Spatial-Temporal Genome Regulation in Stress-Response and Cell-Fate Change
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu přehledy, kongresy
Grantová podpora
181002
Baltic-German University Liaison Office, German Academic Exchange Service (DAAD), Foreign Office of the Federal Republic Germany
PubMed
36769000
PubMed Central
PMC9917235
DOI
10.3390/ijms24032658
PII: ijms24032658
Knihovny.cz E-zdroje
- Klíčová slova
- database pattern analysis, dynamic genome organization, epigenetic interactions, fluorescence microscopy, gene activity oscillations, heterochromatin and self-organization, nucleotide k-mers, organizational and functional networks, topological genome analysis, transposon-effected regulation,
- MeSH
- buněčná diferenciace genetika MeSH
- buněčné jádro * metabolismus MeSH
- genom * MeSH
- Publikační typ
- kongresy MeSH
- přehledy MeSH
Complex functioning of the genome in the cell nucleus is controlled at different levels: (a) the DNA base sequence containing all relevant inherited information; (b) epigenetic pathways consisting of protein interactions and feedback loops; (c) the genome architecture and organization activating or suppressing genetic interactions between different parts of the genome. Most research so far has shed light on the puzzle pieces at these levels. This article, however, attempts an integrative approach to genome expression regulation incorporating these different layers. Under environmental stress or during cell development, differentiation towards specialized cell types, or to dysfunctional tumor, the cell nucleus seems to react as a whole through coordinated changes at all levels of control. This implies the need for a framework in which biological, chemical, and physical manifestations can serve as a basis for a coherent theory of gene self-organization. An international symposium held at the Biomedical Research and Study Center in Riga, Latvia, on 25 July 2022 addressed novel aspects of the abovementioned topic. The present article reviews the most recent results and conclusions of the state-of-the-art research in this multidisciplinary field of science, which were delivered and discussed by scholars at the Riga symposium.
Doctoral Study Program University of Latvia LV1004 Riga Latvia
Faculty of Engineering University of Applied Science Aschaffenburg 63743 Aschaffenburg Germany
Faculty of Life and Medical Sciences Doshisha University Kyoto 610 0394 Japan
Institute for Human Genetics University Hospital Heidelberg 69117 Heidelberg Germany
Institute of Biophysics The Czech Academy of Sciences 612 65 Brno Czech Republic
Institute of Cardiology and Regenerative Medicine University of Latvia LV1004 Riga Latvia
Istituto Superiore di Sanita Environment and Health Department 00161 Roma Italy
Kirchhoff Institute for Physics Heidelberg University 69120 Heidelberg Germany
Latvian Biomedicine Research and Study Centre LV1067 Riga Latvia
Zobrazit více v PubMed
Vickaryous M.K., Hall B.K. Human Cell Type Diversity, Evolution, Development, and Classification with Special Reference to Cells Derived from the Neural Crest. Biol. Rev. Camb. Philos. Soc. 2006;81:425–455. doi: 10.1017/S1464793106007068. PubMed DOI
Hausmann M., Hildenbrand G., Pilarczyk G. Networks and Islands of Genome Nano-Architecture and Their Potential Relevance for Radiation Biology (A Hypothesis and Experimental Verification Hints) In: Kloc M., Kubiak J.Z., editors. Nuclear, Chromosomal, and Genomic Architecture in Biology and Medicine. Vol. 70. Springer; Cham, Switzerland: 2022. pp. 3–34. Results and Problems in Cell Differentiation. PubMed
Karsenti E. Self-organization in cell biology: A brief history. Nat. Rev. Mol. Cell Biol. 2008;9:255–262. doi: 10.1038/nrm2357. PubMed DOI
Misteli T. Beyond the sequence: Cellular organization of genome function. Cell. 2007;128:787–800. doi: 10.1016/j.cell.2007.01.028. PubMed DOI
Misteli T. The self-organizing genome: Principles of genome architecture and function. Cell. 2020;183:28–45. doi: 10.1016/j.cell.2020.09.014. PubMed DOI PMC
Monod J., Wyman J., Changeux J.P. On the nature of allosteric transistions: A plausible model. J. Mol. Biol. 1965;12:88–118. doi: 10.1016/S0022-2836(65)80285-6. PubMed DOI
Erenpreisa J., Giuliani A. Resolution of Complex Issues in Genome Regulation and Cancer Requires Non-Linear and Network-Based Thermodynamics. Int. J. Mol. Sci. 2019;21:240. doi: 10.3390/ijms21010240. PubMed DOI PMC
Zwieniecki M.A., Holbrook N.M. Confronting Maxwell’s Demon: Biophysics of Xylem Embolism Repair. Trends Plant Sci. 2009;14:530–534. doi: 10.1016/j.tplants.2009.07.002. PubMed DOI
Tsuchiya M., Giuliani A., Hashimoto M., Erenpreisa J., Yoshikawa K. Emergent Self-Organized Criticality in Gene Expression Dynamics: Temporal Development of Global Phase Transition Revealed in a Cancer Cell Line. PLoS ONE. 2015;10:e0128565. doi: 10.1371/journal.pone.0128565. PubMed DOI PMC
Zimatore G., Tsuchiya M., Hashimoto M., Kasperski A., Giuliani A. Self-Organization of Whole-Gene Expression through Coordinated Chromatin Structural Transition. Biophys. Rev. 2021;2:031303. doi: 10.1063/5.0058511. PubMed DOI PMC
Turcotte D.L., Rundle J.B. Self-Organized Complexity in the Physical, Biological, and Social Sciences. Proc. Natl. Acad. Sci. USA. 2002;99((Suppl. S1)):2463–2465. doi: 10.1073/pnas.012579399. PubMed DOI PMC
Huang S. Reconciling Non-Genetic Plasticity with Somatic Evolution in Cancer. Trends Cancer Res. 2021;7:309–322. doi: 10.1016/j.trecan.2020.12.007. PubMed DOI
Slack J.M.W. Conrad Hal Waddington: The Last Renaissance Biologist? Nat. Rev. Genet. 2002;3:889–895. doi: 10.1038/nrg933. PubMed DOI
Bak P., Tang C., Wiesenfeld K. Self-Organized Criticality: An Explanation of the 1/f Noise. Phys. Rev. Lett. 1987;59:381–384. doi: 10.1103/PhysRevLett.59.381. PubMed DOI
Keul N.D., Oruganty K., Schaper Bergman E.T., Beattie N.R., McDonald W.E., Kadirvelraj R., Gross M.L., Phillips R.S., Harvey S.C., Wood Z.A. The Entropic Force Generated by Intrinsically Disordered Segments Tunes Protein Function. Nature. 2018;563:584–588. doi: 10.1038/s41586-018-0699-5. PubMed DOI PMC
Erenpreisa J. “Tamed” Chaos in Embryonal Development and Carcinogenesis: A Holistic View. Proc. Latv. Acad. Sci. Sect. B Nat. Exact Appl. Sci. 2000;54:1–8.
Erenpreisa J., Zhukotsky A. The Genome Field. Proc. Latv. Acad. Sci. Ser. B. 1992;536:64–68.
Erenpreisa J. Large Rosettes—The Element of the Suprachromonemal Organisation of Interphase Cell Nucleus. Proc. Latv. Acad. Sci. Ser. B. 1989;7:68–71.
Erenpreisa J. Two Mechanisms of Chromatin Compaction. Acta Histochem. 1989;86:129–135. doi: 10.1016/S0065-1281(89)80081-9. PubMed DOI
Erenpreisa J., Zhukotsky A. Interphase Genome as the Active Space: Chromatin Dynamics during Chick Embryo Chondrogenesis. Mech. Ageing Dev. 1993;67:21–32. doi: 10.1016/0047-6374(93)90109-5. PubMed DOI
Erenpreisa J., Zhukotsky A., Kozlov A. The Chromatin Network: Image Analysis of Differentiating Chick Embryo Chondrocytes. Eur. J. Histochem. 1993;37:139–147. PubMed
Schwarz-Finsterle J., Scherthan H., Huna A., González P., Mueller P., Schmitt E., Erenpreisa J., Hausmann M. Volume Increase and Spatial Shifts of Chromosome Territories in Nuclei of Radiation-Induced Polyploidizing Tumour Cells. Mutat. Res. 2013;756:56–65. doi: 10.1016/j.mrgentox.2013.05.004. PubMed DOI
Yoshikawa K. Field Hypothesis on the Self-Regulation of Gene Expression. J. Biol. Phys. 2002;28:701–712. doi: 10.1023/A:1021251125101. PubMed DOI PMC
Prigogine I., Stengers I. Order Out of Chaos: Man’s New Dialogue with Nature. Bantam Books; New York, NY, USA: 1984.
Noble D. Dance to the Tune of Life: Biological Relativity. Cambridge University Press; Cambridge, UK: 2016.
Janssen A., Colmenares S.U., Karpen G.H. Heterochromatin: Guardian of the Genome. Annu. Rev. Cell Dev. Biol. 2018;34:265–288. doi: 10.1146/annurev-cellbio-100617-062653. PubMed DOI
Falk M., Feodorova Y., Naumova N., Imakaev M., Lajoie B.R., Leonhardt H., Joffe B., Dekker J., Fudenberg G., Solovei I., et al. Heterochromatin Drives Compartmentalization of Inverted and Conventional Nuclei. Nature. 2019;570:395–399. doi: 10.1038/s41586-019-1275-3. PubMed DOI PMC
Erenpreisa J., Salmina K., Huna A., Jackson T.R., Vazquez-Martin A., Cragg M.S. The “Virgin Birth”, Polyploidy, and the Origin of Cancer. Oncoscience. 2015;2:3–14. doi: 10.18632/oncoscience.108. PubMed DOI PMC
Cremer T., Cremer C. Chromosome Territories, Nuclear Architecture and Gene Regulation in Mammalian Cells. Nat. Rev. Genet. 2001;2:292–301. doi: 10.1038/35066075. PubMed DOI
Abe J., Hiyama T.B., Mukaiyama A., Son S., Mori T., Saito S., Osako M., Wolanin J., Yamashita E., Kondo T., et al. Circadian Rhythms. Atomic-Scale Origins of Slowness in the Cyanobacterial Circadian Clock. Science. 2015;349:312–316. doi: 10.1126/science.1261040. PubMed DOI
Mark P.J., Crew R.C., Wharfe M.D., Waddell B.J. Rhythmic Three-Part Harmony: The Complex Interaction of Maternal, Placental and Fetal Circadian Systems. J. Biol. Rhythms. 2017;32:534–549. doi: 10.1177/0748730417728671. PubMed DOI
Vainshelbaum N.M., Salmina K., Gerashchenko B.I., Lazovska M., Zayakin P., Cragg M.S., Pjanova D., Erenpreisa J. Role of the Circadian Clock “Death-Loop” in the DNA Damage Response Underpinning Cancer Treatment Resistance. Cells. 2022;11:880. doi: 10.3390/cells11050880. PubMed DOI PMC
Larsson A.J.M., Johnsson P., Hagemann-Jensen M., Hartmanis L., Faridani O.R., Reinius B., Segerstolpe Å., Rivera C.M., Ren B., Sandberg R. Genomic Encoding of Transcriptional Burst Kinetics. Nature. 2019;565:251–254. doi: 10.1038/s41586-018-0836-1. PubMed DOI PMC
Beckman W.F., Jiménez M.Á.L., Moerland P.D., Westerhoff H.V., Verschure P.J. 4sUDRB-Sequencing for Genome-Wide Transcription Bursting Quantification in Breast Cancer Cells. bioRxiv. 2021 doi: 10.1101/2020.12.23.424175. DOI
Maass P.G., Barutcu A.R., Rinn J.L. Interchromosomal Interactions: A Genomic Love Story of Kissing Chromosomes. J. Cell Biol. 2019;218:27–38. doi: 10.1083/jcb.201806052. PubMed DOI PMC
Erenpreisa J., Krigerts J., Salmina K., Gerashchenko B.I., Freivalds T., Kurg R., Winter R., Krufczik M., Zayakin P., Hausmann M., et al. Heterochromatin Networks: Topology, Dynamics, and Function (a Working Hypothesis) Cells. 2021;10:1582. doi: 10.3390/cells10071582. PubMed DOI PMC
Erenpreisa J., Budylin A. Related Changes in RNA Synthesis and DNA Superhelicity during Starvation of Ehrlich Ascites Tumour Cells. Proc. Latv. Acad. Sci. Sect. B Nat. Exact Appl. Sci. 1990;10:90–94.
Budylin A., Erenpreisa J., Zhukotsky A., Zaleskaya N. Fluctuations of the Reparable DNA Strand Breaks in Starving Tumour Cells. Proc. Latv. Acad. Sci. Sect. B Nat. Exact Appl. Sci. 1993;5:72–73.
Zaitceva V., Kopeina G.S., Zhivotovsky B. Anastasis: Return Journey from Cell Death. Cancers. 2021;13:3671. doi: 10.3390/cancers13153671. PubMed DOI PMC
Saeki Y., Endo T., Ide K., Nagashima T., Yumoto N., Toyoda T., Suzuki H., Hayashizaki Y., Sakaki Y., Okada-Hatakeyama M. Ligand-Specific Sequential Regulation of Transcription Factors for Differentiation of MCF-7 Cells. BMC Genom. 2009;10:545. doi: 10.1186/1471-2164-10-545. PubMed DOI PMC
Krigerts J., Salmina K., Freivalds T., Zayakin P., Rumnieks F., Inashkina I., Giuliani A., Hausmann M., Erenpreisa J. Differentiating Cancer Cells Reveal Early Large-Scale Genome Regulation by Pericentric Domains. Biophys. J. 2021;120:711–724. doi: 10.1016/j.bpj.2021.01.002. PubMed DOI PMC
Tsuchiya M., Giuliani A., Zimatore G., Erenpreisa J., Yoshikawa K. A Unified Genomic Mechanism of Cell-Fate Change. bioRxiv. 2021 doi: 10.1101/2021.11.24.469848. PubMed DOI
Langton C.G. Computation at the Edge of Chaos: Phase Transitions and Emergent Computation. Phys. D. 1990;42:12–37. doi: 10.1016/0167-2789(90)90064-V. DOI
Farshadi E., van der Horst G.T.J., Chaves I. Molecular Links between the Circadian Clock and the Cell Cycle. J. Mol. Biol. 2020;432:3515–3524. doi: 10.1016/j.jmb.2020.04.003. PubMed DOI
Neganova I., Lako M. G1 to S Phase Cell Cycle Transition in Somatic and Embryonic Stem Cells. J. Anat. 2008;213:30–44. doi: 10.1111/j.1469-7580.2008.00931.x. PubMed DOI PMC
Asher G., Gatfield D., Stratmann M., Reinke H., Dibner C., Kreppel F., Mostoslavsky R., Alt F.W., Schibler U. SIRT1 Regulates Circadian Clock Gene Expression through PER2 Deacetylation. Cell. 2008;134:317–328. doi: 10.1016/j.cell.2008.06.050. PubMed DOI
Wang R.-H., Zhao T., Cui K., Hu G., Chen Q., Chen W., Wang X.-W., Soto-Gutierrez A., Zhao K., Deng C.-X. Negative Reciprocal Regulation between Sirt1 and Per2 Modulates the Circadian Clock and Aging. Sci. Rep. 2016;6:28633. doi: 10.1038/srep28633. PubMed DOI PMC
Palacios J.A., Herranz D., De Bonis M.L., Velasco S., Serrano M., Blasco M.A. SIRT1 Contributes to Telomere Maintenance and Augments Global Homologous Recombination. J. Cell Biol. 2010;191:1299–1313. doi: 10.1083/jcb.201005160. PubMed DOI PMC
Puig P.-E., Guilly M.-N., Bouchot A., Droin N., Cathelin D., Bouyer F., Favier L., Ghiringhelli F., Kroemer G., Solary E., et al. Tumor Cells Can Escape DNA-Damaging Cisplatin through DNA Endoreduplication and Reversible Polyploidy. Cell Biol. Int. 2008;32:1031–1043. doi: 10.1016/j.cellbi.2008.04.021. PubMed DOI
Erenpreisa J., Salmina K., Huna A., Kosmacek E.A., Cragg M.S., Ianzini F., Anisimov A.P. Polyploid Tumour Cells Elicit Paradiploid Progeny through Depolyploidizing Divisions and Regulated Autophagic Degradation. Cell Biol. Int. 2011;35:687–695. doi: 10.1042/CBI20100762. PubMed DOI
Lagadec C., Vlashi E., Della Donna L., Dekmezian C., Pajonk F. Radiation-Induced Reprogramming of Breast Cancer Cells. Stem Cells. 2012;30:833–844. doi: 10.1002/stem.1058. PubMed DOI PMC
Salmina K., Jankevics E., Huna A., Perminov D., Radovica I., Klymenko T., Ivanov A., Jascenko E., Scherthan H., Cragg M., et al. Up-Regulation of the Embryonic Self-Renewal Network through Reversible Polyploidy in Irradiated p53-Mutant Tumour Cells. Exp. Cell Res. 2010;316:2099–2112. doi: 10.1016/j.yexcr.2010.04.030. PubMed DOI
Salmina K., Bojko A., Inashkina I., Staniak K., Dudkowska M., Podlesniy P., Rumnieks F., Vainshelbaum N.M., Pjanova D., Sikora E., et al. “Mitotic Slippage” and Extranuclear DNA in Cancer Chemoresistance: A Focus on Telomeres. Int. J. Mol. Sci. 2020;21:2779. doi: 10.3390/ijms21082779. PubMed DOI PMC
Shafi A.A., Knudsen K.E. Cancer and the Circadian Clock. Cancer Res. 2019;79:3806–3814. doi: 10.1158/0008-5472.CAN-19-0566. PubMed DOI PMC
Shilts J., Chen G., Hughey J.J. Evidence for Widespread Dysregulation of Circadian Clock Progression in Human Cancer. PeerJ. 2018;6:e4327. doi: 10.7717/peerj.4327. PubMed DOI PMC
Fu L., Kettner N.M. The Circadian Clock in Cancer Development and Therapy. Prog. Mol. Biol. Transl. Sci. 2013;119:221–282. PubMed PMC
Rijo-Ferreira F., Takahashi J.S. Genomics of Circadian Rhythms in Health and Disease. Genome Med. 2019;11:82. doi: 10.1186/s13073-019-0704-0. PubMed DOI PMC
Sulli G., Lam M.T.Y., Panda S. Interplay between Circadian Clock and Cancer: New Frontiers for Cancer Treatment. Trends Cancer Res. 2019;5:475–494. doi: 10.1016/j.trecan.2019.07.002. PubMed DOI PMC
Anatskaya O.V., Vinogradov A.E., Vainshelbaum N.M., Giuliani A., Erenpreisa J. Phylostratic Shift of Whole-Genome Duplications in Normal Mammalian Tissues towards Unicellularity Is Driven by Developmental Bivalent Genes and Reveals a Link to Cancer. Int. J. Mol. Sci. 2020;21:8759. doi: 10.3390/ijms21228759. PubMed DOI PMC
Carter S.L., Cibulskis K., Helman E., McKenna A., Shen H., Zack T., Laird P.W., Onofrio R.C., Winckler W., Weir B.A., et al. Absolute Quantification of Somatic DNA Alterations in Human Cancer. Nat. Biotechnol. 2012;30:413–421. doi: 10.1038/nbt.2203. PubMed DOI PMC
Ilık İ.A., Aktaş T. Nuclear Speckles: Dynamic Hubs of Gene Expression Regulation. FEBS J. 2021 doi: 10.1111/febs.16117. PubMed DOI
Salmina K., Kurg R., Krigerts J., Erenpreisa J. The Topological Relationship between Ribogenesis, mRNA Transcription/splicing and the Tension of Actin Cytoskeleton. Biopolym. Cell. 2019;35:231–232. doi: 10.7124/bc.0009F7. DOI
Philimonenko V.V., Zhao J., Iben S., Dingová H., Kyselá K., Kahle M., Zentgraf H., Hofmann W.A., de Lanerolle P., Hozák P., et al. Nuclear Actin and Myosin I Are Required for RNA Polymerase I Transcription. Nat. Cell Biol. 2004;6:1165–1172. doi: 10.1038/ncb1190. PubMed DOI
Wei M., Fan X., Ding M., Li R., Shao S., Hou Y., Meng S., Tang F., Li C., Sun Y. Nuclear Actin Regulates Inducible Transcription by Enhancing RNA Polymerase II Clustering. Sci Adv. 2020;6:eaay6515. doi: 10.1126/sciadv.aay6515. PubMed DOI PMC
Hu P., Wu S., Hernandez N. A Role for Beta-Actin in RNA Polymerase III Transcription. Genes Dev. 2004;18:3010–3015. doi: 10.1101/gad.1250804. PubMed DOI PMC
Burman B., Misteli T., Pegoraro G. Quantitative Detection of Rare Interphase Chromosome Breaks and Translocations by High-Throughput Imaging. Genome Biol. 2015;16:146. doi: 10.1186/s13059-015-0718-x. PubMed DOI PMC
Kozubek S., Lukásová E., Marecková A., Skalníková M., Kozubek M., Bártová E., Kroha V., Krahulcová E., Slotová J. The Topological Organization of Chromosomes 9 and 22 in Cell Nuclei Has a Determinative Role in the Induction of t(9,22) Translocations and in the Pathogenesis of t(9,22) Leukemias. Chromosoma. 1999;108:426–435. doi: 10.1007/s004120050394. PubMed DOI
Lukášová E., Kozubek S., Kozubek M., Kjeronská J., Rýznar L., Horáková J., Krahulcová E., Horneck G. Localisation and Distance between ABL and BCR Genes in Interphase Nuclei of Bone Marrow Cells of Control Donors and Patients with Chronic Myeloid Leukaemia. Hum. Genet. 1997;100:525–535. doi: 10.1007/s004390050547. PubMed DOI
Nikiforova M.N., Stringer J.R., Blough R., Medvedovic M., Fagin J.A., Nikiforov Y.E. Proximity of Chromosomal Loci That Participate in Radiation-Induced Rearrangements in Human Cells. Science. 2000;290:138–141. doi: 10.1126/science.290.5489.138. PubMed DOI
Neves H., Ramos C., Gomes Da Silva M., Parreira A., Parreira L. The Nuclear Topography of ABL, BCR, PML, and RARα Genes: Evidence for Gene Proximity in Specific Phases of the Cell Cycle and Stages of Hematopoietic Differentiation. Blood. 1999;93:1197–1207. doi: 10.1182/blood.V93.4.1197. PubMed DOI
Falk M., Lukasova E., Kozubek S. Higher-Order Chromatin Structure in DSB Induction, Repair and Misrepair. Mutat. Res. Mutat. Res. 2010;704:88–100. doi: 10.1016/j.mrrev.2010.01.013. PubMed DOI
Falk M., Hausmann M., Lukasova E., Biswas A., Hildenbrand G., Davidkova M., Krasavin E., Kleibl Z., Falkova I., Jezkova L., et al. Determining Omics Spatiotemporal Dimensions Using Exciting New Nanoscopy Techniques to Assess Complex Cell Responses to DNA Damage: PART A-Radiomics. Crit. Rev. Eukaryot. Gene Expr. 2014;24:205–223. doi: 10.1615/CritRevEukaryotGeneExpr.2014010313. PubMed DOI
Falk M., Hausmann M., Lukasova E., Biswas A., Hildenbrand G., Davidkova M., Krasavin E., Kleibl Z., Falkova I., Jezkova L., et al. Determining Omics Spatiotemporal Dimensions Using Exciting New Nanoscopy Techniques to Assess Complex Cell Responses to DNA Damage: Part—Structuromics. Crit. Rev. Eukaryot. Gene Expr. 2014;24:225–247. doi: 10.1615/CritRevEukaryotGeneExpr.v24.i3.40. PubMed DOI
Falk M., Hausmann M. A Paradigm Revolution or Just Better Resolution—Will Newly Emerging Superresolution Techniques Identify Chromatin Architecture as a Key Factor in Radiation-Induced DNA Damage and Repair Regulation? Cancers. 2021;13:18. doi: 10.3390/cancers13010018. PubMed DOI PMC
Kozubek S., Lukásová E., Jirsová P., Koutná I., Kozubek M., Ganová A., Bártová E., Falk M., Paseková R. 3D Structure of the Human Genome: Order in Randomness. Chromosoma. 2002;111:321–331. doi: 10.1007/s00412-002-0210-8. PubMed DOI
Falk M., Lukásová E., Kozubek S., Kozubek M. Topography of Genetic Elements of X-Chromosome Relative to the Cell Nucleus and to the Chromosome X Territory Determined for Human Lymphocytes. Gene. 2002;292:13–24. doi: 10.1016/S0378-1119(02)00667-4. PubMed DOI
Lukásová E., Kozubek S., Kozubek M., Falk M., Amrichová J. The 3D Structure of Human Chromosomes in Cell Nuclei. Chromosome Res. Int. J. Mol. Supramol. Evol. Asp. Chromosome Biol. 2002;10:535–548. doi: 10.1023/A:1020958517788. PubMed DOI
Misteli T. Higher-Order Genome Organization in Human Disease. Cold Spring Harb. Perspect. Biol. 2010;2:a000794. doi: 10.1101/cshperspect.a000794. PubMed DOI PMC
Pancaldi V. Chromatin Network Analyses: Towards Structure-Function Relationships in Epigenomics. Front. Bioinform. 2021;1:742216. doi: 10.3389/fbinf.2021.742216. PubMed DOI PMC
Raynaud C., Mallory A.C., Latrasse D., Jégu T., Bruggeman Q., Delarue M., Bergounioux C., Benhamed M. Chromatin Meets the Cell Cycle. J. Exp. Bot. 2014;65:2677–2689. doi: 10.1093/jxb/ert433. PubMed DOI
Chapski D.J., Rosa-Garrido M., Hua N., Alber F., Vondriska T.M. Spatial Principles of Chromatin Architecture Associated with Organ-Specific Gene Regulation. Front. Cardiovasc. Med. 2019;5:186. doi: 10.3389/fcvm.2018.00186. PubMed DOI PMC
Winick-Ng W., Kukalev A., Harabula I., Zea-Redondo L., Szabó D., Meijer M., Serebreni L., Zhang Y., Bianco S., Chiariello A.M., et al. Cell-Type Specialization Is Encoded by Specific Chromatin Topologies. Nature. 2021;599:684–691. doi: 10.1038/s41586-021-04081-2. PubMed DOI PMC
Zhang K., Hocker J.D., Miller M., Hou X., Chiou J., Poirion O.B., Qiu Y., Li Y.E., Gaulton K.J., Wang A., et al. A Single-Cell Atlas of Chromatin Accessibility in the Human Genome. Cell. 2021;184:5985–6001.e19. doi: 10.1016/j.cell.2021.10.024. PubMed DOI PMC
Falk M., Lukasova E., Gabrielova B., Ondrej V., Kozubek S. Chromatin Dynamics during DSB Repair. Biochim. Biophys. Acta. 2007;1773:1534–1545. doi: 10.1016/j.bbamcr.2007.07.002. PubMed DOI
Thirman M.J., Gill H.J., Burnett R.C., Mbangkollo D., McCabe N.R., Kobayashi H., Ziemin-van der Poel S., Kaneko Y., Morgan R., Sandberg A.A., et al. Rearrangement of the MLL Gene in Acute Lymphoblastic and Acute Myeloid Leukemias with 11q23 Chromosomal Translocations. N. Engl. J. Med. 1993;329:909–914. doi: 10.1056/NEJM199309233291302. PubMed DOI
Jia Y., Li C., Zhao J., Song Y., Wang J., Mi Y. The Discussion of t(1;17)(P11;Q21) Translocation in Acute Promyelocytic Leukemia Patient on Molecular Remission. Clin. Case Rep. 2017;5:1594–1596. doi: 10.1002/ccr3.1108. PubMed DOI PMC
Pagáčová E., Falk M., Falková I., Lukášová E., Michalová K., Oltová A., Raška I., Kozubek S. Frequent Chromatin Rearrangements in Myelodysplastic Syndromes—What Stands Behind? Folia Biol. (Praha) 2014;60((Suppl. S1)):1–7. PubMed
Berendes P., Hoogeveen A., van Dijk M., van Denderen J., van Ewijk W. Specific immunologic recognition of the tumor-specific E2A-PBX1 fusion-point antigen in t(1;19)-positive pre-B cells. Leukemia. 1995;9:1321–1327. PubMed
Jezkova L., Zadneprianetc M., Kulikova E., Smirnova E., Bulanova T., Depes D., Falkova I., Boreyko A., Krasavin E., Davidkova M., et al. Particles with Similar LET Values Generate DNA Breaks of Different Complexity and Reparability: A High-Resolution Microscopy Analysis of Γh2AX/53BP1 Foci. Nanoscale. 2018;10:1162–1179. doi: 10.1039/C7NR06829H. PubMed DOI
Zhao H., Lin L.F., Hahn J., Xie J., Holman H.F., Yuan C. Single-Cell Image-Based Analysis Reveals Chromatin Changes during the Acquisition of Tamoxifen Drug Resistance. Life. 2022;12:438. doi: 10.3390/life12030438. PubMed DOI PMC
Falk M., Lukášová E., Štefančíková L., Baranová E., Falková I., Ježková L., Davídková M., Bačíková A., Vachelová J., Michaelidesová A., et al. Heterochromatinization Associated with Cell Differentiation as a Model to Study DNA Double Strand Break Induction and Repair in the Context of Higher-Order Chromatin Structure. Appl. Radiat. Isot. 2014;83:177–185. doi: 10.1016/j.apradiso.2013.01.029. PubMed DOI
Falk M., Lukasova E., Falkova I., Stefancikova L., Jezkova L., Bacikova A., Davidkova M., Boryeko A., Krasavin E.A., Kozubek S. Chromatin Differentiation of White Blood Cells Decreases DSB Damage Induction, Prevents Functional Assembly of Repair Foci, but Has No Influence on Protrusion of Heterochromatic DSBs into the Low-Dense Chromatin. J. Rad. Res. 2014;55:i81–i82. doi: 10.1093/jrr/rrt194. DOI
Kozubek S., Lukásová E., Rýznar L., Kozubek M., Lisková A., Govorun R.D., Krasavin E.A., Horneck G. Distribution of ABL and BCR Genes in Cell Nuclei of Normal and Irradiated Lymphocytes. Blood. 1997;89:4537–4545. doi: 10.1182/blood.V89.12.4537. PubMed DOI
Sun L., Yu R., Dang W. Chromatin Architectural Changes during Cellular Senescence and Aging. Genes. 2018;9:211. doi: 10.3390/genes9040211. PubMed DOI PMC
Feser J., Tyler J. Chromatin Structure as a Mediator of Aging. FEBS Lett. 2011;585:2041–2048. doi: 10.1016/j.febslet.2010.11.016. PubMed DOI PMC
Lukasova E., Koristek Z., Falk M., Kozubek S., Grigoryev S., Kozubek M., Ondrej V., Kroupová I. Methylation of Histones in Myeloid Leukemias as a Potential Marker of Granulocyte Abnormalities. J. Leukoc. Biol. 2005;77:100–111. doi: 10.1189/jlb.0704388. PubMed DOI
Lukasova E., Kozubek S., Falk M., Kozubek M., Zaloudík J., Vagunda V., Pavlovský Z. Topography of Genetic Loci in the Nuclei of Cells of Colorectal Carcinoma and Adjacent Tissue of Colonic Epithelium. Chromosoma. 2004;112:221–230. doi: 10.1007/s00412-003-0263-3. PubMed DOI
Bártová E., Kozubek S., Kozubek M., Jirsová P., Lukášová E., Skalníková M., Buchníčková K. The Influence of the Cell Cycle, Differentiation and Irradiation on the Nuclear Location of the Abl, Bcr and c-Myc Genes in Human Leukemic Cells. Leuk. Res. 2000;24:233–241. doi: 10.1016/S0145-2126(99)00174-5. PubMed DOI
Ismail S.I., Naffa R.G., Yousef A.-M.F., Ghanim M.T. Incidence of Bcr-Abl Fusion Transcripts in Healthy Individuals. Mol. Med. Rep. 2014;9:1271–1276. doi: 10.3892/mmr.2014.1951. PubMed DOI
Quina A.S., Gameiro P., Sá da Costa M., Telhada M., Parreira L. PML-RARA Fusion Transcripts in Irradiated and Normal Hematopoietic Cells. Genes Chromosom. Cancer. 2000;29:266–275. doi: 10.1002/1098-2264(2000)9999:9999<::AID-GCC1030>3.0.CO;2-#. PubMed DOI
Kruhlak M.J., Celeste A., Dellaire G., Fernandez-Capetillo O., Müller W.G., McNally J.G., Bazett-Jones D.P., Nussenzweig A. Changes in Chromatin Structure and Mobility in Living Cells at Sites of DNA Double-Strand Breaks. J. Cell Biol. 2006;172:823–834. doi: 10.1083/jcb.200510015. PubMed DOI PMC
Aten J.A., Stap J., Krawczyk P.M., van Oven C.H., Hoebe R.A., Essers J., Kanaar R. Dynamics of DNA Double-Strand Breaks Revealed by Clustering of Damaged Chromosome Domains. Science. 2004;303:92–95. doi: 10.1126/science.1088845. PubMed DOI
Cremer T., Cremer M. Chromosome Territories. Cold Spring Harb. Perspect. Biol. 2010;2:a003889. doi: 10.1101/cshperspect.a003889. PubMed DOI PMC
Wang S., Su J.-H., Beliveau B.J., Bintu B., Moffitt J.R., Wu C., Zhuang X. Spatial Organization of Chromatin Domains and Compartments in Single Chromosomes. Science. 2016;353:598–602. doi: 10.1126/science.aaf8084. PubMed DOI PMC
Tena J.J., Santos-Pereira J.M. Topologically Associating Domains and Regulatory Landscapes in Development, Evolution and Disease. Front. Cell Dev. Biol. 2021;9:702787. doi: 10.3389/fcell.2021.702787. PubMed DOI PMC
Gümüş G., Sunguroğlu A., Tükün A., Sayin D.B., Bökesoy I. Common Fragile Sites Associated with the Breakpoints of Chromosomal Aberrations in Hematologic Neoplasms. Cancer Genet. Cytogenet. 2002;133:168–171. doi: 10.1016/S0165-4608(01)00569-6. PubMed DOI
de Lima M.F., Lisboa M.d.O., Terceiro L.E.L., Rangel-Pozzo A., Mai S. Chromosome Territories in Hematological Malignancies. Cells. 2022;11:1368. doi: 10.3390/cells11081368. PubMed DOI PMC
Kozubek S., Lukášová E., Rýznar L., Kozubek M., Lišková A., Kroha V. Chromatin Structure and Its Cell Cycle Kinetics in Intact and Irradiated Cell Nuclei. In: Baumstark-Khan C., Kozubek S., Horneck G., editors. Fundamentals for the Assessment of Risks from Environmental Radiation. Springer; Dordrecht, The Netherlands: 1999. pp. 231–242.
Mani R.-S., Tomlins S.A., Callahan K., Ghosh A., Nyati M.K., Varambally S., Palanisamy N., Chinnaiyan A.M. Induced Chromosomal Proximity and Gene Fusions in Prostate Cancer. Science. 2009;326:1230. doi: 10.1126/science.1178124. PubMed DOI PMC
Xing Z., Mai H., Liu X., Fu X., Zhang X., Xie L., Chen Y., Shlien A., Wen F. Single-Cell Diploid Hi-C Reveals the Role of Spatial Aggregations in Complex Rearrangements and KMT2A Fusions in Leukemia. Genome Biol. 2022;23:173. doi: 10.1186/s13059-022-02740-9. PubMed DOI PMC
Engreitz J.M., Agarwala V., Mirny L.A. Three-Dimensional Genome Architecture Influences Partner Selection for Chromosomal Translocations in Human Disease. PLoS ONE. 2012;7:e44196. doi: 10.1371/journal.pone.0044196. PubMed DOI PMC
Zadneprianetc M., Boreyko A., Jezkova L., Falk M., Ryabchenko A., Hramco T., Krupnova M., Kulikova E., Pavlova A., Shamina D., et al. Clustered DNA Damage Formation in Human Cells after Exposure to Low- and Intermediate-Energy Accelerated Heavy Ions. Phys. Part. Nucl. Lett. 2022;19:440–450. doi: 10.1134/S1547477122040227. DOI
Gyurkó D.M., Veres D.V., Módos D., Lenti K., Korcsmáros T., Csermely P. Adaptation and Learning of Molecular Networks as a Description of Cancer Development at the Systems-Level: Potential Use in Anti-Cancer Therapies. Semin. Cancer Biol. 2013;23:262–269. doi: 10.1016/j.semcancer.2013.06.005. PubMed DOI
Ježková L., Falk M., Falková I., Davídková M., Bačíková A., Štefančíková L., Vachelová J., Michaelidesová A., Lukášová E., Boreyko A., et al. Function of Chromatin Structure and Dynamics in DNA Damage, Repair and Misrepair: γ-Rays and Protons in Action. Appl. Radiat. Isot. 2014;83:128–136. doi: 10.1016/j.apradiso.2013.01.022. PubMed DOI
Walen K.H. Normal human cell conversion to 3-D cancer-like growth: Genome damage, endopolyploidy, senecence escape, and cell polarity change/loss. J. Cancer Ther. 2011;2:181–189. doi: 10.4236/jct.2011.22023. DOI
Falk M., Lukásová E., Kozubek S. Chromatin Structure Influences the Sensitivity of DNA to Gamma-Radiation. Biochim. Biophys. Acta. 2008;1783:2398–2414. doi: 10.1016/j.bbamcr.2008.07.010. PubMed DOI
Falk M., Lukasova E., Gabrielova B., Ondrej V., Kozubek S. Local Changes of Higher-Order Chromatin Structure during DSB-Repair. J. Phys. Conf. Ser. 2008;101:012018. doi: 10.1088/1742-6596/101/1/012018. DOI
Koeffler H.P., Golde D.W. Chronic Myelogenous Leukemia—New Concepts. N. Engl. J. Med. 1981;304:1201–1209. doi: 10.1056/NEJM198105143042004. PubMed DOI
Kang Z.-J., Liu Y.-F., Xu L.-Z., Long Z.-J., Huang D., Yang Y., Liu B., Feng J.-X., Pan Y.-J., Yan J.-S., et al. The Philadelphia Chromosome in Leukemogenesis. Chin. J. Cancer. 2016;35:48. doi: 10.1186/s40880-016-0108-0. PubMed DOI PMC
Massimino M., Tirrò E., Stella S., Manzella L., Pennisi M.S., Romano C., Vitale S.R., Puma A., Tomarchio C., Di Gregorio S., et al. Impact of the Breakpoint Region on the Leukemogenic Potential and the TKI Responsiveness of Atypical BCR-ABL1 Transcripts. Front. Pharmacol. 2021;12:669469. doi: 10.3389/fphar.2021.669469. PubMed DOI PMC
Wilde L., Cooper J., Wang Z.-X., Liu J. Clinical, Cytogenetic, and Molecular Findings in Two Cases of Variant t(8;21) Acute Myeloid Leukemia (AML) Front. Oncol. 2019;9:1016. doi: 10.3389/fonc.2019.01016. PubMed DOI PMC
Melo J.V. The Molecular Biology of Chronic Myeloid Leukaemia. Leukemia. 1996;10:751–756. PubMed
Pourrajab F., Zare-Khormizi M.R., Hashemi A.S., Hekmatimoghaddam S. Genetic Characterization and Risk Stratification of Acute Myeloid Leukemia. Cancer Manag. Res. 2020;12:2231–2253. doi: 10.2147/CMAR.S242479. PubMed DOI PMC
Rosin L.F., Crocker O., Isenhart R.L., Nguyen S.C., Xu Z., Joyce E.F. Chromosome Territory Formation Attenuates the Translocation Potential of Cells. eLife. 2019;8:e49553. doi: 10.7554/eLife.49553. PubMed DOI PMC
Cafourková A., Luká ová E., Kozubek S., Kozubek M., Govorun R.D., Koutná I., Bártová E., Skalníková M., Jirsová P., Paseková R., et al. Exchange Aberrations among 11 Chromosomes of Human Lymphocytes Induced by Gamma-Rays. Int. J. Radiat. Biol. 2001;77:419–429. doi: 10.1080/09553000010029141. PubMed DOI
Lindsley R.C., Ebert B.L. The Biology and Clinical Impact of Genetic Lesions in Myeloid Malignancies. Blood. 2013;122:3741–3748. doi: 10.1182/blood-2013-06-460295. PubMed DOI
Abáigar M., Robledo C., Benito R., Ramos F., Díez-Campelo M., Hermosín L., Sánchez-del-Real J., Alonso J.M., Cuello R., Megido M., et al. Chromothripsis Is a Recurrent Genomic Abnormality in High-Risk Myelodysplastic Syndromes. PLoS ONE. 2016;11:e0164370. doi: 10.1371/journal.pone.0164370. PubMed DOI PMC
Lukášová E., Kořistek Z., Klabusay M., Ondřej V., Grigoryev S., Bačíková A., Řezáčová M., Falk M., Vávrová J., Kohútová V., et al. Granulocyte Maturation Determines Ability to Release Chromatin NETs and Loss of DNA Damage Response; These Properties Are Absent in Immature AML Granulocytes. Biochim. Biophys. Acta—Mol. Cell Res. 2013;1833:767–779. doi: 10.1016/j.bbamcr.2012.12.012. PubMed DOI
Depes D., Lee J.-H., Bobkova E., Jezkova L., Falkova I., Bestvater F., Pagacova E., Kopecna O., Zadneprianetc M., Bacikova A., et al. Single-Molecule Localization Microscopy as a Promising Tool for γH2AX/53BP1 Foci Exploration. Eur. Phys. J. D. 2018;72:158. doi: 10.1140/epjd/e2018-90148-1. PubMed DOI
Bobkova E., Depes D., Lee J.-H., Jezkova L., Falkova I., Pagacova E., Kopecna O., Zadneprianetc M., Bacikova A., Kulikova E., et al. Recruitment of 53BP1 Proteins for DNA Repair and Persistence of Repair Clusters Differ for Cell Types as Detected by Single Molecule Localization Microscopy. Int. J. Mol. Sci. 2018;19:3713. doi: 10.3390/ijms19123713. PubMed DOI PMC
Falk M., Hausmann M. Advances in Research of DNA Damage and Repair in Cells Exposed to Various Types of Ionizing Radiation in the Era of Super-Resolution Optical Microscopy. Cas. Lek. Cesk. 2020;159:286–297. PubMed
Hausmann M., Neitzel C., Bobkova E., Nagel D., Hofmann A., Chramko T., Smirnova E., Kopečná O., Pagáčová E., Boreyko A., et al. Single Molecule Localization Microscopy Analyses of DNA-Repair Foci and Clusters Detected Along Particle Damage Tracks. Front. Phys. 2020;8:578662. doi: 10.3389/fphy.2020.578662. DOI
Hahn H., Neitzel C., Kopečná O., Heermann D.W., Falk M., Hausmann M. Topological Analysis of γH2AXand MRE11 Clusters Detected by Localization Microscopy during X-ray Induced DNA Double-Strand Break Repair. Cancers. 2021;13:5561. doi: 10.3990/cancers13215561. PubMed DOI PMC
Vicar T., Gumulec J., Kolar R., Falkova I., Kopecna O., Pagacova E., Falk M. Advanced Learning- Based Algorithm for Fast Automatic Analysis of DNA Double Strand Break (DSB) Repair Foci. Comput. Struct. Biotechnol. J. 2021;19:6465–6480. doi: 10.1016/j.csbj.2021.11.019. PubMed DOI PMC
Schroedinger E. What Is Life? The Physical Aspect of the Living Cell, Etc. Cambridge University Press; Cambridge, UK: 1944.
Bizzarri M., Naimark O., Nieto-Villar J., Fedeli V., Giuliani A. Complexity in biological organization: Deconstruction (and subsequent restating) of key concepts. Entropy. 2020;22:885. doi: 10.3390/e22080885. PubMed DOI PMC
Cherstvy A.G., Teif V.B. Structure-driven homology pairing of chromatin fibers: The role of electrostatics and protein-induced bridging. J. Biol. Phys. 2013;39:363–385. doi: 10.1007/s10867-012-9294-4. PubMed DOI PMC
Krufczik M., Sievers A., Hausmann A., Lee J.-H., Hildenbrand G., Schaufler W., Hausmann M. Combining low temperature fluorescence DNA-hybridization, immunostaining, and super-resolution localization microscopy for nano-structure analysis of ALU elements and their influence on chromatin structure. Int. J. Mol. Sci. 2017;18:1005. doi: 10.3390/ijms18051005. PubMed DOI PMC
Lee J.-H., Laure Djikimi Tchetgna F., Krufczik M., Schmitt E., Cremer C., Bestvater F., Hausmann M. COMBO-FISH: A versatile tool beyond standard FISH to study chromatin organization by fluorescence light microscopy. OBM Genet. 2019;3:1. doi: 10.21926/obm.genet.1901064. DOI
Gorban A.N., Tyukina T.A., Pokidysheva L.I., Smirnova E.V. Dynamic and thermodynamic models of adaptation. Phys. Life Rev. 2021;37:17–64. doi: 10.1016/j.plrev.2021.03.001. PubMed DOI
Lee J.-H., Hausmann M. Super-Resolution Radiation Biology: From Bio-Dosimetry towards Nano-Studies of DNA Repair Mechanisms. In: Behzadi P., editor. DNA-Repair. Intech-Open; Rijeka, Croatia: 2020. DOI
Hausmann M., Neitzel C., Hahn H., Winter R., Falkova I., Heermann D.W., Pilarczyk G., Hildenbrand G., Scherthan H., Falk M. Space and time in the universe of the cell nucleus after ionizing radiation attacks: A comparison of cancer and non-cancer cell response. (presented on 1st Int. Elec. Conf. Cancers: Exploiting Cancer Vulnerability by Targeting the DNA Damage Response) Med. Sci. Forum. 2021;3:15.
Ripley B.D. Modelling Spatial Patterns. J. R. Stat. Soc. Ser. B Methodol. 1977;39:172–192. doi: 10.1111/j.2517-6161.1977.tb01615.x. DOI
Hofmann A., Krufczik M., Heermann D.W., Hausmann M. Using Persistent Homology as a New Approach for Super-Resolution Localization Microscopy Data Analysis and Classification of γ2AX Foci/Clusters. Int. J. Mol. Sci. 2018;19:2263. PubMed PMC
Morales M.E., White T.B., Streva V.A., DeFreece C.B., Hedges D.J., Deininger P.L. The contribution of ALU elements to mutagenic DNA double-strand break repair. PLoS Genet. 2015;11:e1005016. doi: 10.1371/journal.pgen.1005016. PubMed DOI PMC
Gu Z., Jin K., Crabbe M.J.C., Zhang Y., Liu X., Huang Y., Hua M., Nan P., Zhang Z., Zhong Y. Enrichment analysis of ALU elements with different spatial chromatin proximity in the human genome. Protein Cell. 2016;7:250–266. doi: 10.1007/s13238-015-0240-7. PubMed DOI PMC
Zhang Y., Máté G., Müller P., Hillebrandt S., Krufczik M., Bach M., Kaufmann R., Hausmann M., Heermann D.W. Radiation induced chromatin conformation changes analysed by fluorescent localization microscopy, statistical physics, and graph theory. PLoS ONE. 2015;10:e0128555. doi: 10.1371/journal.pone.0128555. PubMed DOI PMC
Zhang Y., Heermann D.W. DNA double-strand breaks: Linking gene expression to chromosome morphology and mobility. Chromosoma. 2014;123:103–115. doi: 10.1007/s00412-013-0432-y. PubMed DOI
Hausmann M., Ilíc N., Pilarczyk G., Lee J.-H., Logeswaran A., Borroni A.P., Krufczik M., Theda F., Waltrich N., Bestvater F., et al. Challenges for super-resolution localization microscopy and biomolecular fluorescent nano-probing in cancer research. Int. J. Mol. Sci. 2017;18:2066. doi: 10.3390/ijms18102066. PubMed DOI PMC
Hausmann M., Wagner E., Lee J.-H., Schrock G., Schaufler W., Krufczik M., Papenfuß F., Port M., Bestvater F., Scherthan H. Super-resolution localization microscopy of radiation-induced histone H2AX-phosphorylation in relation to H3K9-trimethylation in HeLa cells. Nanoscale. 2018;10:4320–4331. doi: 10.1039/C7NR08145F. PubMed DOI
Hausmann M., Falk M., Neitzel C., Hofmann A., Biswas A., Gier T., Falkova I., Heermann D.W., Hildenbrand G. Elucidation of the clustered nano-architecture of radiation-induced DNA damage sites and surrounding chromatin in cancer cells: A Single Molecule Localization Microscopy approach. Int. J. Mol. Sci. 2021;22:3636. doi: 10.3390/ijms22073636. PubMed DOI PMC
Scherthan H., Lee J.-H., Maus E., Schumann S., Muhtadi R., Chojowski R., Port M., Lassmann M., Bestvater F., Hausmann M. Nanostructure of Clustered DNA Damage in Leukocytes after In-Solution Irradiation with the Alpha Emitter Ra. Cancers. 2019;11:1877. doi: 10.3390/cancers11121877. PubMed DOI PMC
Livolant F. Ordered Phases of DNA in vivo and in vitro. Phys. A Stat. Mech. Its Appl. 1991;176:117–137. doi: 10.1016/0378-4371(91)90436-G. DOI
Zimmerman S.B., Murphy L.D. Macromolecular Crowding and the Mandatory Condensation of DNA in Bacteria. FEBS Lett. 1996;390:245–248. doi: 10.1016/0014-5793(96)00725-9. PubMed DOI
Bloomfield V.A. DNA Condensation. Curr. Opin. Struct. Biol. 1996;6:334–341. doi: 10.1016/S0959-440X(96)80052-2. PubMed DOI
Yoshikawa K., Yoshikawa Y. Compaction and Condensation of DNA. In: Mahato R.I., Kim S.W., editors. Pharmaceutical Perspectives of Nucleic Acid-Based Therapy. Taylor & Francis; London, UK: 2002. pp. 136–163. Chapter 8.
Schiessel H. The Physics of Chromatin. J. Phys. Condens. Matter. 2003;15:R699. doi: 10.1088/0953-8984/15/19/203. PubMed DOI
Zinchenko A.A., Pyshkina O.A., Andrey L.V., Sergeyev V.G., Yoshikawa K. Single DNA molecules: Compaction and decompaction. In: Dias R., Lindman B., editors. DNA Interactions with Polymers and Surfactants. Wiley; Hoboken, NJ, USA: 2008. p. 59. Chapter 3.
de Gennes P.-G., Gennes P.-G. Scaling Concepts in Polymer Physics. Cornell University Press; Ithaca, NY, USA: 1979.
Khokhlov A.R., Grosberg A.Y., Paride V.S. Statistical Physics of Macromolecules. AIP Press; New York, NY, USA: 1994.
Estévez-Torres A., Baigl D. DNA Compaction: Fundamentals and Applications. Soft Matter. 2011;7:6746–6756. doi: 10.1039/c1sm05373f. DOI
Minagawa K., Matsuzawa Y., Yoshikawa K., Khokhlov A.R., Doi M. Direct Observation of the Coil-Globule Transition in Dna Molecules. Biopolymers. 1994;34:555–558. doi: 10.1002/bip.360340410. DOI
Mel’nikov S.M., Sergeyev V.G., Yoshikawa K. Discrete Coil-Globule Transition of Large DNA Induced by Cationic Surfactant. J. Am. Chem. Soc. 1995;117:2401–2408. doi: 10.1021/ja00114a004. DOI
Yoshikawa K., Takahashi M., Vasilevskaya V.V., Khokhlov A.R. Large Discrete Transition in a Single DNA Molecule Appears Continuous in the Ensemble. Phys. Rev. Lett. 1996;76:3029–3031. doi: 10.1103/PhysRevLett.76.3029. PubMed DOI
Takahashi M., Yoshikawa K., Vasilevskaya V.V., Khokhlov A.R. Discrete Coil−Globule Transition of Single Duplex DNAs Induced by Polyamines. J. Phys. Chem. B. 1997;101:9396–9401. doi: 10.1021/jp9716391. DOI
Vasilevskaya V.V., Khokhlov A.R., Matsuzawa Y., Yoshikawa K. Collapse of Single DNA Molecule in Poly(ethylene Glycol) Solutions. J. Chem. Phys. 1995;102:6595–6602. doi: 10.1063/1.469375. DOI
Yoshikawa K., Kidoaki S., Takahashi M., Vasilevskaya V.V., Khokhlov A.R. Marked Discreteness on the Coil-Globule Transition of Single Duplex DNA. Ber. Bunsenges. Phys. Chem. 1996;100:876–880. doi: 10.1002/bbpc.19961000631. DOI
Tongu C., Kenmotsu T., Yoshikawa Y., Zinchenko A., Chen N., Yoshikawa K. Divalent Cation Shrinks DNA but Inhibits Its Compaction with Trivalent Cation. J. Chem. Phys. 2016;144:205101. doi: 10.1063/1.4950749. PubMed DOI
Thomas T., Thomas T.J. Polyamines in Cell Growth and Cell Death: Molecular Mechanisms and Therapeutic Applications. Cell. Mol. Life Sci. 2001;58:244–258. doi: 10.1007/PL00000852. PubMed DOI PMC
Childs A.C., Mehta D.J., Gerner E.W. Polyamine-Dependent Gene Expression. Cell. Mol. Life Sci. 2003;60:1394–1406. doi: 10.1007/s00018-003-2332-4. PubMed DOI PMC
Igarashi K., Kashiwagi K. Modulation of Cellular Function by Polyamines. Int. J. Biochem. Cell Biol. 2010;42:39–51. doi: 10.1016/j.biocel.2009.07.009. PubMed DOI
Kanemura A., Yoshikawa Y., Fukuda W., Tsumoto K., Kenmotsu T., Yoshikawa K. Opposite Effect of Polyamines on in vitro Gene Expression: Enhancement at Low Concentrations but Inhibition at High Concentrations. PLoS ONE. 2018;13:e0193595. doi: 10.1371/journal.pone.0193595. PubMed DOI PMC
Nishio T., Yoshikawa Y., Fukuda W., Umezawa N., Higuchi T., Fujiwara S., Imanaka T., Yoshikawa K. Branched-Chain Polyamine Found in Hyperthermophiles Induces Unique Temperature-Dependent Structural Changes in Genome-Size DNA. Chemphyschem. 2018;19:2299–2304. doi: 10.1002/cphc.201800396. PubMed DOI PMC
Nishio T., Yoshikawa Y., Shew C.-Y., Umezawa N., Higuchi T., Yoshikawa K. Specific Effects of Antitumor Active Norspermidine on the Structure and Function of DNA. Sci. Rep. 2019;9:14971. doi: 10.1038/s41598-019-50943-1. PubMed DOI PMC
Kitagawa T., Nishio T., Yoshikawa Y., Umezawa N., Higuchi T., Shew C.-Y., Kenmotsu T., Yoshikawa K. Effects of Structural Isomers of Spermine on the Higher-Order Structure of DNA and Gene Expression. Int. J. Mol. Sci. 2021;22:2355. doi: 10.3390/ijms22052355. PubMed DOI PMC
Nishio T., Yoshikawa Y., Yoshikawa K., Sato S.-I. Longer DNA Exhibits Greater Potential for Cell-Free Gene Expression. Sci. Rep. 2021;11:11739. doi: 10.1038/s41598-021-91243-x. PubMed DOI PMC
Ueda M., Yoshikawa K. Phase Transition and Phase Segregation in a Single Double-Stranded DNA Molecule. Phys. Rev. Lett. 1996;77:2133–2136. doi: 10.1103/PhysRevLett.77.2133. PubMed DOI
Yoshikawa K., Yoshikawa Y., Koyama Y., Kanbe T. Highly Effective Compaction of Long Duplex DNA Induced by Polyethylene Glycol with Pendant Amino Groups. J. Am. Chem. Soc. 1997;119:6473–6477. doi: 10.1021/ja970445w. DOI
Takagi S., Tsumoto K., Yoshikawa K. Intra-Molecular Phase Segregation in a Single Polyelectrolyte Chain. J. Chem. Phys. 2001;114:6942–6949. doi: 10.1063/1.1342810. DOI
Iwaki T., Yoshikawa K. Competition between Interchain and Intrachain Phase Segregation. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2003;68:031902. doi: 10.1103/PhysRevE.68.031902. PubMed DOI
Iwaki T., Yoshikawa K. Counterion-Mediated Intra-Chain Phase Segregation on a Single Semiflexible Polyelectrolyte Chain. EPL. 2004;68:113. doi: 10.1209/epl/i2004-10171-0. DOI
Nakai T., Hizume K., Yoshimura S.H., Takeyasu K., Yoshikawa K. Phase Transition in Reconstituted Chromatin. EPL. 2005;69:1024–1030. doi: 10.1209/epl/i2004-10444-6. DOI
Hizume K., Araki S., Yoshikawa K., Takeyasu K. Topoisomerase II, Scaffold Component, Promotes Chromatin Compaction in Vitro in a Linker-Histone H1-Dependent Manner. Nucleic Acids Res. 2007;35:2787–2799. doi: 10.1093/nar/gkm116. PubMed DOI PMC
Hizume K., Nakai T., Araki S., Prieto E., Yoshikawa K., Takeyasu K. Removal of Histone Tails from Nucleosome Dissects the Physical Mechanisms of Salt-Induced Aggregation, Linker Histone H1-Induced Compaction, and 30-Nm Fiber Formation of the Nucleosome Array. Ultramicroscopy. 2009;109:868–873. doi: 10.1016/j.ultramic.2009.03.014. PubMed DOI
Nishio T., Sugino K., Yoshikawa Y., Matsumoto M., Oe Y., Sadakane K., Yoshikawa K. K+ Promotes the Favorable Effect of Polyamine on Gene Expression Better than Na+ PLoS ONE. 2020;15:e0238447. doi: 10.1371/journal.pone.0238447. PubMed DOI PMC
Tsumoto K., Yoshikawa K. RNA Switches the Higher-Order Structure of DNA. Biophys. Chem. 1999;82:1–8. doi: 10.1016/S0301-4622(99)00098-8. PubMed DOI
Rudiuk S., Saito H., Hara T., Inoue T., Yoshikawa K., Baigl D. Light-Regulated mRNA Condensation by a Photosensitive Surfactant Works as a Series Photoswitch of Translation Activity in the Presence of Small RNAs. Biomacromolecules. 2011;12:3945–3951. doi: 10.1021/bm200962s. PubMed DOI
Akitaya T., Tsumoto K., Yamada A., Makita N., Kubo K., Yoshikawa K. NTP Concentration Switches Transcriptional Activity by Changing the Large-Scale Structure of DNA. Biomacromolecules. 2003;4:1121–1125. doi: 10.1021/bm034017w. PubMed DOI
Tsumoto K., Luckel F., Yoshikawa K. Giant DNA Molecules Exhibit On/off Switching of Transcriptional Activity through Conformational Transition. Biophys. Chem. 2003;106:23–29. doi: 10.1016/S0301-4622(03)00138-8. PubMed DOI
Tsuji A., Yoshikawa K. ON-OFF Switching of Transcriptional Activity of Large DNA through a Conformational Transition in Cooperation with Phospholipid Membrane. J. Am. Chem. Soc. 2010;132:12464–12471. doi: 10.1021/ja105154k. PubMed DOI PMC
Tsumoto K., Sakuta H., Takiguchi K., Yoshikawa K. Nonspecific Characteristics of Macromolecules Create Specific Effects in Living Cells. Biophys. Rev. 2020;12:425–434. doi: 10.1007/s12551-020-00673-w. PubMed DOI PMC
Takenaka Y., Hagahara H., Kitahata H., Yoshikawa K. Large-scale on-off switching of genetic activity mediated by the folding-unfolding transition in a giant DNA molecule: An hypothesis. Phys. Rev. E. 2008;77:31905. doi: 10.1103/PhysRevE.77.031905. PubMed DOI
Mohn F., Weber M., Rebhan M., Roloff T.C., Richter J., Stadler M.B., Bibel M., Schübeler D. Lineage-Specific Polycomb Targets and de Novo DNA Methylation Define Restriction and Potential of Neuronal Progenitors. Mol. Cell. 2008;30:755–766. doi: 10.1016/j.molcel.2008.05.007. PubMed DOI
Weber M., Hellmann I., Stadler M.B., Ramos L., Pääbo S., Rebhan M., Schübeler D. Distribution, Silencing Potential and Evolutionary Impact of Promoter DNA Methylation in the Human Genome. Nat. Genet. 2007;39:457–466. doi: 10.1038/ng1990. PubMed DOI
Choy M.-K., Movassagh M., Goh H.-G., Bennett M.R., Down T.A., Foo R.S.Y. Genome-Wide Conserved Consensus Transcription Factor Binding Motifs Are Hyper-Methylated. BMC Genom. 2010;11:519. doi: 10.1186/1471-2164-11-519. PubMed DOI PMC
Dahlet T., Argüeso Lleida A., Al Adhami H., Dumas M., Bender A., Ngondo R.P., Tanguy M., Vallet J., Auclair G., Bardet A.F., et al. Genome-Wide Analysis in the Mouse Embryo Reveals the Importance of DNA Methylation for Transcription Integrity. Nat. Commun. 2020;11:3153. doi: 10.1038/s41467-020-16919-w. PubMed DOI PMC
Brivanlou A.H., Darnell J.E., Jr. Signal Transduction and the Control of Gene Expression. Science. 2002;295:813–818. doi: 10.1126/science.1066355. PubMed DOI
Strahl B.D., Allis C.D. The Language of Covalent Histone Modifications. Nature. 2000;403:41–45. doi: 10.1038/47412. PubMed DOI
Jenuwein T., Allis C.D. Translating the Histone Code. Science. 2001;293:1074–1080. doi: 10.1126/science.1063127. PubMed DOI
Roeder R.G. The Role of General Initiation Factors in Transcription by RNA Polymerase II. Trends Biochem. Sci. 1996;21:327–335. doi: 10.1016/0968-0004(96)10050-5. PubMed DOI
Nikolov D.B., Burley S.K. RNA Polymerase II Transcription Initiation: A Structural View. Proc. Natl. Acad. Sci. USA. 1997;94:15–22. doi: 10.1073/pnas.94.1.15. PubMed DOI PMC
Fire A., Xu S., Montgomery M.K., Kostas S.A., Driver S.E., Mello C.C. Potent and Specific Genetic Interference by Double-Stranded RNA in Caenorhabditis Elegans. Nature. 1998;391:806–811. doi: 10.1038/35888. PubMed DOI
Elbashir S.M., Harborth J., Lendeckel W., Yalcin A., Weber K., Tuschl T. Duplexes of 21-Nucleotide RNAs Mediate RNA Interference in Cultured Mammalian Cells. Nature. 2001;411:494–498. doi: 10.1038/35078107. PubMed DOI
Weiss B., Davidkova G., Zhou L.W. Antisense RNA Gene Therapy for Studying and Modulating Biological Processes. Cell. Mol. Life Sci. 1999;55:334–358. doi: 10.1007/s000180050296. PubMed DOI PMC
Saurabh S., Vidyarthi A.S., Prasad D. RNA Interference: Concept to Reality in Crop Improvement. Planta. 2014;239:543–564. doi: 10.1007/s00425-013-2019-5. PubMed DOI
Goñi J.R., Pérez A., Torrents D., Orozco M. Determining Promoter Location Based on DNA Structure First-Principles Calculations. Genome Biol. 2007;8:R263. doi: 10.1186/gb-2007-8-12-r263. PubMed DOI PMC
Meysman P., Marchal K., Engelen K. DNA Structural Properties in the Classification of Genomic Transcription Regulation Elements. Bioinform. Biol. Insights. 2012;6:155–168. doi: 10.4137/BBI.S9426. PubMed DOI PMC
Huang K., Li Y., Shim A.R., Virk R.K.A., Agrawal V., Eshein A., Nap R.J., Almassalha L.M., Backman V., Szleifer I. Physical and Data Structure of 3D Genome. Sci. Adv. 2020;6:eaay4055. doi: 10.1126/sciadv.aay4055. PubMed DOI PMC
Travers A., Muskhelishvili G. DNA Structure and Function. FEBS J. 2015;282:2279–2295. doi: 10.1111/febs.13307. PubMed DOI
Peters J.P., 3rd, Maher L.J. DNA Curvature and Flexibility in vitro and in vivo. Q. Rev. Biophys. 2010;43:23–63. doi: 10.1017/S0033583510000077. PubMed DOI PMC
Sievers A., Sauer L., Hausmann M., Hildenbrand G. Eukaryotic Genomes Show Strong Evolutionary Conservation of K-Mer Composition and Correlation Contributions between Introns and Intergenic Regions. Genes. 2021;12:1571. doi: 10.3390/genes12101571. PubMed DOI PMC
Sievers A., Bosiek K., Bisch M., Dreessen C., Riedel J., Froß P., Hausmann M., Hildenbrand G. K-Mer Content, Correlation, and Position Analysis of Genome DNA Sequences for the Identification of Function and Evolutionary Features. Genes. 2017;8:122. doi: 10.3390/genes8040122. PubMed DOI PMC
Mojtahedi M., Skupin A., Zhou J., Castano I.G., Leong-Quong R.Y.Y., Chang H., Trachana K., Giuliani A., Huang S. Cell fate decision as high-dimensional critical state transition. PLoS Biol. 2016;14:e2000640. doi: 10.1371/journal.pbio.2000640. PubMed DOI PMC
Sun L., Fu X., Ma G., Hutchins A.P. Chromatin and epigenetic rearrangements in embryonic stem cell fate transitions. Front. Cell Dev. Biol. 2021;9:637309. doi: 10.3389/fcell.2021.637309. PubMed DOI PMC
Condensed Matter Systems Exposed to Radiation: Multiscale Theory, Simulations, and Experiment