MeSH
- savčí chromozomy genetika MeSH
- srdeční komory účinky léků patologie MeSH
- stravovací zvyklosti účinky léků MeSH
- tělesná hmotnost účinky léků MeSH
- triglyceridy metabolismus MeSH
- velikost orgánu účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- inzulin MeSH
- triglyceridy MeSH
We previously mapped hypertension-related insulin resistance quantitative trait loci (QTLs) to rat chromosomes 4, 12 and 16 using adipocytes from F2 crosses between spontaneously hypertensive (SHR) and Wistar Kyoto (WKY) rats, and subsequently identified Cd36 as the gene underlying the chromosome 4 locus. The identity of the chromosome 12 and 16 genes remains unknown. To identify whole-body phenotypes associated with the chromosome 12 and 16 linkage regions, we generated and characterised new congenic strains, with WKY donor segments introgressed onto an SHR genetic background, for the chromosome 12 and 16 linkage regions. We found a >50% increase in insulin sensitivity in both the chromosome 12 and 16 strains. Blood pressure and left ventricular mass were reduced in the two congenic strains consistent with the congenic segments harbouring SHR genes for insulin resistance, hypertension and cardiac hypertrophy. Integrated genomic analysis, using physiological and whole-genome sequence data across 42 rat strains, identified variants within the congenic regions in Upk3bl, RGD1565131 and AABR06087018.1 that were associated with blood pressure, cardiac mass and insulin sensitivity. Quantitative trait transcript analysis across 29 recombinant inbred strains showed correlation between expression of Hspb1, Zkscan5 and Pdgfrl with adipocyte volume, systolic blood pressure and cardiac mass, respectively. Comparative genome analysis showed a marked enrichment of orthologues for human GWAS-associated genes for insulin resistance within the syntenic regions of both the chromosome 12 and 16 congenic intervals. Our study defines whole-body phenotypes associated with the SHR chromosome 12 and 16 insulin-resistance QTLs, identifies candidate genes for these SHR QTLs and finds human orthologues of rat genes in these regions that associate with related human traits. Further study of these genes in the congenic strains will lead to robust identification of the underlying genes and cellular mechanisms.
Charité Universitätsmedizin 10117 Berlin Germany
Department of Medicine Imperial College London London SW7 2AZ UK
Duke NUS Medical School Singapore 169857 Republic of Singapore
DZHK partner site 13316 Berlin Germany
MRC Clinical Sciences Centre Imperial College London London W12 0NN UK
Zobrazit více v PubMed
Acunzo J., Katsogiannou M. and Rocchi P. (2012). Small heat shock proteins HSP27 (HspB1), alphaB-crystallin (HspB5) and HSP22 (HspB8) as regulators of cell death. Int. J. Biochem. Cell Biol. 44, 1622-1631. 10.1016/j.biocel.2012.04.002 PubMed DOI
Aitman T. J., Gotoda T., Evans A. L., Imrie H., Heath K. E., Trembling P. M., Truman H., Wallace C. A., Rahman A., Doré C. et al. (1997). Quantitative trait loci for cellular defects in glucose and fatty acid metabolism in hypertensive rats. Nat. Genet. 16, 197-201. 10.1038/ng0697-197 PubMed DOI
Aitman T. J., Glazier A. M., Wallace C. A., Cooper L. D., Norsworthy P. J., Wahid F. N., Al-Majali K. M., Trembling P. M., Mann C. J., Shoulders C. C. et al. (1999). Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Nat. Genet. 21, 76-83. 10.1038/5013 PubMed DOI
Aitman T. J., Critser J. K., Cuppen E., Dominiczak A., Fernandez-Suarez X. M., Flint J., Gauguier D., Geurts A. M., Gould M., Harris P. C. et al. (2008). Progress and prospects in rat genetics: a community view. Nat. Genet. 40, 516-522. 10.1038/ng.147 PubMed DOI
Atanur S. S., Diaz A. G., Maratou K., Sarkis A., Rotival M., Game L., Tschannen M. R., Kaisaki P. J., Otto G. W., Ma M. C. J. et al. (2013). Genome sequencing reveals loci under artificial selection that underlie disease phenotypes in the laboratory rat. Cell 154, 691-703. 10.1016/j.cell.2013.06.040 PubMed DOI PMC
Corpeleijn E., van der Kallen C. J. H., Kruijshoop M., Magagnin M. G. P., de Bruin T. W. A., Feskens E. J. M., Saris W. H. M. and Blaak E. E. (2006). Direct association of a promoter polymorphism in the CD36/FAT fatty acid transporter gene with Type 2 diabetes mellitus and insulin resistance. Diabet. Med. 23, 907-911. 10.1111/j.1464-5491.2006.01888.x PubMed DOI
Cunningham F., Amode M. R., Barrell D., Beal K., Billis K., Brent S., Carvalho-Silva D., Clapham P., Coates G., Fitzgerald S. et al. (2015). Ensembl 2015. Nucleic Acids Res. 43, D662-D669. 10.1093/nar/gku1010 PubMed DOI PMC
de Bruyne M. C., Hoes A. W., Kors J. A., Hofman A., van Bemmel J. H. and Grobbee D. E. (1998). QTc dispersion predicts cardiac mortality in the elderly: the Rotterdam Study. Circulation 97, 467-472. 10.1161/01.CIR.97.5.467 PubMed DOI
DeFronzo R. A. (1988). Lilly lecture 1987. The triumvirate: beta-cell, muscle, liver. A collusion responsible for NIDDM. Diabetes 37, 667-687. 10.2337/diab.37.6.667 PubMed DOI
Diaz-Castroverde S., Gómez-Hernández A., Fernández S., García-Gómez G., Di Scala M., González-Aseguinolaza G., Fernández-Millán E., González-Rodríguez Á., García-Bravo M., Chambon P. et al. (2016). Insulin receptor isoform A ameliorates long-term glucose intolerance in diabetic mice. Dis. Model. Mech. 9, 1271-1281. 10.1242/dmm.025288 PubMed DOI PMC
Eskens B. J. M., Mooij H. L., Cleutjens J. P. M., Roos J. M. A., Cobelens J. E., Vink H. and Vanteeffelen J. W. G. E. (2013). Rapid insulin-mediated increase in microvascular glycocalyx accessibility in skeletal muscle may contribute to insulin-mediated glucose disposal in rats. PLoS ONE 8, e55399 10.1371/journal.pone.0055399 PubMed DOI PMC
Evrengul H., Dursunoglu D., Kaftan A., Kilicaslan F., Tanriverdi H. and Kilic M. (2005). Relation of insulin resistance and left ventricular function and structure in non-diabetic patients with essential hypertension. Acta Cardiol. 60, 191-198. 10.2143/AC.60.2.2005031 PubMed DOI
Farook V. S., Puppala S., Schneider J., Fowler S. P., Chittoor G., Dyer T. D., Allayee H., Cole S. A., Arya R., Black M. H. et al. (2012). Metabolic syndrome is linked to chromosome 7q21 and associated with genetic variants in CD36 and GNAT3 in Mexican Americans. Obesity 20, 2083-2092. 10.1038/oby.2012.74 PubMed DOI PMC
Ferrannini E., Buzzigoli G., Bonadonna R., Giorico M. A., Oleggini M., Graziadei L., Pedrinelli R., Brandi L. and Bevilacqua S. (1987). Insulin resistance in essential hypertension. N. Engl. J. Med. 317, 350-357. 10.1056/NEJM198708063170605 PubMed DOI
Gagnon K. B. and Delpire E. (2013). Physiology of SLC12 transporters: lessons from inherited human genetic mutations and genetically engineered mouse knockouts. Am. J. Physiol. Cell Physiol. 304, C693-C714. 10.1152/ajpcell.00350.2012 PubMed DOI PMC
Gao R., Zhang J., Cheng L., Wu X., Dong W., Yang X., Li T., Liu X., Xu Y., Li X. et al. (2010). A Phase II, randomized, double-blind, multicenter, based on standard therapy, placebo-controlled study of the efficacy and safety of recombinant human neuregulin-1 in patients with chronic heart failure. J. Am. Coll. Cardiol. 55, 1907-1914. 10.1016/j.jacc.2009.12.044 PubMed DOI
Gobel F. L., Norstrom L. A., Nelson R. R., Jorgensen C. R. and Wang Y. (1978). The rate-pressure product as an index of myocardial oxygen consumption during exercise in patients with angina pectoris. Circulation 57, 549-556. 10.1161/01.CIR.57.3.549 PubMed DOI
He J., Kelly T. N., Zhao Q., Li H., Huang J., Wang L., Jaquish C. E., Sung Y. J., Shimmin L. C., Lu F. et al. (2013). Genome-wide association study identifies 8 novel loci associated with blood pressure responses to interventions in Han Chinese. Circ. Cardiovasc. Genet. 6, 598-607. 10.1161/CIRCGENETICS.113.000307 PubMed DOI PMC
Hermsen R., de Ligt J., Spee W., Blokzijl F., Schäfer S., Adami E., Boymans S., Flink S., van Boxtel R., van der Weide R. H. et al. (2015). Genomic landscape of rat strain and substrain variation. BMC Genomics 16, 357 10.1186/s12864-015-1594-1 PubMed DOI PMC
Hertle E., Stehouwer C. D. A. and van Greevenbroek M. M. J. (2014). The complement system in human cardiometabolic disease. Mol. Immunol. 61, 135-148. 10.1016/j.molimm.2014.06.031 PubMed DOI
Hock A. K., Vigneron A. M. and Vousden K. H. (2014). Ubiquitin-specific peptidase 42 (USP42) functions to deubiquitylate histones and regulate transcriptional activity. J. Biol. Chem. 289, 34862-34870. 10.1074/jbc.M114.589267 PubMed DOI PMC
Hu W. and Huang Y. (2015). Targeting the platelet-derived growth factor signalling in cardiovascular disease. Clin. Exp. Pharmacol. Physiol. 42, 1221-1224. 10.1111/1440-1681.12478 PubMed DOI
Huang G. N., Thatcher J. E., McAnally J., Kong Y., Qi X., Tan W., DiMaio J. M., Amatruda J. F., Gerard R. D., Hill J. A. et al. (2012). C/EBP transcription factors mediate epicardial activation during heart development and injury. Science 338, 1599-1603. 10.1126/science.1229765 PubMed DOI PMC
Hulman S., Falkner B. and Chen Y. Q (1991). Insulin resistance in the spontaneously hypertensive rat. Metabolism 40, 359-361. 10.1016/0026-0495(91)90145-M PubMed DOI
Hulman S., Falkner B. and Freyvogel N. (1993). Insulin resistance in the conscious spontaneously hypertensive rat: euglycemic hyperinsulinemic clamp study. Metabolism 42, 14-18. 10.1016/0026-0495(93)90165-K PubMed DOI
Irvin M. R., Wineinger N. E., Rice T. K., Pajewski N. M., Kabagambe E. K., Gu C. C., Pankow J., North K. E., Wilk J. B., Freedman B. I. et al. (2011). Genome-wide detection of allele specific copy number variation associated with insulin resistance in African Americans from the HyperGEN study. PLoS ONE 6, e24052 10.1371/journal.pone.0024052 PubMed DOI PMC
Kaftan H. A., Evrengul H., Tanriverdi H. and Kilic M. (2006). Effect of insulin resistance on left ventricular structural changes in hypertensive patients. Int. Heart J. 47, 391-400. 10.1536/ihj.47.391 PubMed DOI
Kmecova J. and Klimas J. (2010). Heart rate correction of the QT duration in rats. Eur. J. Pharmacol. 641, 187-192. 10.1016/j.ejphar.2010.05.038 PubMed DOI
Koh Y., Park I., Sun C.-H., Lee S., Yun H., Park C.-K., Park S.-H., Park J. K. and Lee S.-H. (2015). Detection of a distinctive genomic signature in rhabdoid glioblastoma, a rare disease entity identified by whole exome sequencing and whole transcriptome sequencing. Transl. Oncol. 8, 279-287. 10.1016/j.tranon.2015.05.003 PubMed DOI PMC
Kraus D. M., Elliott G. S., Chute H., Horan T., Pfenninger K. H., Sanford S. D., Foster S., Scully S., Welcher A. A. and Holers V. M. (2006). CSMD1 is a novel multiple domain complement-regulatory protein highly expressed in the central nervous system and epithelial tissues. J. Immunol. 176, 4419-4430. 10.4049/jimmunol.176.7.4419 PubMed DOI
Kwitek A. E., Tonellato P. J., Chen D., Gullings-Handley J., Cheng Y. S., Twigger S., Scheetz T. E., Casavant T. L., Stoll M., Nobrega M. A. et al. (2001). Automated construction of high-density comparative maps between rat, human, and mouse. Genome Res. 11, 1935-1943. PubMed PMC
Lambert L. J., Challa A. K., Niu A., Zhou L., Tucholski J., Johnson M. S., Nagy T. R., Eberhardt A. W., Estep P. N., Kesterson R. A., et al. (2016). Increased trabecular bone and improved biomechanics in an osteocalcin-null rat model created by CRISPR/Cas9 technology. Dis. Model Mech. 9, 169-1179. 10.1242/dmm.025247 PubMed DOI PMC
Langley S. R., Bottolo L., Kunes J., Zicha J., Zidek V., Hubner N., Cook S. A., Pravenec M., Aitman T. J. and Petretto E. (2013). Systems-level approaches reveal conservation of trans-regulated genes in the rat and genetic determinants of blood pressure in humans. Cardiovasc. Res. 97, 653-665. 10.1093/cvr/cvs329 PubMed DOI PMC
Lehar S. M. and Bevan M. J. (2006). T cells develop normally in the absence of both Deltex1 and Deltex2. Mol. Cell. Biol. 26, 7358-7371. 10.1128/MCB.00149-06 PubMed DOI PMC
Leprêtre F., Vasseur F., Vaxillaire M., Scherer P. E., Ali S., Linton K., Aitman T. and Froguel P. (2004). A CD36 nonsense mutation associated with insulin resistance and familial type 2 diabetes. Hum. Mutat. 24, 104 10.1002/humu.9256 PubMed DOI
Love-Gregory L., Sherva R., Sun L., Wasson J., Schappe T., Doria A., Rao D. C., Hunt S. C., Klein S., Neuman R. J. et al. (2008). Variants in the CD36 gene associate with the metabolic syndrome and high-density lipoprotein cholesterol. Hum. Mol. Genet. 17, 1695-1704. 10.1093/hmg/ddn060 PubMed DOI PMC
Love-Gregory L., Sherva R., Schappe T., Qi J.-S., McCrea J., Klein S., Connelly M. A. and Abumrad N. A. (2011). Common CD36 SNPs reduce protein expression and may contribute to a protective atherogenic profile. Hum. Mol. Genet. 20, 193-201. 10.1093/hmg/ddq449 PubMed DOI PMC
Lu X., Wang L., Lin X., Huang J., Charles Gu C., He M., Shen H., He J., Zhu J., Li H. et al. (2015). Genome-wide association study in Chinese identifies novel loci for blood pressure and hypertension. Hum. Mol. Genet. 24, 865-874. 10.1093/hmg/ddu478 PubMed DOI PMC
Lundbaek K. (1962). Intravenous glucose tolerance as a tool in definition and diagnosis of diabetes mellitus. Br. Med. J. 1, 1507-1513. 10.1136/bmj.1.5291.1507 PubMed DOI PMC
Lusis A. J., Attie A. D. and Reue K. (2008). Metabolic syndrome: from epidemiology to systems biology. Nat. Rev. Genet. 9, 819-830. 10.1038/nrg2468 PubMed DOI PMC
Manolio T. A., Collins F. S., Cox N. J., Goldstein D. B., Hindorff L. A., Hunter D. J., McCarthy M. I., Ramos E. M., Cardon L. R., Chakravarti A. et al. (2009). Finding the missing heritability of complex diseases. Nature 461, 747-753. 10.1038/nature08494 PubMed DOI PMC
Markel P., Shu P., Ebeling C., Carlson G. A., Nagle D. L., Smutko J. S. and Moore K. J. (1997). Theoretical and empirical issues for marker-assisted breeding of congenic mouse strains. Nat. Genet. 17, 280-284. 10.1038/ng1197-280 PubMed DOI
Matsumoto T., Urushido M., Ide H., Ishihara M., Hamada-Ode K., Shimamura Y., Ogata K., Inoue K., Taniguchi Y., Taguchi T. et al. (2015). Small heat shock protein beta-1 (HSPB1) is upregulated and regulates autophagy and apoptosis of renal tubular cells in acute kidney injury. PLoS ONE 10, e0126229 10.1371/journal.pone.0126229 PubMed DOI PMC
McDermott-Roe C., Ye J., Ahmed R., Sun X.-M., Serafin A., Ware J., Bottolo L., Muckett P., Cañas X., Zhang J. et al. (2011). Endonuclease G is a novel determinant of cardiac hypertrophy and mitochondrial function. Nature 478, 114-118. 10.1038/nature10490 PubMed DOI PMC
McLean J. A. and Tobin G. (1987). Animal and Human Calorimetry. Cambridge: Cambridge University Press.
Moak S. L., Dougan G. C., MarElia C. B., Danse W. A., Fernandez A. M., Kuehl M. N., Athanason M. G. and Burkhardt B. R. (2014). Enhanced glucose tolerance in pancreatic-derived factor (PANDER) knockout C57BL/6 mice. Dis Model Mech 7, 1307-1315. 10.1242/dmm.016402 PubMed DOI PMC
Morrissey C., Grieve I. C., Heinig M., Atanur S., Petretto E., Pravenec M., Hubner N. and Aitman T. J. (2011). Integrated genomic approaches to identification of candidate genes underlying metabolic and cardiovascular phenotypes in the spontaneously hypertensive rat. Physiol. Genomics 43, 1207-1218. 10.1152/physiolgenomics.00210.2010 PubMed DOI PMC
Nabika T., Ohara H., Kato N. and Isomura M. (2012). The stroke-prone spontaneously hypertensive rat: still a useful model for post-GWAS genetic studies? Hypertens. Res. 35, 477-484. 10.1038/hr.2012.30 PubMed DOI
Neckar J., Silhavy J., Zidek V., Landa V., Mlejnek P., Simakova M., Seidman J. G., Seidman C., Kazdova L., Klevstig M. et al. (2012). CD36 overexpression predisposes to arrhythmias but reduces infarct size in spontaneously hypertensive rats: gene expression profile analysis. Physiol. Genomics 44, 173-182. 10.1152/physiolgenomics.00083.2011 PubMed DOI PMC
Pajvani U. B., Shawber C. J., Samuel V. T., Birkenfeld A. L., Shulman G. I., Kitajewski J. and Accili D. (2011). Inhibition of Notch signaling ameliorates insulin resistance in a FoxO1-dependent manner. Nat. Med. 17, 961-967. 10.1038/nm.2378 PubMed DOI PMC
Petretto E., Mangion J., Dickens N. J., Cook S. A., Kumaran M. K., Lu H., Fischer J., Maatz H., Kren V., Pravenec M. et al. (2006). Heritability and tissue specificity of expression quantitative trait loci. PLoS Genet. 2, e172 10.1371/journal.pgen.0020172 PubMed DOI PMC
Petretto E., Sarwar R., Grieve I., Lu H., Kumaran M. K., Muckett P. J., Mangion J., Schroen B., Benson M., Punjabi P. P. et al. (2008). Integrated genomic approaches implicate osteoglycin (Ogn) in the regulation of left ventricular mass. Nat. Genet. 40, 546-552. 10.1038/ng.134 PubMed DOI PMC
Pietka T. A., Schappe T., Conte C., Fabbrini E., Patterson B. W., Klein S., Abumrad N. A. and Love-Gregory L. (2014). Adipose and muscle tissue profile of CD36 transcripts in obese subjects highlights the role of CD36 in fatty acid homeostasis and insulin resistance. Diabetes Care 37, 1990-1997. 10.2337/dc13-2835 PubMed DOI PMC
Platzer J., Engel J., Schrott-Fischer A., Stephan K., Bova S., Chen H., Zheng H. and Striessnig J. (2000). Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell 102, 89-97. 10.1016/S0092-8674(00)00013-1 PubMed DOI
Pravenec M., Zidek V., Simakova M., Kren V., Krenova D., Horky K., Jachymova M., Mikova B., Kazdova L., Aitman T. J. et al. (1999). Genetics of Cd36 and the clustering of multiple cardiovascular risk factors in spontaneous hypertension. J. Clin. Invest. 103, 1651-1657. 10.1172/JCI6691 PubMed DOI PMC
Pravenec M., Churchill P. C., Churchill M. C., Viklicky O., Kazdova L., Aitman T. J., Petretto E., Hubner N., Wallace C. A., Zimdahl H. et al. (2008). Identification of renal Cd36 as a determinant of blood pressure and risk for hypertension. Nat. Genet. 40, 952-954. 10.1038/ng.164 PubMed DOI
Purcell S. (2014). Plink - Whole genome association analysis toolset. http://pngu.mgh.harvard.edu/~purcell/plink/index.shtml: Center for Human Genetic Research.
Qi L., Qi Q., Prudente S., Mendonca C., Andreozzi F., di Pietro N., Sturma M., Novelli V., Mannino G. C., Formoso G. et al. (2013). Association between a genetic variant related to glutamic acid metabolism and coronary heart disease in individuals with type 2 diabetes. JAMA 310, 821-828. 10.1001/jama.2013.276305 PubMed DOI PMC
Rohrbach S., Yan X., Weinberg E. O., Hasan F., Bartunek J., Marchionni M. A. and Lorell B. H. (1999). Neuregulin in cardiac hypertrophy in rats with aortic stenosis. Differential expression of erbB2 and erbB4 receptors. Circulation 100, 407-412. PubMed
Roman M. J. and Devereux R. B. (2014). Association of central and peripheral blood pressures with intermediate cardiovascular phenotypes. Hypertension 63, 1148-1153. 10.1161/HYPERTENSIONAHA.114.03361 PubMed DOI
Šedová L., Pravenec M., Křenová D., Kazdová L., Zídek V., Krupková M., Liška F., Křen V. and Šeda O. (2016). Isolation of a genomic region affecting most components of metabolic syndrome in a chromosome-16 congenic rat model. PLoS ONE 11, e0152708 10.1371/journal.pone.0152708 PubMed DOI PMC
Sharma A. K., Bharti S., Ojha S., Bhatia J., Kumar N., Ray R., Kumari S. and Arya D. S. (2011). Up-regulation of PPARgamma, heat shock protein-27 and -72 by naringin attenuates insulin resistance, beta-cell dysfunction, hepatic steatosis and kidney damage in a rat model of type 2 diabetes. Br. J. Nutr. 106, 1713-1723. 10.1017/S000711451100225X PubMed DOI
Shaw J. E., Sicree R. A. and Zimmet P. Z. (2010). Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res. Clin. Pract. 87, 4-14. 10.1016/j.diabres.2009.10.007 PubMed DOI
Simar D., Jacques A. and Caillaud C. (2012). Heat shock proteins induction reduces stress kinases activation, potentially improving insulin signalling in monocytes from obese subjects. Cell Stress Chaperones 17, 615-621. 10.1007/s12192-012-0336-4 PubMed DOI PMC
van Bon B. W. M., Balciuniene J., Fruhman G., Nagamani S. C. S., Broome D. L., Cameron E., Martinet D., Roulet E., Jacquemont S., Beckmann J. S. et al. (2011). The phenotype of recurrent 10q22q23 deletions and duplications. Eur. J. Hum. Genet. 19, 400-408. 10.1038/ejhg.2010.211 PubMed DOI PMC
Vasan R. S., Glazer N. L., Felix J. F., Lieb W., Wild P. S., Felix S. B., Watzinger N., Larson M. G., Smith N. L., Dehghan A. et al. (2009). Genetic variants associated with cardiac structure and function: a meta-analysis and replication of genome-wide association data. JAMA 302, 168-178. 10.1001/jama.2009.978-a PubMed DOI PMC
Ventetuolo C. E., Baird G. L., Barr R. G., Bluemke D. A., Fritz J. S., Hill N. S., Klinger J. R., Lima J. A. C., Ouyang P., Palevsky H. I. et al. (2016). Higher estradiol and lower dehydroepiandrosterone-sulfate levels are associated with pulmonary arterial hypertension in men. Am. J. Respir. Crit. Care. Med. 193, 1168-1175. 10.1164/rccm.201509-1785OC PubMed DOI PMC
Vos T., Barber R. M., Bell B., Bertozzi-Villa A., Biryukov S., Bollinger I., Charlson F., Davis A., DegenHardt L., Dicker D. et al. (2015). Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 386, 743-800. 10.1016/S0140-6736(15)60692-4 PubMed DOI PMC
Wang Y., Zhou X. O., Zhang Y., Gao P. J. and Zhu D. L. (2012). Association of the CD36 gene with impaired glucose tolerance, impaired fasting glucose, type-2 diabetes, and lipid metabolism in essential hypertensive patients. Genet. Mol. Res. 11, 2163-2170. 10.4238/2012.July.10.2 PubMed DOI
Wilson C. G., Tran J. L., Erion D. M., Vera N. B., Febbraio M. and Weiss E. J. (2016). Hepatocyte-specific disruption of CD36 attenuates fatty liver and improves insulin sensitivity in hfd-fed mice. Endocrinology 157, 570-585. 10.1210/en.2015-1866 PubMed DOI PMC
Wright J. T. Jr, Williamson J. D., Whelton P. K., Snyder J. K., Sink K. M., Rocco M. V., Reboussin D. M., Rahman M., Oparil S., Lewis C. E. et al. (2015). A randomized trial of intensive versus standard blood-pressure control. N. Engl. J. Med. 373, 2103-2116. 10.1056/NEJMoa1511939 PubMed DOI PMC
Yeboah J., Sane D. C., Crouse J. R., Herrington D. M. and Bowden D. W. (2007). Low plasma levels of FGF-2 and PDGF-BB are associated with cardiovascular events in type II diabetes mellitus (diabetes heart study). Dis. Markers 23, 173-178. 10.1155/2007/962892 PubMed DOI PMC
Yu J., Lin J. H., Wu X. R. and Sun T. T. (1994). Uroplakins Ia and Ib, two major differentiation products of bladder epithelium, belong to a family of four transmembrane domain (4TM) proteins. J. Cell Biol. 125, 171-182. 10.1083/jcb.125.1.171 PubMed DOI PMC
Zeggini E., Scott L. J., Saxena R., Voight B. F., Marchini J. L., Hu T., de Bakker P. I. W., Abecasis G. R., Almgren P., Andersen G. et al. (2008). Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat. Genet. 40, 638-645. 10.1038/ng.120 PubMed DOI PMC
Zhai G., Teumer A., Stolk L., Perry J. R. B., Vandenput L., Coviello A. D., Koster A., Bell J. T., Bhasin S., Eriksson J. et al. (2011). Eight common genetic variants associated with serum DHEAS levels suggest a key role in ageing mechanisms. PLoS Genet. 7, e1002025 10.1371/journal.pgen.1002025 PubMed DOI PMC
Zhu X., Feng T., Tayo B. O., Liang J., Young J. H., Franceschini N., Smith J. A., Yanek L. R., Sun Y. V., Edwards T. L. et al. (2015). Meta-analysis of correlated traits via summary statistics from GWASs with an application in hypertension. Am. J. Hum. Genet. 96, 21-36. 10.1016/j.ajhg.2014.11.011 PubMed DOI PMC