A Paradigm Revolution or Just Better Resolution-Will Newly Emerging Superresolution Techniques Identify Chromatin Architecture as a Key Factor in Radiation-Induced DNA Damage and Repair Regulation?
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
20-04109J
Czech Science Foundation
19-09212S
Czech Science Foundation
Project of the Czech Government Plenipotentiary for cooperation with JINR Dubna
MEYS CR
Project 3 + 3 for cooperation with JINR Dubna
MEYS CR
the Heidelberg University Mobility Grant for International Research Cooperation within excellence initiative II
Deutsche Forschungsgemeinschaft (DFG)
DAAD-19-03
DAAD+CAS
H1601/16-1
DFG
CEP - Centrální evidence projektů
PubMed
33374540
PubMed Central
PMC7793109
DOI
10.3390/cancers13010018
PII: cancers13010018
Knihovny.cz E-zdroje
- Klíčová slova
- DNA damage and repair, DNA double-strand breaks (DSBs), DSB repair pathway choice and hierarchy, chromatin architecture, ionizing radiation, ionizing radiation-induced foci (IRIFs), linear energy transfer (LET), single-molecule localization microscopy (SMLM), superresolution microscopy,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
DNA double-strand breaks (DSBs) have been recognized as the most serious lesions in irradiated cells. While several biochemical pathways capable of repairing these lesions have been identified, the mechanisms by which cells select a specific pathway for activation at a given DSB site remain poorly understood. Our knowledge of DSB induction and repair has increased dramatically since the discovery of ionizing radiation-induced foci (IRIFs), initiating the possibility of spatiotemporally monitoring the assembly and disassembly of repair complexes in single cells. IRIF exploration revealed that all post-irradiation processes-DSB formation, repair and misrepair-are strongly dependent on the characteristics of DSB damage and the microarchitecture of the whole affected chromatin domain in addition to the cell status. The microscale features of IRIFs, such as their morphology, mobility, spatiotemporal distribution, and persistence kinetics, have been linked to repair mechanisms. However, the influence of various biochemical and structural factors and their specific combinations on IRIF architecture remains unknown, as does the hierarchy of these factors in the decision-making process for a particular repair mechanism at each individual DSB site. New insights into the relationship between the physical properties of the incident radiation, chromatin architecture, IRIF architecture, and DSB repair mechanisms and repair efficiency are expected from recent developments in optical superresolution microscopy (nanoscopy) techniques that have shifted our ability to analyze chromatin and IRIF architectures towards the nanoscale. In the present review, we discuss this relationship, attempt to correlate still rather isolated nanoscale studies with already better-understood aspects of DSB repair at the microscale, and consider whether newly emerging "correlated multiscale structuromics" can revolutionarily enhance our knowledge in this field.
Institute of Biophysics The Czech Academy of Sciences 612 65 Brno Czech Republic
Kirchhoff Institute for Physics Heidelberg University 69120 Heidelberg Germany
Zobrazit více v PubMed
Alhmoud J.F., Woolley J.F., Al Moustafa A.-E., Malki M.I. DNA Damage/Repair Management in Cancers. Cancers. 2020;12:1050. doi: 10.3390/cancers12041050. PubMed DOI PMC
Chatterjee N., Walker G.C. Mechanisms of DNA damage, repair, and mutagenesis: DNA Damage and Repair. Environ. Mol. Mutagen. 2017;58:235–263. doi: 10.1002/em.22087. PubMed DOI PMC
Rittich B., Spanová A., Falk M., Benes M.J., Hrubý M. Cleavage of double stranded plasmid DNA by lanthanide complexes. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2004;800:169–173. doi: 10.1016/j.jchromb.2003.09.011. PubMed DOI
Bennett C.B., Lewis A.L., Baldwin K.K., Resnick M.A. Lethality induced by a single site-specific double-strand break in a dispensable yeast plasmid. Proc. Natl. Acad. Sci. USA. 1993;90:5613–5617. doi: 10.1073/pnas.90.12.5613. PubMed DOI PMC
Sharda A., Rashid M., Shah S.G., Sharma A.K., Singh S.R., Gera P., Chilkapati M.K., Gupta S. Elevated HDAC activity and altered histone phospho-acetylation confer acquired radio-resistant phenotype to breast cancer cells. Clin. Epigenetics. 2020;12:1–17. doi: 10.1186/s13148-019-0800-4. PubMed DOI PMC
Ensminger M., Löbrich M. One end to rule them all: Non-homologous end-joining and homologous recombination at DNA double-strand breaks. Br. J. Radiol. 2020;2019:1054. doi: 10.1259/bjr.20191054. PubMed DOI PMC
Scully R., Panday A., Elango R., Willis N.A. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat. Rev. Mol. Cell Biol. 2019;20:698–714. doi: 10.1038/s41580-019-0152-0. PubMed DOI PMC
Sallmyr A., Tomkinson A.E. Repair of DNA double-strand breaks by mammalian alternative end-joining pathways. J. Biol. Chem. 2018;293:10536–10546. doi: 10.1074/jbc.TM117.000375. PubMed DOI PMC
Chang H.H.Y., Pannunzio N.R., Adachi N., Lieber M.R. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat. Rev. Mol. Cell Biol. 2017;18:495–506. doi: 10.1038/nrm.2017.48. PubMed DOI PMC
Iliakis G., Murmann T., Soni A. Alternative end-joining repair pathways are the ultimate backup for abrogated classical non-homologous end-joining and homologous recombination repair: Implications for the formation of chromosome translocations. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2015;793:166–175. doi: 10.1016/j.mrgentox.2015.07.001. PubMed DOI
Xiong X., Du Z., Wang Y., Feng Z., Fan P., Yan C., Willers H., Zhang J. 53BP1 promotes microhomology-mediated end-joining in G1-phase cells. Nucleic Acids Res. 2015;43:1659–1670. doi: 10.1093/nar/gku1406. PubMed DOI PMC
Iliakis G. Backup pathways of NHEJ in cells of higher eukaryotes: Cell cycle dependence. Radiother. Oncol. 2009;92:310–315. doi: 10.1016/j.radonc.2009.06.024. PubMed DOI
Iliakis G., Mladenov E., Mladenova V. Necessities in the Processing of DNA Double Strand Breaks and Their Effects on Genomic Instability and Cancer. Cancers. 2019;11:1671. doi: 10.3390/cancers11111671. PubMed DOI PMC
Verma P., Greenberg R.A. Noncanonical views of homology-directed DNA repair. Genes Dev. 2016;30:1138–1154. doi: 10.1101/gad.280545.116. PubMed DOI PMC
Vanoli F., Prakash R., White T., Jasin M. Interhomolog Homologous Recombination in Mouse Embryonic Stem Cells. In: Aguilera A., Carreira A., editors. Homologous Recombination. Volume 2153. Springer; New York, NY, USA: 2021. pp. 127–143. (Methods in Molecular Biology). PubMed
Fernandez J., Bloomer H., Kellam N., LaRocque J.R. Chromosome Preference During Homologous Recombination Repair of DNA Double-Strand Breaks in Drosophila melanogaster. Genes Genomes Genet. 2019;9:3773–3780. doi: 10.1534/g3.119.400607. PubMed DOI PMC
Campos A., Clemente-Blanco A. Cell Cycle and DNA Repair Regulation in the Damage Response: Protein Phosphatases Take Over the Reins. IJMS. 2020;21:446. doi: 10.3390/ijms21020446. PubMed DOI PMC
Hustedt N., Durocher D. The control of DNA repair by the cell cycle. Nat. Cell Biol. 2017;19:1–9. doi: 10.1038/ncb3452. PubMed DOI
You Z., Bailis J.M. DNA damage and decisions: CtIP coordinates DNA repair and cell cycle checkpoints. Trends Cell Biol. 2010;20:402–409. doi: 10.1016/j.tcb.2010.04.002. PubMed DOI PMC
Bordelet H., Dubrana K. Keep moving and stay in a good shape to find your homologous recombination partner. Curr. Genet. 2019;65:29–39. doi: 10.1007/s00294-018-0873-1. PubMed DOI PMC
Katsuki Y., Jeggo P.A., Uchihara Y., Takata M., Shibata A. DNA double-strand break end resection: A critical relay point for determining the pathway of repair and signaling. Genome Instab. Dis. 2020;1:155–171. doi: 10.1007/s42764-020-00017-8. DOI
Choi E.-H., Yoon S., Koh Y.E., Seo Y.-J., Kim K.P. Maintenance of genome integrity and active homologous recombination in embryonic stem cells. Exp. Mol. Med. 2020;52:1220–1229. doi: 10.1038/s12276-020-0481-2. PubMed DOI PMC
Kohutova A., Raška J., Kruta M., Seneklova M., Barta T., Fojtik P., Jurakova T., Walter C.A., Hampl A., Dvorak P., et al. Ligase 3–mediated end-joining maintains genome stability of human embryonic stem cells. FASEB J. 2019;33:6778–6788. doi: 10.1096/fj.201801877RR. PubMed DOI
Shrivastav M., De Haro L.P., Nickoloff J.A. Regulation of DNA double-strand break repair pathway choice. Cell Res. 2008;18:134–147. doi: 10.1038/cr.2007.111. PubMed DOI
Serrano L., Liang L., Chang Y., Deng L., Maulion C., Nguyen S., Tischfield J.A. Homologous Recombination Conserves DNA Sequence Integrity Throughout the Cell Cycle in Embryonic Stem Cells. Stem Cells Dev. 2011;20:363–374. doi: 10.1089/scd.2010.0159. PubMed DOI PMC
Mujoo K., Pandita R.K., Tiwari A., Charaka V., Chakraborty S., Singh D.K., Hambarde S., Hittelman W.N., Horikoshi N., Hunt C.R., et al. Differentiation of Human Induced Pluripotent or Embryonic Stem Cells Decreases the DNA Damage Repair by Homologous Recombination. Stem Cell Rep. 2017;9:1660–1674. doi: 10.1016/j.stemcr.2017.10.002. PubMed DOI PMC
Lukášová E., Kořistek Z., Klabusay M., Ondřej V., Grigoryev S., Bačíková A., Řezáčová M., Falk M., Vávrová J., Kohútová V., et al. Granulocyte maturation determines ability to release chromatin NETs and loss of DNA damage response; these properties are absent in immature AML granulocytes. Biochim. Biophys. Acta. 2013;1833:767–779. doi: 10.1016/j.bbamcr.2012.12.012. PubMed DOI
Jeggo P.A., Pearl L.H., Carr A.M. DNA repair, genome stability and cancer: A historical perspective. Nat. Rev. Cancer. 2016;16:35–42. doi: 10.1038/nrc.2015.4. PubMed DOI
Dietlein F., Thelen L., Reinhardt H.C. Cancer-specific defects in DNA repair pathways as targets for personalized therapeutic approaches. Trends Genet. 2014;30:326–339. doi: 10.1016/j.tig.2014.06.003. PubMed DOI
Ma J., Setton J., Lee N.Y., Riaz N., Powell S.N. The therapeutic significance of mutational signatures from DNA repair deficiency in cancer. Nat. Commun. 2018;9:1–12. doi: 10.1038/s41467-018-05228-y. PubMed DOI PMC
Delabaere L., Ertl H.A., Massey D.J., Hofley C.M., Sohail F., Bienenstock E.J., Sebastian H., Chiolo I., LaRocque J.R. Aging impairs double-strand break repair by homologous recombination in Drosophila germ cells. Aging Cell. 2017;16:320–328. doi: 10.1111/acel.12556. PubMed DOI PMC
Bristow R.G., Hill R.P. Hypoxia, DNA repair and genetic instability. Nat. Rev. Cancer. 2008;8:180–192. doi: 10.1038/nrc2344. PubMed DOI
Carreau A., Hafny-Rahbi B.E., Matejuk A., Grillon C., Kieda C. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. J. Cell. Mol. Med. 2011;15:1239–1253. doi: 10.1111/j.1582-4934.2011.01258.x. PubMed DOI PMC
Hagiwara Y., Oike T., Niimi A., Yamauchi M., Sato H., Limsirichaikul S., Held K.D., Nakano T., Shibata A. Clustered DNA double-strand break formation and the repair pathway following heavy-ion irradiation. J. Radiat. Res. 2019;60:69–79. doi: 10.1093/jrr/rry096. PubMed DOI PMC
Nogueira A., Fernandes M., Catarino R., Medeiros R. RAD52 Functions in Homologous Recombination and Its Importance on Genomic Integrity Maintenance and Cancer Therapy. Cancers. 2019;11:1622. doi: 10.3390/cancers11111622. PubMed DOI PMC
Löbrich M., Jeggo P. A Process of Resection-Dependent Nonhomologous End Joining Involving the Goddess Artemis. Trends Biochem. Sci. 2017;42:690–701. doi: 10.1016/j.tibs.2017.06.011. PubMed DOI PMC
Kakarougkas A., Jeggo P.A. DNA DSB repair pathway choice: An orchestrated handover mechanism. Br. J. Radiol. 2014;87:20130685. doi: 10.1259/bjr.20130685. PubMed DOI PMC
Bader A.S., Hawley B.R., Wilczynska A., Bushell M. The roles of RNA in DNA double-strand break repair. Br. J. Cancer. 2020;122:613–623. doi: 10.1038/s41416-019-0624-1. PubMed DOI PMC
Ingram S.P., Warmenhoven J.W., Henthorn N.T., Smith E.A.K., Chadwick A.L., Burnet N.G., Mackay R.I., Kirkby N.F., Kirkby K.J., Merchant M.J. Mechanistic modelling supports entwined rather than exclusively competitive DNA double-strand break repair pathway. Sci. Rep. 2019;9:6359. doi: 10.1038/s41598-019-42901-8. PubMed DOI PMC
Jezkova L., Zadneprianetc M., Kulikova E., Smirnova E., Bulanova T., Depes D., Falkova I., Boreyko A., Krasavin E., Davidkova M., et al. Particles with similar LET values generate DNA breaks of different complexity and reparability: A high-resolution microscopy analysis of γH2AX/53BP1 foci. Nanoscale. 2018;10:1162–1179. doi: 10.1039/C7NR06829H. PubMed DOI
Schipler A., Iliakis G. DNA double-strand-break complexity levels and their possible contributions to the probability for error-prone processing and repair pathway choice. Nucleic Acids Res. 2013;41:7589–7605. doi: 10.1093/nar/gkt556. PubMed DOI PMC
Cruz G.A.S. Microdosimetry: Principles and applications. Rep. Pract. Oncol. Radiother. 2016;21:135–139. doi: 10.1016/j.rpor.2014.10.006. PubMed DOI PMC
Hofmann W., Li W.B., Friedland W., Miller B.W., Madas B., Bardiès M., Balásházy I. Internal microdosimetry of alpha-emitting radionuclides. Radiat. Environ. Biophys. 2020;59:29–62. doi: 10.1007/s00411-019-00826-w. PubMed DOI PMC
Kozubek S., Lukásová E., Jirsová P., Koutná I., Kozubek M., Ganová A., Bártová E., Falk M., Paseková R. 3D Structure of the human genome: Order in randomness. Chromosoma. 2002;111:321–331. doi: 10.1007/s00412-002-0210-8. PubMed DOI
Cremer T., Cremer M., Hübner B., Strickfaden H., Smeets D., Popken J., Sterr M., Markaki Y., Rippe K., Cremer C. The 4D nucleome: Evidence for a dynamic nuclear landscape based on co-aligned active and inactive nuclear compartments. FEBS Lett. 2015;589:2931–2943. doi: 10.1016/j.febslet.2015.05.037. PubMed DOI
Lukásová E., Kozubek S., Kozubek M., Falk M., Amrichová J. The 3D structure of human chromosomes in cell nuclei. Chromosome Res. 2002;10:535–548. doi: 10.1023/A:1020958517788. PubMed DOI
Crosetto N., Bienko M. Radial Organization in the Mammalian Nucleus. Front. Genet. 2020;11:33. doi: 10.3389/fgene.2020.00033. PubMed DOI PMC
Falk M., Lukasova E., Kozubek S. Higher-order chromatin structure in DSB induction, repair and misrepair. Mutat. Res. 2010;704:88–100. doi: 10.1016/j.mrrev.2010.01.013. PubMed DOI
Falk M., Hausmann M., Lukášová E., Biswas A., Hildenbrand G., Davídková M., Krasavin E., Kleibl Z., Falková I., Ježková L., et al. Determining Omics spatiotemporal dimensions using exciting new nanoscopy techniques to assess complex cell responses to DNA damage: Part A—Radiomics. Crit. Rev. Eukaryot. Gene Expr. 2014;24:205–223. doi: 10.1615/CritRevEukaryotGeneExpr.2014010313. PubMed DOI
Falk M., Hausmann M., Lukášová E., Biswas A., Hildenbrand G., Davídková M., Krasavin E., Kleibl Z., Falková I., Ježková L., et al. Determining Omics spatiotemporal dimensions using exciting new nanoscopy techniques to assess complex cell responses to DNA damage: Part B—Structuromics. Crit. Rev. Eukaryot. Gene Expr. 2014;24:225–247. doi: 10.1615/CritRevEukaryotGeneExpr.v24.i3.40. PubMed DOI
Zhao L., Bao C., Shang Y., He X., Ma C., Lei X., Mi D., Sun Y. The Determinant of DNA Repair Pathway Choices in Ionising Radiation-Induced DNA Double-Strand Breaks. Biomed Res. Int. 2020;2020:1–12. doi: 10.1155/2020/4834965. PubMed DOI PMC
Ruebe C.E., Lorat Y., Schanz S., Schuler N., Ruebe C. DNA Double-strand Break Repair in the Context of Chromatin. Int. J. Radiat. Oncol. Biol. Phys. 2011;81:23. doi: 10.1016/j.ijrobp.2011.06.047. PubMed DOI
Shibata A. Regulation of repair pathway choice at two-ended DNA double-strand breaks. Mutat. Res. Fundam. Mol. Mech. Mutagenesis. 2017;803–805:51–55. doi: 10.1016/j.mrfmmm.2017.07.011. PubMed DOI
Clouaire T., Legube G. DNA double strand break repair pathway choice: A chromatin based decision? Nucleus. 2015;6:107–113. doi: 10.1080/19491034.2015.1010946. PubMed DOI PMC
Goodarzi A.A., Jeggo P.A. The Heterochromatic Barrier to DNA Double Strand Break Repair: How to Get the Entry Visa. IJMS. 2012;13:11844–11860. doi: 10.3390/ijms130911844. PubMed DOI PMC
Noon A.T., Shibata A., Rief N., Löbrich M., Stewart G.S., Jeggo P.A., Goodarzi A.A. 53BP1-dependent robust localized KAP-1 phosphorylation is essential for heterochromatic DNA double-strand break repair. Nat. Cell Biol. 2010;12:177–184. doi: 10.1038/ncb2017. PubMed DOI
Ježková L., Falk M., Falková I., Davídková M., Bačíková A., Štefančíková L., Vachelová J., Michaelidesová A., Lukášová E., Boreyko A., et al. Function of chromatin structure and dynamics in DNA damage, repair and misrepair: γ-rays and protons in action. Appl. Radiat. Isot. 2014;83 Pt B:128–136. doi: 10.1016/j.apradiso.2013.01.022. PubMed DOI
Lemaître C., Grabarz A., Tsouroula K., Andronov L., Furst A., Pankotai T., Heyer V., Rogier M., Attwood K.M., Kessler P., et al. Nuclear position dictates DNA repair pathway choice. Genes Dev. 2014;28:2450–2463. doi: 10.1101/gad.248369.114. PubMed DOI PMC
Her J., Bunting S.F. How cells ensure correct repair of DNA double-strand breaks. J. Biol. Chem. 2018;293:10502–10511. doi: 10.1074/jbc.TM118.000371. PubMed DOI PMC
Brinkman E.K., Chen T., de Haas M., Holland H.A., Akhtar W., van Steensel B. Kinetics and Fidelity of the Repair of Cas9-Induced Double-Strand DNA Breaks. Mol. Cell. 2018;70:801–813.e6. doi: 10.1016/j.molcel.2018.04.016. PubMed DOI PMC
Cannan W.J., Pederson D.S. Mechanisms and Consequences of Double-Strand DNA Break Formation in Chromatin: Double-Strand Dna Break Formation in Chromatin. J. Cell. Physiol. 2016;231:3–14. doi: 10.1002/jcp.25048. PubMed DOI PMC
Nickoloff J.A., Sharma N., Taylor L. Clustered DNA Double-Strand Breaks: Biological Effects and Relevance to Cancer Radiotherapy. Genes. 2020;11:99. doi: 10.3390/genes11010099. PubMed DOI PMC
Mavragani I.V., Nikitaki Z., Kalospyros S.A., Georgakilas A.G. Ionizing Radiation and Complex DNA Damage: From Prediction to Detection Challenges and Biological Significance. Cancers. 2019;11:1789. doi: 10.3390/cancers11111789. PubMed DOI PMC
Osipov A.N., Grekhova A., Pustovalova M., Ozerov I.V., Eremin P., Vorobyeva N., Lazareva N., Pulin A., Zhavoronkov A., Roumiantsev S., et al. Activation of homologous recombination DNA repair in human skin fibroblasts continuously exposed to X-ray radiation. Oncotarget. 2015;6:26876–26885. doi: 10.18632/oncotarget.4946. PubMed DOI PMC
Somaiah N., Yarnold J., Lagerqvist A., Rothkamm K., Helleday T. Homologous recombination mediates cellular resistance and fraction size sensitivity to radiation therapy. Radiother. Oncol. 2013;108:155–161. doi: 10.1016/j.radonc.2013.05.012. PubMed DOI
Salles B. Inhibition of the non homologous end joining process in the context of hypoxic tumor cells. Transl. Cancer Res. 2013;2:215–226.
Cowman S., Pizer B., Sée V. Downregulation of both mismatch repair and non-homologous end-joining pathways in hypoxic brain tumour cell lines. bioRxiv. 2020 doi: 10.1101/2020.01.15.907584. PubMed DOI PMC
Redon C.E., Dickey J.S., Bonner W.M., Sedelnikova O.A. γ-H2AX as a biomarker of DNA damage induced by ionizing radiation in human peripheral blood lymphocytes and artificial skin. Adv. Space Res. 2009;43:1171–1178. doi: 10.1016/j.asr.2008.10.011. PubMed DOI PMC
Rogakou E.P., Boon C., Redon C., Bonner W.M. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J. Cell Biol. 1999;146:905–916. doi: 10.1083/jcb.146.5.905. PubMed DOI PMC
Paull T.T. Mechanisms of ATM Activation. Annu. Rev. Biochem. 2015;84:711–738. doi: 10.1146/annurev-biochem-060614-034335. PubMed DOI
Podhorecka M., Skladanowski A., Bozko P. H2AX Phosphorylation: Its Role in DNA Damage Response and Cancer Therapy. J. Nucleic Acids. 2010;2010:1–9. doi: 10.4061/2010/920161. PubMed DOI PMC
Bekker-Jensen S., Mailand N. Assembly and function of DNA double-strand break repair foci in mammalian cells. DNA Repair. 2010;9:1219–1228. doi: 10.1016/j.dnarep.2010.09.010. PubMed DOI
Vítor A.C., Huertas P., Legube G., de Almeida S.F. Studying DNA Double-Strand Break Repair: An Ever-Growing Toolbox. Front. Mol. Biosci. 2020;7:24. doi: 10.3389/fmolb.2020.00024. PubMed DOI PMC
Hofer M., Falk M., Komůrková D., Falková I., Bačíková A., Klejdus B., Pagáčová E., Štefančíková L., Weiterová L., Angelis K.J., et al. Two New Faces of Amifostine: Protector from DNA Damage in Normal Cells and Inhibitor of DNA Repair in Cancer Cells. J. Med. Chem. 2016;59:3003–3017. doi: 10.1021/acs.jmedchem.5b01628. PubMed DOI
Falk M., Lukasova E., Gabrielova B., Ondrej V., Kozubek S. Chromatin dynamics during DSB repair. Biochim. Biophys. Acta. 2007;1773:1534–1545. doi: 10.1016/j.bbamcr.2007.07.002. PubMed DOI
Falk M., Lukásová E., Kozubek S. Chromatin structure influences the sensitivity of DNA to gamma-radiation. Biochim. Biophys. Acta. 2008;1783:2398–2414. doi: 10.1016/j.bbamcr.2008.07.010. PubMed DOI
Falk M., Lukášová E., Štefančíková L., Baranová E., Falková I., Ježková L., Davídková M., Bačíková A., Vachelová J., Michaelidesová A., et al. Heterochromatinization associated with cell differentiation as a model to study DNA double strand break induction and repair in the context of higher-order chromatin structure. Appl. Radiat. Isot. 2014;83:177–185. doi: 10.1016/j.apradiso.2013.01.029. PubMed DOI
Belyaev I.Y. Radiation-induced DNA repair foci: Spatio-temporal aspects of formation, application for assessment of radiosensitivity and biological dosimetry. Mutat. Res. Rev. Mutat. Res. 2010;704:132–141. doi: 10.1016/j.mrrev.2010.01.011. PubMed DOI
Goodarzi A.A., Jeggo P.A. Irradiation induced foci (IRIF) as a biomarker for radiosensitivity. Mutat. Res. Fundam. Mol. Mech. Mutagenesis. 2012;736:39–47. doi: 10.1016/j.mrfmmm.2011.05.017. PubMed DOI
Rothkamm K., Barnard S., Moquet J., Ellender M., Rana Z., Burdak-Rothkamm S. DNA damage foci: Meaning and significance. Environ. Mol. Mutagen. 2015;56:491–504. doi: 10.1002/em.21944. PubMed DOI
Tonnemacher S., Eltsov M., Jakob B. Correlative Light and Electron Microscopy (CLEM) Analysis of Nuclear Reorganization Induced by Clustered DNA Damage Upon Charged Particle Irradiation. IJMS. 2020;21:1911. doi: 10.3390/ijms21061911. PubMed DOI PMC
Entrz Pubmed Database. [(accessed on 7 November 2020)]; Available online: https://pubmed.ncbi.nlm.nih.gov.
Falk M., Hausmann M. Advances in research of DNA damage and repair in cells exposed to various types of ionizing radiation in the era of super-resolution optical microscopy. Cas Lek Cesk. 2020;159:7–8. (pages in press) PubMed
Fabre E., Zimmer C. From dynamic chromatin architecture to DNA damage repair and back. Nucleus. 2018;9:161–170. doi: 10.1080/19491034.2017.1419847. PubMed DOI PMC
Arnould C., Legube G. The Secret Life of Chromosome Loops upon DNA Double-Strand Break. J. Mol. Biol. 2020;432:724–736. doi: 10.1016/j.jmb.2019.07.036. PubMed DOI PMC
Jeggo P.A., Downs J.A. Roles of chromatin remodellers in DNA double strand break repair. Exp. Cell Res. 2014;329:69–77. doi: 10.1016/j.yexcr.2014.09.023. PubMed DOI
Watts F. Repair of DNA Double-Strand Breaks in Heterochromatin. Biomolecules. 2016;6:47. doi: 10.3390/biom6040047. PubMed DOI PMC
Caron H., van Schaik B., van der Mee M., Baas F., Riggins G., van Sluis P., Hermus M.C., van Asperen R., Boon K., Voûte P.A., et al. The human transcriptome map: Clustering of highly expressed genes in chromosomal domains. Science. 2001;291:1289–1292. doi: 10.1126/science.1056794. PubMed DOI
Versteeg R. The Human Transcriptome Map Reveals Extremes in Gene Density, Intron Length, GC Content, and Repeat Pattern for Domains of Highly and Weakly Expressed Genes. Genome Res. 2003;13:1998–2004. doi: 10.1101/gr.1649303. PubMed DOI PMC
Goodarzi A.A., Noon A.T., Jeggo P.A. The impact of heterochromatin on DSB repair. Biochem. Soc. Trans. 2009;37:569–576. doi: 10.1042/BST0370569. PubMed DOI
Goodarzi A.A., Jeggo P., Lobrich M. The influence of heterochromatin on DNA double strand break repair: Getting the strong, silent type to relax. DNA Repair. 2010;9:1273–1282. doi: 10.1016/j.dnarep.2010.09.013. PubMed DOI
Baldock R.A., Day M., Wilkinson O.J., Cloney R., Jeggo P.A., Oliver A.W., Watts F.Z., Pearl L.H. ATM Localization and Heterochromatin Repair Depend on Direct Interaction of the 53BP1-BRCT2 Domain with γH2AX. Cell Rep. 2015;13:2081–2089. doi: 10.1016/j.celrep.2015.10.074. PubMed DOI PMC
Goodarzi A.A., Noon A.T., Deckbar D., Ziv Y., Shiloh Y., Löbrich M., Jeggo P.A. ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Mol. Cell. 2008;31:167–177. doi: 10.1016/j.molcel.2008.05.017. PubMed DOI
Fortuny A., Polo S.E. The response to DNA damage in heterochromatin domains. Chromosoma. 2018;127:291–300. doi: 10.1007/s00412-018-0669-6. PubMed DOI PMC
Walter A., Chapuis C., Huet S., Ellenberg J. Crowded chromatin is not sufficient for heterochromatin formation and not required for its maintenance. J. Struct. Biol. 2013;184:445–453. doi: 10.1016/j.jsb.2013.10.004. PubMed DOI
Jakob B., Splinter J., Conrad S., Voss K.-O., Zink D., Durante M., Löbrich M., Taucher-Scholz G. DNA double-strand breaks in heterochromatin elicit fast repair protein recruitment, histone H2AX phosphorylation and relocation to euchromatin. Nucleic Acids Res. 2011;39:6489–6499. doi: 10.1093/nar/gkr230. PubMed DOI PMC
Svetličič M., Bomhard A., Sterr C., Brückner F., Płódowska M., Lisowska H., Lundholm L. Alpha Radiation as a Way to Target Heterochromatic and Gamma Radiation-Exposed Breast Cancer Cells. Cells. 2020;9:1165. doi: 10.3390/cells9051165. PubMed DOI PMC
Yu S., Yang F., Shen W.H. Genome maintenance in the context of 4D chromatin condensation. Cell. Mol. Life Sci. 2016;73:3137–3150. doi: 10.1007/s00018-016-2221-2. PubMed DOI PMC
Chiolo I., Minoda A., Colmenares S.U., Polyzos A., Costes S.V., Karpen G.H. Double-Strand Breaks in Heterochromatin Move Outside of a Dynamic HP1a Domain to Complete Recombinational Repair. Cell. 2011;144:732–744. doi: 10.1016/j.cell.2011.02.012. PubMed DOI PMC
Luijsterburg M.S., van Attikum H. Close encounters of the RNF8th kind: When chromatin meets DNA repair. Curr. Opin. Cell Biol. 2012;24:439–447. doi: 10.1016/j.ceb.2012.03.008. PubMed DOI
Amaral N., Ryu T., Li X., Chiolo I. Nuclear Dynamics of Heterochromatin Repair. Trends Genet. 2017;33:86–100. doi: 10.1016/j.tig.2016.12.004. PubMed DOI PMC
Foltánková V., Legartová S., Kozubek S., Hofer M., Bártová E. DNA-damage response in chromatin of ribosomal genes and the surrounding genome. Gene. 2013;522:156–167. doi: 10.1016/j.gene.2013.03.108. PubMed DOI
Lorat Y., Timm S., Jakob B., Taucher-Scholz G., Rübe C.E. Clustered double-strand breaks in heterochromatin perturb DNA repair after high linear energy transfer irradiation. Radiother. Oncol. 2016;121:154–161. doi: 10.1016/j.radonc.2016.08.028. PubMed DOI
Timm S., Lorat Y., Jakob B., Taucher-Scholz G., Rübe C.E. Clustered DNA damage concentrated in particle trajectories causes persistent large-scale rearrangements in chromatin architecture. Radiother. Oncol. 2018;129:600–610. doi: 10.1016/j.radonc.2018.07.003. PubMed DOI
Zhang Y., Heermann D.W. DNA double-strand breaks: Linking gene expression to chromosome morphology and mobility. Chromosoma. 2014;123:103–115. doi: 10.1007/s00412-013-0432-y. PubMed DOI
Hausmann M., Wagner E., Lee J.-H., Schrock G., Schaufler W., Krufczik M., Papenfuß F., Port M., Bestvater F., Scherthan H. Super-resolution localization microscopy of radiation-induced histone H2AX-phosphorylation in relation to H3K9-trimethylation in HeLa cells. Nanoscale. 2018;10:4320–4331. doi: 10.1039/C7NR08145F. PubMed DOI
Zhang Y., Máté G., Müller P., Hillebrandt S., Krufczik M., Bach M., Kaufmann R., Hausmann M., Heermann D.W. Radiation induced chromatin conformation changes analysed by fluorescent localization microscopy, statistical physics, and graph theory. PLoS ONE. 2015;10:e0128555. doi: 10.1371/journal.pone.0128555. PubMed DOI PMC
Aymard F., Bugler B., Schmidt C.K., Guillou E., Caron P., Briois S., Iacovoni J.S., Daburon V., Miller K.M., Jackson S.P., et al. Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks. Nat. Struct. Mol. Biol. 2014;21:366–374. doi: 10.1038/nsmb.2796. PubMed DOI PMC
Aymard F., Aguirrebengoa M., Guillou E., Javierre B.M., Bugler B., Arnould C., Rocher V., Iacovoni J.S., Biernacka A., Skrzypczak M., et al. Genome-wide mapping of long-range contacts unveils clustering of DNA double-strand breaks at damaged active genes. Nat. Struct. Mol. Biol. 2017;24:353–361. doi: 10.1038/nsmb.3387. PubMed DOI PMC
Deckbar D., Jeggo P.A., Löbrich M. Understanding the limitations of radiation-induced cell cycle checkpoints. Crit. Rev. Biochem. Mol. Biol. 2011;46:271–283. doi: 10.3109/10409238.2011.575764. PubMed DOI PMC
Chao H.X., Poovey C.E., Privette A.A., Grant G.D., Chao H.Y., Cook J.G., Purvis J.E. Orchestration of DNA Damage Checkpoint Dynamics across the Human Cell Cycle. Cell Syst. 2017;5:445–459.e5. doi: 10.1016/j.cels.2017.09.015. PubMed DOI PMC
Chakraborty A., Tapryal N., Venkova T., Horikoshi N., Pandita R.K., Sarker A.H., Sarkar P.S., Pandita T.K., Hazra T.K. Classical non-homologous end-joining pathway utilizes nascent RNA for error-free double-strand break repair of transcribed genes. Nat. Commun. 2016;7:13049. doi: 10.1038/ncomms13049. PubMed DOI PMC
Domingo-Prim J., Bonath F., Visa N. RNA at DNA Double-Strand Breaks: The Challenge of Dealing with DNA: RNA Hybrids. BioEssays. 2020;42:1900225. doi: 10.1002/bies.201900225. PubMed DOI
Monajembashi S., Rapp A., Schmitt E., Dittmar H., Greulich K.-O., Hausmann M. Spatial Association of Homologous Pericentric Regions in Human Lymphocyte Nuclei during Repair. Biophys. J. 2005;88:2309–2322. doi: 10.1529/biophysj.104.048728. PubMed DOI PMC
Janssen A., Colmenares S.U., Lee T., Karpen G.H. Timely double-strand break repair and pathway choice in pericentromeric heterochromatin depend on the histone demethylase dKDM4A. Genes Dev. 2019;33:103–115. doi: 10.1101/gad.317537.118. PubMed DOI PMC
Fyodorov D.V., Zhou B.-R., Skoultchi A.I., Bai Y. Emerging roles of linker histones in regulating chromatin structure and function. Nat. Rev. Mol. Cell Biol. 2018;19:192–206. doi: 10.1038/nrm.2017.94. PubMed DOI PMC
Falk M., Falková I., Kopečná O., Bačíková A., Pagáčová E., Šimek D., Golan M., Kozubek S., Pekarová M., Follett S.E., et al. Chromatin architecture changes and DNA replication fork collapse are critical features in cryopreserved cells that are differentially controlled by cryoprotectants. Sci. Rep. 2018;8:14694. doi: 10.1038/s41598-018-32939-5. PubMed DOI PMC
Caron P., van der Linden J., van Attikum H. Bon voyage: A transcriptional journey around DNA breaks. DNA Repair. 2019;82:102686. doi: 10.1016/j.dnarep.2019.102686. PubMed DOI
Kalousi A., Soutoglou E. Nuclear compartmentalization of DNA repair. Curr. Opin. Genet. Dev. 2016;37:148–157. doi: 10.1016/j.gde.2016.05.013. PubMed DOI
Bobkova E., Depes D., Lee J.-H., Jezkova L., Falkova I., Pagacova E., Kopecna O., Zadneprianetc M., Bacikova A., Kulikova E., et al. Recruitment of 53BP1 Proteins for DNA Repair and Persistence of Repair Clusters Differ for Cell Types as Detected by Single Molecule Localization Microscopy. Int. J. Mol. Sci. 2018;19:3713. doi: 10.3390/ijms19123713. PubMed DOI PMC
Schwarz B., Friedl A.A., Girst S., Dollinger G., Reindl J. Nanoscopic analysis of 53BP1, BRCA1 and Rad51 reveals new insights in temporal progression of DNA-repair and pathway choice. Mutat. Res. 2019;816–818:111675. doi: 10.1016/j.mrfmmm.2019.111675. PubMed DOI
Jakob B., Splinter J., Durante M., Taucher-Scholz G. Live cell microscopy analysis of radiation-induced DNA double-strand break motion. Proc. Natl. Acad. Sci. USA. 2009;106:3172–3177. doi: 10.1073/pnas.0810987106. PubMed DOI PMC
Costes S.V., Ponomarev A., Chen J.L., Nguyen D., Cucinotta F.A., Barcellos-Hoff M.H. Image-based modeling reveals dynamic redistribution of DNA damage into nuclear sub-domains. PLoS Comput. Biol. 2007;3:e155. doi: 10.1371/journal.pcbi.0030155. PubMed DOI PMC
Sundaravinayagam D., Rahjouei A., Andreani M., Tupiņa D., Balasubramanian S., Saha T., Delgado-Benito V., Coralluzzo V., Daumke O., Di Virgilio M. 53BP1 Supports Immunoglobulin Class Switch Recombination Independently of Its DNA Double-Strand Break End Protection Function. Cell Rep. 2019;28:1389–1399.e6. doi: 10.1016/j.celrep.2019.06.035. PubMed DOI PMC
Biehs R., Steinlage M., Barton O., Juhász S., Künzel J., Spies J., Shibata A., Jeggo P.A., Löbrich M. DNA Double-Strand Break Resection Occurs during Non-homologous End Joining in G1 but Is Distinct from Resection during Homologous Recombination. Mol. Cell. 2017;65:671–684.e5. doi: 10.1016/j.molcel.2016.12.016. PubMed DOI PMC
Kallimasioti-Pazi E.M., Chathoth K.T., Taylor G.C., Meynert A., Ballinger T., Kelder M.J.E., Lalevée S., Sanli I., Feil R., Wood A.J. Heterochromatin delays CRISPR-Cas9 mutagenesis but does not influence the outcome of mutagenic DNA repair. PLoS Biol. 2018;16:e2005595. doi: 10.1371/journal.pbio.2005595. PubMed DOI PMC
Stadler J., Richly H. Regulation of DNA Repair Mechanisms: How the Chromatin Environment Regulates the DNA Damage Response. Int. J. Mol. Sci. 2017;18:1715. doi: 10.3390/ijms18081715. PubMed DOI PMC
Polo S.E., Jackson S.P. Dynamics of DNA damage response proteins at DNA breaks: A focus on protein modifications. Genes Dev. 2011;25:409–433. doi: 10.1101/gad.2021311. PubMed DOI PMC
Wei L., Lan L., Hong Z., Yasui A., Ishioka C., Chiba N. Rapid recruitment of BRCA1 to DNA double-strand breaks is dependent on its association with Ku80. Mol. Cell. Biol. 2008;28:7380–7393. doi: 10.1128/MCB.01075-08. PubMed DOI PMC
Misteli T., Soutoglou E. The emerging role of nuclear architecture in DNA repair and genome maintenance. Nat. Rev. Mol. Cell Biol. 2009;10:243–254. doi: 10.1038/nrm2651. PubMed DOI PMC
Groth A., Rocha W., Verreault A., Almouzni G. Chromatin Challenges during DNA Replication and Repair. Cell. 2007;128:721–733. doi: 10.1016/j.cell.2007.01.030. PubMed DOI
Shi L., Oberdoerffer P. Chromatin dynamics in DNA double-strand break repair. Biochim. Biophys. Acta Gene Regul. Mech. 2012;1819:811–819. doi: 10.1016/j.bbagrm.2012.01.002. PubMed DOI PMC
Klemm S.L., Shipony Z., Greenleaf W.J. Chromatin accessibility and the regulatory epigenome. Nat. Rev. Genet. 2019;20:207–220. doi: 10.1038/s41576-018-0089-8. PubMed DOI
Cremer C., Birk U. Perspectives in Super-Resolved Fluorescence Microscopy: What Comes Next? Front. Phys. 2016;4:4. doi: 10.3389/fphy.2016.00011. DOI
Cremer C., Masters B.R. Resolution enhancement techniques in microscopy. Eur. Phys. J. H. 2013;38:281–344. doi: 10.1140/epjh/e2012-20060-1. DOI
Kaufmann R., Lemmer P., Gunkel M., Weiland Y., Müller P., Hausmann M., Baddeley D., Amberger R., Cremer C. SPDM: Single Molecule Superresolution of Cellular Nanostructures. In: Enderlein J., Gryczynski Z.K., Erdmann R., editors. Single Molecule Spectroscopy and Imaging II, Proceedings of SPIE BiOS, San Jose, CA, USA, 24 February 2009. Proc. SPIE; San Jose, CA, USA: 2009. p. 7185. DOI
Lemmer P., Gunkel M., Weiland Y., Müller P., Baddeley D., Kaufmann R., Urich A., Eipel H., Amberger R., Hausmann M., et al. Using conventional fluorescent markers for far-field fluorescence localization nanoscopy allows resolution in the 10-nm range. J. Microsc. 2009;235:163–171. doi: 10.1111/j.1365-2818.2009.03196.x. PubMed DOI
Depes D., Lee J.-H., Bobkova E., Jezkova L., Falkova I., Bestvater F., Pagacova E., Kopecna O., Zadneprianetc M., Bacikova A., et al. Single-molecule localization microscopy as a promising tool for γH2AX/53BP1 foci exploration. Eur. Phys. J. 2018;72:e2018–e90148. doi: 10.1140/epjd/e2018-90148-1. DOI
Hausmann M., Ilić N., Pilarczyk G., Lee J.-H., Logeswaran A., Borroni A.P., Krufczik M., Theda F., Waltrich N., Bestvater F., et al. Challenges for super-resolution localization microscopy and biomolecular fluorescent nano-probing in cancer research. Int. J. Mol. Sci. 2017;18:2066. doi: 10.3390/ijms18102066. PubMed DOI PMC
Cremer C., Kaufmann R., Gunkel M., Pres S., Weiland Y., Müller P., Ruckelshausen T., Lemmer P., Geiger F., Degenhard S., et al. Superresolution imaging of biological nanostructures by spectral precision distance microscopy. Biotechnol. J. 2011;6:1037–1051. doi: 10.1002/biot.201100031. PubMed DOI
Scherthan H., Lee J.-H., Maus E., Schumann S., Muhtadi R., Chojowski R., Port M., Lassmann M., Bestvater F., Hausmann M. Nanostructure of Clustered DNA Damage in Leukocytes after In-Solution Irradiation with the Alpha Emitter Ra-223. Cancers. 2019;11:1877. doi: 10.3390/cancers11121877. PubMed DOI PMC
Natale F., Rapp A., Yu W., Maiser A., Harz H., Scholl A., Grulich S., Anton T., Hörl D., Chen W., et al. Identification of the elementary structural units of the DNA damage response. Nat. Commun. 2017;8:15760. doi: 10.1038/ncomms15760. PubMed DOI PMC
Ripley B.D. Modelling Spatial Patterns. J. R. Stat. Soc. Ser. B. 1977;39:172–192. doi: 10.1111/j.2517-6161.1977.tb01615.x. DOI
Hausmann M., Neitzel C., Bobkova E., Nagel D., Hofmann A., Chramko T., Smirnova E., Kopečná O., Pagáčová E., Boreyko A., et al. Single Molecule Localization Microscopy Analyses of DNA-Repair Foci and Clusters Detected along Particle Damage Tracks. Front. Phys. Sect. Med. Phys. Imaging. 2020;8:473.
Hofmann A., Krufczik M., Heermann D.W., Hausmann M. Using Persistent Homology as a New Approach for Super-Resolution Localization Microscopy Data Analysis and Classification of γH2AX Foci/Clusters. Int. J. Mol. Sci. 2018;19:2263. doi: 10.3390/ijms19082263. PubMed DOI PMC
Iacovoni J.S., Caron P., Lassadi I., Nicolas E., Massip L., Trouche D., Legube G. High-resolution profiling of γH2AX around DNA double strand breaks in the mammalian genome. EMBO J. 2010;29:1446–1457. doi: 10.1038/emboj.2010.38. PubMed DOI PMC
Arnould C., Rocher V., Clouaire T., Caron P., Philippe E.M., Emiliano P.R., Mourad R., Noordermeer D., Legube G. Loop extrusion as a mechanism for DNA Double-Strand Breaks repair foci formation. bioRxiv. 2020 doi: 10.1101/2020.02.12.945311. DOI
Zimmermann M., de Lange T. 53BP1: Prochoice in DNA repair. Trends Cell Biol. 2014;24:108–117. doi: 10.1016/j.tcb.2013.09.003. PubMed DOI PMC
Dutta A., Eckelmann B., Adhikari S., Ahmed K.M., Sengupta S., Pandey A., Hegde P.M., Tsai M.-S., Tainer J.A., Weinfeld M., et al. Microhomology-mediated end joining is activated in irradiated human cells due to phosphorylation-dependent formation of the XRCC1 repair complex. Nucleic Acids Res. 2017;45:1262. doi: 10.1093/nar/gkw1262. PubMed DOI PMC
Ochs F., Karemore G., Miron E., Brown J., Sedlackova H., Rask M.-B., Lampe M., Buckle V., Schermelleh L., Lukas J., et al. Stabilization of chromatin topology safeguards genome integrity. Nature. 2019;574:571–574. doi: 10.1038/s41586-019-1659-4. PubMed DOI
Bártová E., Legartová S., Dundr M., Suchánková J. A role of the 53BP1 protein in genome protection: Structural and functional characteristics of 53BP1-dependent DNA repair. Aging. 2019;11:2488–2511. doi: 10.18632/aging.101917. PubMed DOI PMC
Reindl J., Drexler G.A., Girst S., Greubel C., Siebenwirth C., Drexler S.E., Dollinger G., Friedl A.A. Nanoscopic exclusion between Rad51 and 53BP1 after ion irradiation in human HeLa cells. Phys. Biol. 2015;12:066005. doi: 10.1088/1478-3975/12/6/066005. PubMed DOI
Hell S.W., Wichmann J. Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 1994;19:780. doi: 10.1364/OL.19.000780. PubMed DOI
Varga D., Majoros H., Ujfaludi Z., Erdélyi M., Pankotai T. Quantification of DNA damage induced repair focus formation via super-resolution dSTORM localization microscopy. Nanoscale. 2019;11:14226–14236. doi: 10.1039/C9NR03696B. PubMed DOI
Wang H., Wang Y. Heavier Ions with a Different Linear Energy Transfer Spectrum Kill More Cells Due to Similar Interference with the Ku-Dependent DNA Repair Pathway. Radiat. Res. 2014;182:458–461. doi: 10.1667/RR13857.1. PubMed DOI PMC
Xie M., Park D., You S., Li R., Owonikoko T.K., Wang Y., Doetsch P.W., Deng X. Bcl2 inhibits recruitment of Mre11 complex to DNA double-strand breaks in response to high-linear energy transfer radiation. Nucleic Acids Res. 2015;43:960–972. doi: 10.1093/nar/gku1358. PubMed DOI PMC
Roobol S.J., van den Bent I., van Cappellen W.A., Abraham T.E., Paul M.W., Kanaar R., Houtsmuller A.B., van Gent D.C., Essers J. Comparison of High- and Low-LET Radiation-Induced DNA Double-Strand Break Processing in Living Cells. Int. J. Mol. Sci. 2020;21:6602. doi: 10.3390/ijms21186602. PubMed DOI PMC
Scuric Z., Chan C.Y., Hafer K., Schiestl R.H. Ionizing Radiation Induces Microhomology-Mediated End Joining in trans in Yeast and Mammalian Cells. Radiat. Res. 2009;171:454–463. doi: 10.1667/RR1329.1. PubMed DOI PMC
Shibata A., Conrad S., Birraux J., Geuting V., Barton O., Ismail A., Kakarougkas A., Meek K., Taucher-Scholz G., Löbrich M., et al. Factors determining DNA double-strand break repair pathway choice in G2 phase: DSB repair pathway choice in G2 phase. EMBO J. 2011;30:1079–1092. doi: 10.1038/emboj.2011.27. PubMed DOI PMC
Jeggo P.A., Löbrich M. DNA non-homologous end-joining enters the resection arena. Oncotarget. 2017;8:93317–93318. doi: 10.18632/oncotarget.22075. PubMed DOI PMC
Guckenberger M., Combs S.E., Zips D., editors. Advances in Radiation Therapy. Karger; Basel, Switzerland: New York, NY, USA: 2018. (Progress in Tumor Research).
Lorat Y., Brunner C.U., Schanz S., Jakob B., Taucher-Scholz G., Rübe C.E. Nanoscale analysis of clustered DNA damage after high-LET irradiation by quantitative electron microscopy–The heavy burden to repair. DNA Repair. 2015;28:93–106. doi: 10.1016/j.dnarep.2015.01.007. PubMed DOI
Tang N., Bueno M., Meylan S., Incerti S., Tran H.N., Vaurijoux A., Gruel G., Villagrasa C. Influence of chromatin compaction on simulated early radiation-induced DNA damage using Geant4-DNA. Med. Phys. 2019;46:1501–1511. doi: 10.1002/mp.13405. PubMed DOI
Shibata A., Jeggo P.A. Canonical DNA non-homologous end-joining; capacity versus fidelity. Br. J. Radiol. 2020;2019:966. doi: 10.1259/bjr.20190966. PubMed DOI PMC
Iliakis G. Sustainable Risk Management. Springer; Cham, Switzerland: 2018. The Biological Foundations of Risks from Ionizing Radiation Exposures: How an Understanding of Associated Effects Will Help Their Quantification and Mitigation; pp. 149–158.
Cremer T., Cremer M., Hübner B., Silahtaroglu A., Hendzel M., Lanctôt C., Strickfaden H., Cremer C. The Interchromatin Compartment Participates in the Structural and Functional Organization of the Cell Nucleus. BioEssays. 2020;42:1900132. doi: 10.1002/bies.201900132. PubMed DOI
Bendandi A., Dante S., Zia S.R., Diaspro A., Rocchia W. Chromatin Compaction Multiscale Modeling: A Complex Synergy Between Theory, Simulation, and Experiment. Front. Mol. Biosci. 2020;7:15. doi: 10.3389/fmolb.2020.00015. PubMed DOI PMC
Van Steensel B., Furlong E.E.M. The role of transcription in shaping the spatial organization of the genome. Nat. Rev. Mol. Cell Biol. 2019;20:327–337. doi: 10.1038/s41580-019-0114-6. PubMed DOI PMC
Vergara Z., Gutierrez C. Emerging roles of chromatin in the maintenance of genome organization and function in plants. Genome Biol. 2017;18:96. doi: 10.1186/s13059-017-1236-9. PubMed DOI PMC
Hauer M.H., Gasser S.M. Chromatin and nucleosome dynamics in DNA damage and repair. Genes Dev. 2017;31:2204–2221. doi: 10.1101/gad.307702.117. PubMed DOI PMC
Zafar F., Okita A.K., Onaka A.T., Su J., Katahira Y., Nakayama J., Takahashi T.S., Masukata H., Nakagawa T. Regulation of mitotic recombination between DNA repeats in centromeres. Nucleic Acids Res. 2017;45:11222–11235. doi: 10.1093/nar/gkx763. PubMed DOI PMC
Janssen A., Colmenares S.U., Karpen G.H. Heterochromatin: Guardian of the Genome. Annu. Rev. Cell Dev. Biol. 2018;34:265–288. doi: 10.1146/annurev-cellbio-100617-062653. PubMed DOI
Allshire R.C., Madhani H.D. Ten principles of heterochromatin formation and function. Nat. Rev. Mol. Cell Biol. 2018;19:229–244. doi: 10.1038/nrm.2017.119. PubMed DOI PMC
Jasin M., Rothstein R. Repair of strand breaks by homologous recombination. Cold Spring Harb. Perspect. Biol. 2013;5:a012740. doi: 10.1101/cshperspect.a012740. PubMed DOI PMC
Pagáčová E., Falk M., Falková I., Lukášová E., Michalová K., Oltová A., Raška I., Kozubek S. Frequent chromatin rearrangements in myelodysplastic syndromes–what stands behind? Folia Biol. 2014;60(Suppl. 1):1–7. PubMed
Koltsova A.S., Pendina A.A., Efimova O.A., Chiryaeva O.G., Kuznetzova T.V., Baranov V.S. On the Complexity of Mechanisms and Consequences of Chromothripsis: An Update. Front. Genet. 2019;10:393. doi: 10.3389/fgene.2019.00393. PubMed DOI PMC
Lin F.L., Sperle K., Sternberg N. Model for homologous recombination during transfer of DNA into mouse L cells: Role for DNA ends in the recombination process. Mol. Cell. Biol. 1984;4:1020–1034. doi: 10.1128/MCB.4.6.1020. PubMed DOI PMC
Cornforth M.N., Durante M. Radiation quality and intra-chromosomal aberrations: Size matters. Mutat. Res. Genet. Toxicol. Environ. Mutagenesis. 2018;836:28–35. doi: 10.1016/j.mrgentox.2018.05.002. PubMed DOI
Brenner D.J., Okladnikova N., Hande P., Burak L., Geard C.R., Azizova T. Biomarkers Specific to Densely-ionising (High LET) Radiations. Radiat. Prot. Dosim. 2001;97:69–73. doi: 10.1093/oxfordjournals.rpd.a006640. PubMed DOI
Costes S.V., Chiolo I., Pluth J.M., Barcellos-Hoff M.H., Jakob B. Spatiotemporal characterization of ionizing radiation induced DNA damage foci and their relation to chromatin organization. Mutat. Res. Rev. Mutat. Res. 2010;704:78–87. doi: 10.1016/j.mrrev.2009.12.006. PubMed DOI PMC
Banno K., Kisu I., Yanokura M., Tsuji K., Masuda K., Ueki A., Kobayashi Y., Yamagami W., Nomura H., Tominaga E., et al. Epimutation and cancer: A new carcinogenic mechanism of Lynch syndrome. Int. J. Oncol. 2012;41:793–797. doi: 10.3892/ijo.2012.1528. PubMed DOI PMC
Machnik M., Oleksiewicz U. Dynamic Signatures of the Epigenome: Friend or Foe? Cells. 2020;9:653. doi: 10.3390/cells9030653. PubMed DOI PMC
Lønning P.E., Eikesdal H.P., Løes I.M., Knappskog S. Constitutional Mosaic Epimutations–a hidden cause of cancer? Cell Stress. 2019;3:118–135. doi: 10.15698/cst2019.04.183. PubMed DOI PMC
Misteli T. Higher-order genome organization in human disease. Cold Spring Harb. Perspect. Biol. 2010;2:a000794. doi: 10.1101/cshperspect.a000794. PubMed DOI PMC
Engreitz J.M., Agarwala V., Mirny L.A. Three-Dimensional Genome Architecture Influences Partner Selection for Chromosomal Translocations in Human Disease. PLoS ONE. 2012;7:e44196. doi: 10.1371/journal.pone.0044196. PubMed DOI PMC
Iarovaia O.V., Rubtsov M., Ioudinkova E., Tsfasman T., Razin S.V., Vassetzky Y.S. Dynamics of double strand breaks and chromosomal translocations. Mol. Cancer. 2014;13:249. doi: 10.1186/1476-4598-13-249. PubMed DOI PMC
Chagin V.O., Reinhart B., Becker A., Mortusewicz O., Jost K.L., Rapp A., Leonhardt H., Cardoso M.C. Processive DNA synthesis is associated with localized decompaction of constitutive heterochromatin at the sites of DNA replication and repair. Nucleus. 2019;10:231–253. doi: 10.1080/19491034.2019.1688932. PubMed DOI PMC
Bach M., Savini C., Krufczik M., Cremer C., Rösl F., Hausmann M. Super-Resolution Localization Microscopy of γ-H2AX and Heterochromatin after Folate Deficiency. Int. J. Mol. Sci. 2017;18:1726. doi: 10.3390/ijms18081726. PubMed DOI PMC
Cann K.L., Dellaire G. Heterochromatin and the DNA damage response: The need to relax. Biochem. Cell Biol. 2011;89:45–60. doi: 10.1139/O10-113. PubMed DOI
Nickoloff J.A., De Haro L.P., Wray J., Hromas R. Mechanisms of leukemia translocations. Curr. Opin. Hematol. 2008;15:338–345. doi: 10.1097/MOH.0b013e328302f711. PubMed DOI PMC
Kozubek S., Bártová E., Kozubek M., Lukásová E., Cafourková A., Koutná I., Skalníková M. Spatial distribution of selected genetic loci in nuclei of human leukemia cells after irradiation. Radiat. Res. 2001;155:311–319. PubMed
Kozubek S., Lukásová E., Marecková A., Skalníková M., Kozubek M., Bártová E., Kroha V., Krahulcová E., Slotová J. The topological organization of chromosomes 9 and 22 in cell nuclei has a determinative role in the induction of t(9,22) translocations and in the pathogenesis of t(9,22) leukemias. Chromosoma. 1999;108:426–435. doi: 10.1007/s004120050394. PubMed DOI
Lukášová E., Kozubek S., Kozubek M., Kroha V., Marečková A., Skalníková M., Bártová E., Šlotová J. Chromosomes participating in translocations typical of malignant hemoblastoses are also involved in exchange aberrations induced by fast neutrons. Radiat. Res. 1999;151:375–384. doi: 10.2307/3579823. PubMed DOI
Nathanailidou P., Taraviras S., Lygerou Z. Chromatin and Nuclear Architecture: Shaping DNA Replication in 3D. Trends Genet. 2020;36:967–980. doi: 10.1016/j.tig.2020.07.003. PubMed DOI
Meaburn K.J., Misteli T., Soutoglou E. Spatial genome organization in the formation of chromosomal translocations. Semin. Cancer Biol. 2007;17:80–90. doi: 10.1016/j.semcancer.2006.10.008. PubMed DOI PMC
Rowley M.J., Corces V.G. Organizational principles of 3D genome architecture. Nat. Rev. Genet. 2018;19:789–800. doi: 10.1038/s41576-018-0060-8. PubMed DOI PMC
Schmitt A.D., Hu M., Ren B. Genome-wide mapping and analysis of chromosome architecture. Nat. Rev. Mol. Cell Biol. 2016;17:743–755. doi: 10.1038/nrm.2016.104. PubMed DOI PMC
Takata H., Hanafusa T., Mori T., Shimura M., Iida Y., Ishikawa K., Yoshikawa K., Yoshikawa Y., Maeshima K. Chromatin Compaction Protects Genomic DNA from Radiation Damage. PLoS ONE. 2013;8:e75622. doi: 10.1371/journal.pone.0075622. PubMed DOI PMC
Krigerts J., Salmina K., Freivalds T., Rumnieks F., Inashkina I., Zayakin P., Hausmann M., Erenpreisa J. Early Critical Phase Transitions of Pericentromere-Associated Domains in MCF-7 Breast Cancer Cells Committed to Differentiation by Heregulin. Preprints. 2020:2020050248. doi: 10.20944/preprints202005.0248.v1. DOI
Williamson A.K., Zhu Z., Yuan Z.-M. Epigenetic mechanisms behind cellular sensitivity to DNA damage. CST. 2018;2:176–180. doi: 10.15698/cst2018.07.145. PubMed DOI PMC
Matsuoka S., Ballif B.A., Smogorzewska A., McDonald E.R., Hurov K.E., Luo J., Bakalarski C.E., Zhao Z., Solimini N., Lerenthal Y., et al. ATM and ATR Substrate Analysis Reveals Extensive Protein Networks Responsive to DNA Damage. Science. 2007;316:1160–1166. doi: 10.1126/science.1140321. PubMed DOI
Hildenbrand G., Metzler P., Pilarczyk G., Bobu V., Kriz W., Hosser H., Fleckenstein J., Krufczik M., Bestvater F., Wenz F., et al. Dose enhancement effects of gold nanoparticles specifically targeting RNA in breast cancer cells. PLoS ONE. 2018;13:e0190183. doi: 10.1371/journal.pone.0190183. PubMed DOI PMC
Condensed Matter Systems Exposed to Radiation: Multiscale Theory, Simulations, and Experiment
Spatial-Temporal Genome Regulation in Stress-Response and Cell-Fate Change