DeepFoci: Deep learning-based algorithm for fast automatic analysis of DNA double-strand break ionizing radiation-induced foci
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34976305
PubMed Central
PMC8668444
DOI
10.1016/j.csbj.2021.11.019
PII: S2001-0370(21)00484-0
Knihovny.cz E-zdroje
- Klíčová slova
- 53BP1, P53-binding protein 1, Biodosimetry, CNN, convolutional neural network, Confocal Microscopy, Convolutional Neural Network, DNA Damage and Repair, DSB, DNA double-strand break, Deep Learning, FOV, field of view, GUI, graphical user interface, IRIF, ionizing radiation-induced (repair) foci, Image Analysis, Ionizing Radiation-Induced Foci (IRIFs), MSER, maximally stable extremal region (algorithm), Morphometry, NHDFs, normal human dermal fibroblasts, RAD51, DNA repair protein RAD51 homolog 1, U-87, U-87 glioblastoma cell line, γH2AX, histone H2AX phosphorylated at serine 139,
- Publikační typ
- časopisecké články MeSH
DNA double-strand breaks (DSBs), marked by ionizing radiation-induced (repair) foci (IRIFs), are the most serious DNA lesions and are dangerous to human health. IRIF quantification based on confocal microscopy represents the most sensitive and gold-standard method in radiation biodosimetry and allows research on DSB induction and repair at the molecular and single-cell levels. In this study, we introduce DeepFoci - a deep learning-based fully automatic method for IRIF counting and morphometric analysis. DeepFoci is designed to work with 3D multichannel data (trained for 53BP1 and γH2AX) and uses U-Net for nucleus segmentation and IRIF detection, together with maximally stable extremal region-based IRIF segmentation. The proposed method was trained and tested on challenging datasets consisting of mixtures of nonirradiated and irradiated cells of different types and IRIF characteristics - permanent cell lines (NHDFs, U-87) and primary cell cultures prepared from tumors and adjacent normal tissues of head and neck cancer patients. The cells were dosed with 0.5-8 Gy γ-rays and fixed at multiple (0-24 h) postirradiation times. Under all circumstances, DeepFoci quantified the number of IRIFs with the highest accuracy among current advanced algorithms. Moreover, while the detection error of DeepFoci remained comparable to the variability between two experienced experts, the software maintained its sensitivity and fidelity across dramatically different IRIF counts per nucleus. In addition, information was extracted on IRIF 3D morphometric features and repair protein colocalization within IRIFs. This approach allowed multiparameter IRIF categorization of single- or multichannel data, thereby refining the analysis of DSB repair processes and classification of patient tumors, with the potential to identify specific cell subclones. The developed software improves IRIF quantification for various practical applications (radiotherapy monitoring, biodosimetry, etc.) and opens the door to advanced DSB focus analysis and, in turn, a better understanding of (radiation-induced) DNA damage and repair.
Zobrazit více v PubMed
Dickey J.S., Redon C.E., Nakamura A.J., Baird B.J., Sedelnikova O.A., Bonner W.M. H2AX: functional roles and potential applications. Chromosoma. 2009;118(6):683–692. doi: 10.1007/s00412-009-0234-4. PubMed DOI PMC
Falk M., Lukasova E., Kozubek S. Higher-order chromatin structure in DSB induction, repair and misrepair. Mutat Res. 2010;704(1-3):88–100. doi: 10.1016/j.mrrev.2010.01.013. PubMed DOI
Falk M., Hausmann M., Lukasova E., Biswas A., Hildenbrand G., Davidkova M., et al. Determining Omics spatiotemporal dimensions using exciting new nanoscopy techniques to assess complex cell responses to DNA damage: part A–radiomics. Crit Rev Eukaryot Gene Expr. 2014;24(3):205–223. PubMed
Falk M., Hausmann M., Lukášová E., Biswas A., Hildenbrand G., Davídková M., et al. Determining Omics spatiotemporal dimensions using exciting new nanoscopy techniques to assess complex cell responses to DNA damage: part B–structuromics. Crit Rev Eukaryot Gene Expr. 2014;24:225–247. PubMed
Alhmoud JF, Woolley JF, Al Moustafa A-E, Malki MI. DNA Damage/Repair Management in Cancers. Cancers 2020;12:1050. 10.3390/cancers12041050 PubMed PMC
Rittich B., Spanová A., Falk M., Benes M.J., Hrubý M. Cleavage of double stranded plasmid DNA by lanthanide complexes. J Chromatogr B Analyt Technol Biomed Life Sci. 2004;800:169–173. PubMed
Chatterjee N., Walker G.C. Mechanisms of DNA damage, repair, and mutagenesis: DNA Damage and Repair. Environ Mol Mutagen. 2017;58:235–263. doi: 10.1002/em.22087. PubMed DOI PMC
Bennett C.B., Lewis A.L., Baldwin K.K., Resnick M.A. Lethality induced by a single site-specific double-strand break in a dispensable yeast plasmid. Proc Natl Acad Sci. 1993;90(12):5613–5617. doi: 10.1073/pnas.90.12.5613. PubMed DOI PMC
White R.R., Vijg J. Do DNA Double-Strand Breaks Drive Aging? Mol Cell. 2016;63(5):729–738. doi: 10.1016/j.molcel.2016.08.004. PubMed DOI PMC
Madabhushi R., Pan L., Tsai L.-H. DNA Damage and Its Links to Neurodegeneration. Neuron. 2014;83(2):266–282. doi: 10.1016/j.neuron.2014.06.034. PubMed DOI PMC
Gunes S., Al-Sadaan M., Agarwal A. Spermatogenesis, DNA damage and DNA repair mechanisms in male infertility. Reprod Biomed Online. 2015;31(3):309–319. doi: 10.1016/j.rbmo.2015.06.010. PubMed DOI
Barnes J.L., Zubair M., John K., Poirier M.C., Martin F.L. Carcinogens and DNA damage. Biochem Soc Trans. 2018;46:1213–1224. doi: 10.1042/BST20180519. PubMed DOI PMC
Falk M, Horakova Z, Svobodova M, Masarik M, Kopecna O, Gumulec J, et al. γH2AX/53BP1 foci as a potential pre-treatment marker of HNSCC tumors radiosensitivity – preliminary methodological study and discussion. Eur Phys J D 2017:241. 10.1140/epjd/e2017-80073-2.
Sevcik J., Falk M., Kleiblova P., Lhota F., Stefancikova L., Janatova M., et al. The BRCA1 alternative splicing variant δ14-15 with an in-frame deletion of part of the regulatory serine-containing domain (SCD) impairs the DNA repair capacity in MCF-7 cells. Cell Signal. 2012;24(5):1023–1030. doi: 10.1016/j.cellsig.2011.12.023. PubMed DOI
Sevcik J., Falk M., Macurek L., Kleiblova P., Lhota F., Hojny J., et al. Expression of human BRCA1Δ17-19 alternative splicing variant with a truncated BRCT domain in MCF-7 cells results in impaired assembly of DNA repair complexes and aberrant DNA damage response. Cell Signal. 2013;25(5):1186–1193. doi: 10.1016/j.cellsig.2013.02.008. PubMed DOI
Michaelidesová A., Vachelová J., Klementová J., Urban T., Pachnerová Brabcová K., Kaczor S., et al. In vitro comparison of passive and active clinical proton beams. Int J Mol Sci. 2020;21(16):5650. doi: 10.3390/ijms21165650. PubMed DOI PMC
Burger N., Biswas A., Barzan D., Kirchner A., Hosser H., Hausmann M., et al. A method for the efficient cellular uptake and retention of small modified gold nanoparticles for the radiosensitization of cells. Nanomed Nanotechnol Biol Med. 2014;10(6):1365–1373. doi: 10.1016/j.nano.2014.03.011. PubMed DOI
Štefančíková L., Lacombe S., Salado D., Porcel E., Pagáčová E., Tillement O., et al. Effect of gadolinium-based nanoparticles on nuclear DNA damage and repair in glioblastoma tumor cells. J Nanobiotechnol. 2016;14(1) doi: 10.1186/s12951-016-0215-8. PubMed DOI PMC
Amarh V., Arthur P.K. DNA double-strand break formation and repair as targets for novel antibiotic combination chemotherapy. Future Sci OA. 2019;5(8):FSO411. doi: 10.2144/fsoa-2019-0034. PubMed DOI PMC
Pagáčová E., Štefančíková L., Schmidt-Kaler F., Hildenbrand G., Vičar T., Depeš D., et al. Challenges and Contradictions of Metal Nano-Particle Applications for Radio-Sensitivity Enhancement in Cancer Therapy. Int J Mol Sci. 2019;20(3):588. doi: 10.3390/ijms20030588. PubMed DOI PMC
Hofer M., Falk M., Komůrková D., Falková I., Bačíková A., Klejdus B., et al. Two New Faces of Amifostine: Protector from DNA Damage in Normal Cells and Inhibitor of DNA Repair in Cancer Cells. J Med Chem. 2016;59(7):3003–3017. doi: 10.1021/acs.jmedchem.5b0162810.1021/acs.jmedchem.5b01628.s001. PubMed DOI
Kratochvílová I., Kopečná O., Bačíková A., Pagáčová E., Falková I., Follett S.E., et al. Changes in Cryopreserved Cell Nuclei Serve as Indicators of Processes during Freezing and Thawing. Langmuir ACS J Surf Colloids. 2019;35(23):7496–7508. doi: 10.1021/acs.langmuir.8b02742. PubMed DOI
Falk M., Falková I., Kopečná O., Bačíková A., Pagáčová E., Šimek D., et al. Chromatin architecture changes and DNA replication fork collapse are critical features in cryopreserved cells that are differentially controlled by cryoprotectants. Sci Rep. 2018;8(1) doi: 10.1038/s41598-018-32939-5. PubMed DOI PMC
Kratochvílová I., Golan M., Pomeisl K., Richter J., Sedláková S., Šebera J., et al. Theoretical and experimental study of the antifreeze protein AFP752, trehalose and dimethyl sulfoxide cryoprotection mechanism: correlation with cryopreserved cell viability. RSC Adv. 2017;7(1):352–360. doi: 10.1039/C6RA25095E. PubMed DOI PMC
Zahnreich S., Ebersberger A., Kaina B., Schmidberger H. Biodosimetry Based on γ-H2AX Quantification and Cytogenetics after Partial- and Total-Body Irradiation during Fractionated Radiotherapy. Radiat Res. 2015;183(4):432. doi: 10.1667/RR13911.110.1667/RR13911.1.s1. PubMed DOI
Moquet J., Barnard S., Rothkamm K. Gamma-H2AX biodosimetry for use in large scale radiation incidents: comparison of a rapid ‘96 well lyse/fix’ protocol with a routine method. PeerJ. 2014;2 doi: 10.7717/peerj.282. PubMed DOI PMC
Jakl L., Marková E., Koláriková L., Belyaev I. Biodosimetry of Low Dose Ionizing Radiation Using DNA Repair Foci in Human Lymphocytes. Genes. 2020;11:58. doi: 10.3390/genes11010058. PubMed DOI PMC
Viau M., Testard I., Shim G., Morat L., Normil M.D., Hempel W.M., et al. Global quantification of γH2AX as a triage tool for the rapid estimation of received dose in the event of accidental radiation exposure. Mutat Res Toxicol Environ Mutagen. 2015;793:123–131. doi: 10.1016/j.mrgentox.2015.05.009. PubMed DOI
Wilkins R.C., Carr Z., Lloyd D.C. An update of the WHO Biodosenet: Developments since its Inception. Radiat Prot Dosimetry. 2016;172(1-3):47–57. doi: 10.1093/rpd/ncw154. PubMed DOI
Moquet J., Barnard S., Staynova A., Lindholm C., Monteiro Gil O., Martins V., et al. The second gamma-H2AX assay inter-comparison exercise carried out in the framework of the European biodosimetry network (RENEB) Int J Radiat Biol. 2017;93(1):58–64. doi: 10.1080/09553002.2016.1207822. PubMed DOI
Staaf E., Brehwens K., Haghdoost S., Czub J., Wojcik A. Gamma-H2AX foci in cells exposed to a mixed beam of X-rays and alpha particles. Genome Integr. 2012;3(1):8. doi: 10.1186/2041-9414-3-8. PubMed DOI PMC
Cucinotta F.A., Durante M. Cancer risk from exposure to galactic cosmic rays: implications for space exploration by human beings. Lancet Oncol. 2006;7(5):431–435. doi: 10.1016/S1470-2045(06)70695-7. PubMed DOI
Furukawa S., Nagamatsu A., Nenoi M., Fujimori A., Kakinuma S., Katsube T., et al. Space Radiation Biology for “Living in Space”. BioMed Res Int. 2020;2020:1–25. doi: 10.1155/2020/4703286. PubMed DOI PMC
Jezkova L., Zadneprianetc M., Kulikova E., Smirnova E., Bulanova T., Depes D., et al. Particles with similar LET values generate DNA breaks of different complexity and reparability: a high-resolution microscopy analysis of γH2AX/53BP1 foci. Nanoscale. 2018;10(3):1162–1179. doi: 10.1039/C7NR06829H. PubMed DOI
Depes D, Lee J-H, Bobkova E, Jezkova L, Falkova I, Bestvater F, et al. Single-molecule localization microscopy as a promising tool for γH2AX/53BP1 foci exploration. Eur Phys J D 2018;72. 10.1140/epjd/e2018-90148-1.
Bobkova E., Depes D., Lee J.-H., Jezkova L., Falkova I., Pagacova E., et al. Recruitment of 53BP1 Proteins for DNA Repair and Persistence of Repair Clusters Differ for Cell Types as Detected by Single Molecule Localization Microscopy. Int J Mol Sci. 2018;19(12):3713. doi: 10.3390/ijms19123713. PubMed DOI PMC
Hausmann M., Neitzel C., Bobkova E., Nagel D., Hofmann A., Chramko T., et al. Single Molecule Localization Microscopy Analyses of DNA-Repair Foci and Clusters Detected along Particle Damage Tracks. Front Phys Sect Med Phys. Imaging. 2020;8 doi: 10.3389/fphy.2020.578662. DOI
Rogakou E.P., Boon C., Redon C., Bonner W.M. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol. 1999;146:905–916. doi: 10.1083/jcb.146.5.905. PubMed DOI PMC
Firsanov D.V., Solovjeva L.V., Svetlova M.P. H2AX phosphorylation at the sites of DNA double-strand breaks in cultivated mammalian cells and tissues. Clin Epigenetics. 2011;2(2):283–297. doi: 10.1007/s13148-011-0044-4. PubMed DOI PMC
Redon C.E., Dickey J.S., Bonner W.M., Sedelnikova O.A. γ-H2AX as a biomarker of DNA damage induced by ionizing radiation in human peripheral blood lymphocytes and artificial skin. Adv Space Res. 2009;43(8):1171–1178. doi: 10.1016/j.asr.2008.10.011. PubMed DOI PMC
Mariotti L.G., Pirovano G., Savage K.I., Ghita M., Ottolenghi A., Prise K.M., et al. Use of the γ-H2AX assay to investigate DNA repair dynamics following multiple radiation exposures. PLoS ONE. 2013;8(11):e79541. PubMed PMC
Durdik M., Kosik P., Gursky J., Vokalova L., Markova E., Belyaev I. Imaging flow cytometry as a sensitive tool to detect low-dose-induced DNA damage by analyzing 53BP1 and γH2AX foci in human lymphocytes: Imaging Flow Cytometry for DNA Damage Analysis. Cytometry A. 2015;87(12):1070–1078. doi: 10.1002/cyto.a.22731. PubMed DOI
Sharma A., Singh K., Almasan A. In: Bjergbæk L., editor. vol. 920. Humana Press; Totowa, NJ: 2012. Histone H2AX Phosphorylation: A Marker for DNA Damage; pp. 613–626. (DNA Repair Protoc). PubMed DOI
Lee Y., Wang Q., Shuryak I., Brenner D.J., Turner H.C. Development of a high-throughput γ-H2AX assay based on imaging flow cytometry. Radiat Oncol. 2019;14:150. doi: 10.1186/s13014-019-1344-7. PubMed DOI PMC
Takahashi A., Ohnishi T. Does γH2AX foci formation depend on the presence of DNA double strand breaks? Cancer Lett. 2005;229(2):171–179. doi: 10.1016/j.canlet.2005.07.016. PubMed DOI
Ceelen M., van Weissenbruch M.M., Vermeiden J.P.W., van Leeuwen F.E., Delemarre-van de Waal H.A. Growth and development of children born after in vitro fertilization. Fertil Steril. 2008;90(5):1662–1673. doi: 10.1016/j.fertnstert.2007.09.005. PubMed DOI
Her J., Bunting S.F. How cells ensure correct repair of DNA double-strand breaks. J Biol Chem. 2018;293(27):10502–10511. doi: 10.1074/jbc.TM118.000371. PubMed DOI PMC
Scherthan H, Lee J-H, Maus E, Schumann S, Muhtadi R, Chojowski R, et al. Nanostructure of Clustered DNA Damage in Leukocytes after In-Solution Irradiation with the Alpha Emitter Ra-223. Cancers 2019;11. 10.3390/cancers11121877. PubMed PMC
Bach M., Savini C., Krufczik M., Cremer C., Rösl F., Hausmann M. Super-Resolution Localization Microscopy of γ-H2AX and Heterochromatin after Folate Deficiency. Int J Mol Sci. 2017;18(8):1726. doi: 10.3390/ijms18081726. PubMed DOI PMC
Jeggo P.A., Pearl L.H., Carr A.M. DNA repair, genome stability and cancer: a historical perspective. Nat Rev Cancer. 2016;16(1):35–42. doi: 10.1038/nrc.2015.4. PubMed DOI
Misteli T., Soutoglou E. The emerging role of nuclear architecture in DNA repair and genome maintenance. Nat Rev Mol Cell Biol. 2009;10(4):243–254. doi: 10.1038/nrm2651. PubMed DOI PMC
Jakob B., Rudolph J.H., Gueven N., Lavin M.F., Taucher-Scholz G. Live cell imaging of heavy-ion-induced radiation responses by beamline microscopy. Radiat Res. 2005;163(6):681–690. PubMed
Kruhlak MJ, Celeste A, Dellaire G, Fernandez-Capetillo O, Müller WG, McNally JG, et al. Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks. J Cell Biol 2006;172:823–34. 10.1083/jcb.200510015. PubMed PMC
Noon A.T., Goodarzi A.A. 53BP1-mediated DNA double strand break repair: Insert bad pun here. DNA Repair. 2011;10(10):1071–1076. doi: 10.1016/j.dnarep.2011.07.012. PubMed DOI
Goodarzi A.A., Jeggo P., Lobrich M. The influence of heterochromatin on DNA double strand break repair: Getting the strong, silent type to relax. DNA Repair. 2010;9(12):1273–1282. doi: 10.1016/j.dnarep.2010.09.013. PubMed DOI
Reindl J., Girst S., Walsh D.W.M., Greubel C., Schwarz B., Siebenwirth C., et al. Chromatin organization revealed by nanostructure of irradiation induced γH2AX, 53BP1 and Rad51 foci. Sci Rep. 2017;7(1) doi: 10.1038/srep40616. PubMed DOI PMC
Rothkamm K., Horn S. gamma-H2AX as protein biomarker for radiation exposure. Ann Ist Super Sanita. 2009;45:265–271. PubMed
Rybak P., Hoang A., Bujnowicz L., Bernas T., Berniak K., Zarębski M., et al. Low level phosphorylation of histone H2AX on serine 139 (γH2AX) is not associated with DNA double-strand breaks. Oncotarget. 2016;7(31):49574–49587. PubMed PMC
Schneider J., Weiss R., Ruhe M., Jung T., Roggenbuck D., Stohwasser R., et al. Open source bioimage informatics tools for the analysis of DNA damage and associated biomarkers. J Lab Precis Med. 2019;(4):21. doi: 10.21037/jlpm10.21037/jlpm.2019.04.05. DOI
Fu Q., Wang J., Huang T. Characterizing the DNA damage response in fibrosarcoma stem cells by in-situ cell tracking. Int J Radiat Biol. 2019;95(2):99–106. doi: 10.1080/09553002.2019.1539879. PubMed DOI
Rothkamm K., Barnard S., Moquet J., Ellender M., Rana Z., Burdak-Rothkamm S. DNA damage foci: Meaning and significance. Environ Mol Mutagen. 2015;56(6):491–504. doi: 10.1002/em.v56.610.1002/em.21944. PubMed DOI
Barnard S., Ainsbury E.A., Al-hafidh J., Hadjidekova V., Hristova R., Lindholm C., et al. The first gamma-H2AX biodosimetry intercomparison exercise of the developing European biodosimetry network RENEB. Radiat Prot Dosimetry. 2015;164(3):265–270. doi: 10.1093/rpd/ncu259. PubMed DOI
Einbeck J., Ainsbury E.A., Sales R., Barnard S., Kaestle F., Higueras M., et al. A statistical framework for radiation dose estimation with uncertainty quantification from the γ-H2AX assay. PLoS ONE. 2018;13(11):e0207464. PubMed PMC
Falk M, Hausmann M. A Paradigm Revolution or Just Better Resolution – Will Newly Emerging Superresolution Techniques Identify Chromatin Architecture as a Key Factor in Radiation-Induced DNA Damage and Repair Regulation? Cancers 2021;13:article 18 (1-30). doi.org/10.3390/cancers13010018. PubMed PMC
Hahn H, Neitzel Charlotte, Kopečná Olga, Heermann W Dieter, Falk Martin, Hausmann A. Topological analysis of γH2AXand MRE11 clusters detected by localization microscopy during X-ray induced DNA double- strand break repair. Cancers 2021;13(21): article 5561; 10.3390/cancers13215561. PubMed PMC
Falk M., Hausmann M. Advances in research of DNA damage and repair in cells exposed to various types of ionizing radiation in the era of super-resolution optical microscopy. Cas Lek Cesk. 2020 PubMed
Willers H., Taghian A.G., Luo C.-M., Treszezamsky A., Sgroi D.C., Powell S.N. Utility of DNA Repair Protein Foci for the Detection of Putative BRCA1 Pathway Defects in Breast Cancer Biopsies. Mol Cancer Res. 2009;7(8):1304–1309. doi: 10.1158/1541-7786.MCR-09-0149. PubMed DOI PMC
Bonner W.M., Redon C.E., Dickey J.S., Nakamura A.J., Sedelnikova O.A., Solier S., et al. GammaH2AX and cancer. Nat Rev Cancer. 2008;8:957–967. doi: 10.1038/nrc2523. PubMed DOI PMC
Anglada T., Repullés J., Espinal A., LaBarge M.A., Stampfer M.R., Genescà A., et al. Delayed γH2AX foci disappearance in mammary epithelial cells from aged women reveals an age-associated DNA repair defect. Aging. 2019;11(5):1510–1523. PubMed PMC
Oeck S., Malewicz N.M., Hurst S., Rudner J., Jendrossek V. The Focinator - a new open-source tool for high-throughput foci evaluation of DNA damage. Radiat Oncol Lond Engl. 2015;10:163. doi: 10.1186/s13014-015-0453-1. PubMed DOI PMC
Herbert A.D., Carr A.M., Hoffmann E., Lichten M. FindFoci: a focus detection algorithm with automated parameter training that closely matches human assignments, reduces human inconsistencies and increases speed of analysis. PLoS ONE. 2014;9(12):e114749. PubMed PMC
Feng J., Lin J., Zhang P., Yang S., Sa Y., Feng Y. A novel automatic quantification method for high-content screening analysis of DNA double strand-break response. Sci Rep. 2017;7:9581. doi: 10.1038/s41598-017-10063-0. PubMed DOI PMC
Lapytsko A., Kollarovic G., Ivanova L., Studencka M., Schaber J. FoCo: a simple and robust quantification algorithm of nuclear foci. BMC Bioinf. 2015;16:392. doi: 10.1186/s12859-015-0816-5. PubMed DOI PMC
Lengert N., Mirsch J., Weimer R.N., Schumann E., Haub P., Drossel B., et al. AutoFoci, an automated high-throughput foci detection approach for analyzing low-dose DNA double-strand break repair. Sci Rep. 2018;8(1) doi: 10.1038/s41598-018-35660-5. PubMed DOI PMC
Oeck S., Malewicz N.M., Hurst S., Al-Refae K., Krysztofiak A., Jendrossek V. The Focinator v2–0 – Graphical Interface, Four Channels, Colocalization Analysis and Cell Phase Identification. Radiat Res. 2017;188(1):114–120. doi: 10.1667/RR14746.1. PubMed DOI
Memmel S., Sisario D., Zimmermann H., Sauer M., Sukhorukov V.L., Djuzenova C.S., et al. FocAn: automated 3D analysis of DNA repair foci in image stacks acquired by confocal fluorescence microscopy. BMC Bioinf. 2020;21(1) doi: 10.1186/s12859-020-3370-8. PubMed DOI PMC
Svobodova M., Raudenska M., Gumulec J., Balvan J., Fojtu M., Kratochvilova M., et al. Establishment of oral squamous cell carcinoma cell line and magnetic bead-based isolation and characterization of its CD90/ CD44 subpopulations. Oncotarget. 2017;8(39):66254–66269. PubMed PMC
Falk M., Lukasova E., Gabrielova B., Ondrej V., Kozubek S. Chromatin dynamics during DSB repair. Biochim Biophys Acta. 2007;1773(10):1534–1545. doi: 10.1016/j.bbamcr.2007.07.002. PubMed DOI
Matula P., Maška M., Daněk O., Matula P., Kozubek M. Acquiarium: Free software for the acquisition and analysis of 3D images of cells in fluorescence microscopy. Proc - IEEE Int Symp Biomed Imag Nano Macro ISBI. 2009:1138–1141. doi: 10.1109/ISBI.2009.5193258. DOI
Achanta R., Shaji A., Smith K., Lucchi A., Fua P., Süsstrunk S. SLIC Superpixels Compared to State-of-the-Art Superpixel Methods. IEEE Trans Pattern Anal Mach Intell. 2012;34(11):2274–2282. doi: 10.1109/TPAMI.2012.120. PubMed DOI
Ulman V., Maška M., Magnusson K.E.G., Ronneberger O., Haubold C., Harder N., et al. An objective comparison of cell-tracking algorithms. Nat Methods. 2017;14(12):1141–1152. doi: 10.1038/nmeth.4473. PubMed DOI PMC
Davis A.J., Chen D.J. DNA double strand break repair via non-homologous end-joining. Transl Cancer Res. 2013;2:130–143. doi: 10.3978/j.issn.2218-676X.2013.04.02. PubMed DOI PMC
Ensminger M., Löbrich M. One end to rule them all: Non-homologous end-joining and homologous recombination at DNA double-strand breaks. Br J Radiol. 2020;93(1115):20191054. doi: 10.1259/bjr.20191054. PubMed DOI PMC
Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Navab N, Hornegger J, Wells WM, Frangi AF, editors. Med. Image Comput. Comput.-Assist. Interv. – MICCAI 2015, vol. 9351, Cham: Springer International Publishing; 2015, p. 234–41. 10.1007/978-3-319-24574-4_28.
Meyer F., Beucher S. Morphological segmentation. J Vis Commun Image Represent. 1990;1(1):21–46. doi: 10.1016/1047-3203(90)90014-M. DOI
Matas J., Chum O., Urban M., Pajdla T. Robust wide-baseline stereo from maximally stable extremal regions. Image Vis Comput. 2004;22(10):761–767. doi: 10.1016/j.imavis.2004.02.006. DOI
Parvati K., Prakasa Rao B.S., Mariya D.M. Image Segmentation Using Gray-Scale Morphology and Marker-Controlled Watershed Transformation. Discrete Dyn Nat Soc. 2008;2008:1–8. doi: 10.1155/2008/384346. DOI
Vedaldi A, Fulkerson B. Vlfeat: an open and portable library of computer vision algorithms. Proc. Int. Conf. Multimed. - MM 10, Firenze, Italy: ACM Press; 2010, p. 1469. 10.1145/1873951.1874249.
Sudre CH, Li W, Vercauteren T, Ourselin S, Jorge Cardoso M. Generalised Dice Overlap as a Deep Learning Loss Function for Highly Unbalanced Segmentations. In: Cardoso MJ, Arbel T, Carneiro G, Syeda-Mahmood T, Tavares JMRS, Moradi M, et al., editors. Deep Learn. Med. Image Anal. Multimodal Learn. Clin. Decis. Support, vol. 10553, Cham: Springer International Publishing; 2017, p. 240–8. 10.1007/978-3-319-67558-9_28. PubMed PMC
Jones T.R., Kang I.H., Wheeler D.B., Lindquist R.A., Papallo A., Sabatini D.M., et al. Cell Profiler Analyst: Data exploration and analysis software for complex image-based screens. BMC Bioinf. 2008;9(1) doi: 10.1186/1471-2105-9-482. PubMed DOI PMC
Ježková L, Falk M, Falková I, Davídková M, Bačíková A, Štefančíková L, et al. Function of chromatin structure and dynamics in DNA damage, repair and misrepair: γ-rays and protons in action. Appl Radiat Isot Data Instrum Methods Use Agric Ind Med 2014;83 Pt B:128–36. 10.1016/j.apradiso.2013.01.022. PubMed
Lukas C., Savic V., Bekker-Jensen S., Doil C., Neumann B., Sølvhøj Pedersen R., et al. 53BP1 nuclear bodies form around DNA lesions generated by mitotic transmission of chromosomes under replication stress. Nat Cell Biol. 2011;13(3):243–253. doi: 10.1038/ncb2201. PubMed DOI
Kruszewski M., Iwanenko T., Machaj E.K., Oldak T., Wojewodzka M., Kapka-Skrzypczak L., et al. Direct use of the comet assay to study cell cycle distribution and its application to study cell cycle-dependent DNA damage formation. Mutagenesis. 2012;27(5):551–558. doi: 10.1093/mutage/ges018. PubMed DOI
Roukos V., Pegoraro G., Voss T.C., Misteli T. Cell cycle staging of individual cells by fluorescence microscopy. Nat Protoc. 2015;10(2):334–348. doi: 10.1038/nprot.2015.016. PubMed DOI PMC
Löbrich M., Shibata A., Beucher A., Fisher A., Ensminger M., Goodarzi A.A., et al. γH2AX foci analysis for monitoring DNA double-strand break repair: Strengths, limitations and optimization. Cell Cycle. 2010;9(4):662–669. doi: 10.4161/cc.9.4.10764. PubMed DOI
Beucher A., Birraux J., Tchouandong L., Barton O., Shibata A., Conrad S., et al. ATM and Artemis promote homologous recombination of radiation-induced DNA double-strand breaks in G2. EMBO J. 2009;28(21):3413–3427. doi: 10.1038/emboj.2009.276. PubMed DOI PMC
Hsu M.-Y., Yang M.H., Schnegg C.I., Hwang S., Ryu B., Alani R.M. Notch3 signaling-mediated melanoma–endothelial crosstalk regulates melanoma stem-like cell homeostasis and niche morphogenesis. Lab Invest. 2017;97(6):725–736. doi: 10.1038/labinvest.2017.1. PubMed DOI PMC
Kashyap M., Das D., Preet R., Mohapatra P., Satapathy S.R., Siddharth S., et al. Scaffold hybridization in generation of indenoindolones as anticancer agents that induce apoptosis with cell cycle arrest at G2/M phase. Bioorg Med Chem Lett. 2012;22(7):2474–2479. doi: 10.1016/j.bmcl.2012.02.007. PubMed DOI
Campbell J.M., Habibalahi A., Mahbub S., Gosnell M., Anwer A.G., Paton S., et al. Non-destructive, label free identification of cell cycle phase in cancer cells by multispectral microscopy of autofluorescence. BMC Cancer. 2019;19(1) doi: 10.1186/s12885-019-6463-x. PubMed DOI PMC
Lopez Perez R., Münz F., Kroschke J., Brauer J., Nicolay N.H., Huber P.E. Cell Cycle-specific Measurement of & #947;H2AX and Apoptosis After Genotoxic Stress by Flow Cytometry. J Vis Exp. 2019;59968 doi: 10.3791/59968. PubMed DOI
Falk M., Lukasova E., Gabrielova B., Ondrej V., Kozubek S. Local changes of higher-order chromatin structure during DSB-repair. J Phys Conf Ser. 2008;101:012018. doi: 10.1088/1742-6596/101/1/012018. DOI
Falk M., Lukásová E., Kozubek S. Chromatin structure influences the sensitivity of DNA to gamma-radiation. Biochim Biophys Acta. 2008;1783:2398–2414. doi: 10.1016/j.bbamcr.2008.07.010. PubMed DOI
Goodarzi A.A., Noon A.T., Deckbar D., Ziv Y., Shiloh Y., Löbrich M., et al. ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Mol Cell. 2008;31(2):167–177. doi: 10.1016/j.molcel.2008.05.017. PubMed DOI
Jakob B, Splinter J, Conrad S, Voss K-O, Zink D, Durante M, et al. DNA double-strand breaks in heterochromatin elicit fast repair protein recruitment, histone H2AX phosphorylation and relocation to euchromatin. Nucleic Acids Res 2011;39:6489–99. 10.1093/nar/gkr230. PubMed PMC
Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O. 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. In: Ourselin S, Joskowicz L, Sabuncu MR, Unal G, Wells W, editors. Med. Image Comput. Comput.-Assist. Interv. – MICCAI 2016, vol. 9901, Cham: Springer International Publishing; 2016, p. 424–32. 10.1007/978-3-319-46723-8_49.
Condensed Matter Systems Exposed to Radiation: Multiscale Theory, Simulations, and Experiment
Spatial-Temporal Genome Regulation in Stress-Response and Cell-Fate Change