Chromatin architecture changes and DNA replication fork collapse are critical features in cryopreserved cells that are differentially controlled by cryoprotectants
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
P20 GM103432
NIGMS NIH HHS - United States
PubMed
30279538
PubMed Central
PMC6168476
DOI
10.1038/s41598-018-32939-5
PII: 10.1038/s41598-018-32939-5
Knihovny.cz E-zdroje
- MeSH
- chromatin účinky léků genetika MeSH
- dimethylsulfoxid farmakologie MeSH
- dvouřetězcové zlomy DNA účinky léků MeSH
- fibroblasty MeSH
- kryoprezervace metody MeSH
- kryoprotektivní látky farmakologie MeSH
- kůže cytologie MeSH
- lidé MeSH
- MFC-7 buňky MeSH
- S fáze účinky léků MeSH
- viabilita buněk účinky léků genetika MeSH
- zmrazování škodlivé účinky MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- chromatin MeSH
- dimethylsulfoxid MeSH
- kryoprotektivní látky MeSH
In this work, we shed new light on the highly debated issue of chromatin fragmentation in cryopreserved cells. Moreover, for the first time, we describe replicating cell-specific DNA damage and higher-order chromatin alterations after freezing and thawing. We identified DNA structural changes associated with the freeze-thaw process and correlated them with the viability of frozen and thawed cells. We simultaneously evaluated DNA defects and the higher-order chromatin structure of frozen and thawed cells with and without cryoprotectant treatment. We found that in replicating (S phase) cells, DNA was preferentially damaged by replication fork collapse, potentially leading to DNA double strand breaks (DSBs), which represent an important source of both genome instability and defects in epigenome maintenance. This induction of DNA defects by the freeze-thaw process was not prevented by any cryoprotectant studied. Both in replicating and non-replicating cells, freezing and thawing altered the chromatin structure in a cryoprotectant-dependent manner. Interestingly, cells with condensed chromatin, which was strongly stimulated by dimethyl sulfoxide (DMSO) prior to freezing had the highest rate of survival after thawing. Our results will facilitate the design of compounds and procedures to decrease injury to cryopreserved cells.
Department of Chemistry University of Wyoming 1000 E University Ave WY 82071 Laramie USA
ISCARE IVF a s Jankovcova 1692 CZ 160 00 Praha 6 Czech Republic
The Czech Academy of Sciences Institute of Physics Na Slovance 2 CZ 182 21 Prague 8 Czech Republic
VFN Gynekologicko porodnická klinika Apolinářská 18 CZ 120 00 Czech Republic
Zobrazit více v PubMed
Fuller BJ. Cryoprotectants: The essential antifreezes to protect life in the frozen state. Cryoletters. 2004;25:375–388. PubMed
Liu XS, Little JB, Yuan ZM. Glycolytic metabolism influences global chromatin structure. Oncotarget. 2015;6:4214–4225. PubMed PMC
Kratochvilova I, et al. Theoretical and experimental study of the antifreeze protein AFP752, trehalose and dimethyl sulfoxide cryoprotection mechanism: correlation with cryopreserved cell viability. Rsc Advances. 2017;7:352–360. doi: 10.1039/C6RA25095E. PubMed DOI PMC
Ceelen M, van Weissenbruch MM, Vermeiden JPW, van Leeuwen FE, Delemarre-van de Waal HA. Growth and development of children born after in vitro fertilization. Fertility and Sterility. 2008;90:1662–1673. doi: 10.1016/j.fertnstert.2007.09.005. PubMed DOI
Di Santo M, Nadalini TN, Borini M. A Human Sperm Cryopreservation: Update on Techniques, Effect on DNA Integrity, and Implications for ART. Adv Urol. 2012;2012:12. doi: 10.1155/2012/854837. PubMed DOI PMC
Matsumura, K., Jain, M. & Rajan, R. Cell and Materials Interface in Cryobiology and Cryoprotection, Vol. 52. (Crc Press-Taylor & Francis Group, Boca Raton; 2016).
Donnelly ET, McClure N, Lewis SEM. Cryopreservation of human semen and prepared sperm: effects on motility parameters and DNA integrity. Fertility and Sterility. 2001;76:892–900. doi: 10.1016/S0015-0282(01)02834-5. PubMed DOI
Duru NK, Morshedi MS, Schuffner A, Oehninger S. Cryopreservation-thawing of fractionated human spermatozoa is associated with membrane phosphatidylserine externalization and not DNA fragmentation. Journal of Andrology. 2001;22:646–651. PubMed
Paasch U, et al. Cryopreservation and thawing is associated with varying extent of activation of apoptotic machinery in subsets of ejaculated human spermatozoal. Biology of Reproduction. 2004;71:1828–1837. doi: 10.1095/biolreprod.103.025627. PubMed DOI
Fraser L, Strzezek J, Kordan W. Effect of Freezing on Sperm Nuclear DNA. Reprod. Domest. Anim. 2011;46:14–17. PubMed
de Paula TS, et al. Effect of cryopreservation on sperm apoptotic deoxyribonucleic acid fragmentation in patients with oligozoospermia. Fertility and Sterility. 2006;86:597–600. doi: 10.1016/j.fertnstert.2006.01.047. PubMed DOI
Kopeika J, Thornhill A, Khalaf Y. The effect of cryopreservation on the genome of gametes and embryos: principles of cryobiology and critical appraisal of the evidence. Human Reproduction Update. 2015;21:209–227. doi: 10.1093/humupd/dmu063. PubMed DOI
https://www.medicalnewstoday.com/articles/251768.php New Orleans (2012).
Stokich B, et al. Cryopreservation of hepatocyte (HepG2) cell monolayers: Impact of trehalose. Cryobiology. 2014;69:281–290. doi: 10.1016/j.cryobiol.2014.08.001. PubMed DOI
Masek J, et al. Metallochelating liposomes with associated lipophilised norAbuMDP as biocompatible platform for construction of vaccines with recombinant His-tagged antigens: Preparation, structural study and immune response towards rHsp90. J. Control. Release. 2011;151:193–201. doi: 10.1016/j.jconrel.2011.01.016. PubMed DOI
Tarkowski R, Rzaca M. Cryosurgery in the treatment of women with breast cancer-a review. Gland surgery. 2014;3:88–93. PubMed PMC
Theodorescu D. Cancer cryotherapy: evolution and biology. Reviews in urology. 2004;6(Suppl 4):S9–S19. PubMed PMC
Konc, J., Kanyo, K., Kriston, R., Somoskoi, B. & Cseh, S. Cryopreservation of Embryos and Oocytes in Human AssistedReproduction. Biomed Research International (2014). PubMed PMC
Falk M, Lukasova E, Kozubek S. Chromatin structure influences the sensitivity of DNA to gamma-radiation. Biochimica Et Biophysica Acta-Molecular Cell Research. 2008;1783:2398–2414. doi: 10.1016/j.bbamcr.2008.07.010. PubMed DOI
Falk M, Lukasova E, Gabrielova B, Ondrej V, Kozubek S. Chromatin dynamics during DSB repair. Biochimica Et Biophysica Acta-Molecular Cell Research. 2007;1773:1534–1545. doi: 10.1016/j.bbamcr.2007.07.002. PubMed DOI
Kozubek M, et al. Combined confocal and wide-field high-resolution cytometry of fluorescent in situ hybridization-stained cells. Cytometry. 2001;45:1–12. doi: 10.1002/1097-0320(20010901)45:1<1::AID-CYTO1138>3.0.CO;2-M. PubMed DOI
Wolkers WF, Walker NJ, Tablin F, Crowe JH. Human platelets loaded with trehalose survive freeze-drying. Cryobiology. 2001;42:79–87. doi: 10.1006/cryo.2001.2306. PubMed DOI
Simons M, et al. Directly interrogating single quantum dot labelled UvrA(2) molecules on DNA tightropes using an optically trapped nanoprobe. Scientific Reports. 2015;5:29. doi: 10.1038/srep14126. PubMed DOI PMC
Ventham NT, et al. Integrative epigenome-wide analysis demonstrates that DNA methylation may mediate genetic risk in inflammatory bowel disease. Nat. Commun. 2016;7:14. doi: 10.1038/ncomms13507. PubMed DOI PMC
Kad NM, Van Houten B. DNA REPAIR Clamping down on copy errors. Nature. 2016;539:498–499. doi: 10.1038/nature20475. PubMed DOI PMC
Ismail IH, Wadhra TI, Hammarsten O. An optimized method for detecting gamma-H2AX in blood cells reveals a significant interindividual variation in the gamma-H2AX response among humans. Nucleic Acids Res. 2007;35:10. doi: 10.1093/nar/gkl1169. PubMed DOI PMC
Wiss T, et al. Properties of the high burnup structure in nuclear light water reactor fuel. Radiochim. Acta. 2017;105:893–906. doi: 10.1515/ract-2017-2831. DOI
Noda, M. et al. Protective effect of DMSO on DNA double-strand break among different lesions: gamma-ray, photo-induced active oxygen and freezing. Molecular Biology of the Cell27 (2016).
Noda, M. et al. A single-molecule assessment of the protective effect of DMSO against DNA double-strand breaks induced by photo-and gamma-ray-irradiation, and freezing. Scientific Reports7 (2017). PubMed PMC
Soleimani R, et al. Oxidative-Stress Induces Double Strand Dna Breaks During Ovarian Tissue Storage And Cryopreservation For Fertility Preservation. Fertility and Sterility. 2011;96:S77–S77. doi: 10.1016/j.fertnstert.2011.07.297. DOI
Hofer M, et al. Two New Faces of Amifostine: Protector from DNA Damage in Normal Cells and Inhibitor of DNA Repair in Cancer Cells. Journal of Medicinal Chemistry. 2016;59:3003–3017. doi: 10.1021/acs.jmedchem.5b01628. PubMed DOI
Loebrich M, et al. gamma H2AX foci analysis for monitoring DNA double-strand break repair Strengths, limitations and optimization. Cell Cycle. 2010;9:662–669. doi: 10.4161/cc.9.4.10764. PubMed DOI
Schultz LB, Chehab NH, Malikzay A, Halazonetis TD. p53 Binding protein 1 (53BP1) is an early participant in the cellular response to DNA double-strand breaks. Journal of Cell Biology. 2000;151:1381–1390. doi: 10.1083/jcb.151.7.1381. PubMed DOI PMC
Berniak K, et al. Relationship Between DNA Damage Response, Initiated by Camptothecin or Oxidative Stress, and DNA Replication, Analyzed by Quantitative 3D Image Analysis. Cytometry Part A. 2013;83:913–924. PubMed PMC
Zhao H, Rybak P, Dobrucki J, Traganos F, Darzynkiewicz Z. Relationship of DNA damage signaling to DNA replication following treatment with DNA topoisomerase inhibitors camptothecin/topotecan, mitoxantrone, or etoposide. Cytometry Part A. 2012;81A:45–51. doi: 10.1002/cyto.a.21172. PubMed DOI PMC
Maya-Mendoza A, et al. Immortalised breast epithelia survive prolonged DNA replication stress and return to cycle from a senescent-like state. Cell Death Dis. 2014;5:13. doi: 10.1038/cddis.2014.315. PubMed DOI PMC
Fugger K, et al. FBH1 Catalyzes Regression of Stalled Replication Forks. Cell Reports. 2015;10:1749–1757. doi: 10.1016/j.celrep.2015.02.028. PubMed DOI
Yingjie Zhu, A.B., Benjamin Pardo, Romain Forey, Norbert Dojer, Raziyeh Yousefi, Jules Berlin, Nde Kengne, Bernard Fongang, Abhishek Mitra, Ji Li, Magdalena Skrzypczak, Andrzej Kudlicki, Philippe Pasero, Krzysztof Ginalski, Maga Rowicka in bioRxiv (2017).
Sarni Dan, Kerem Batsheva. Oncogene-Induced Replication Stress Drives Genome Instability and Tumorigenesis. International Journal of Molecular Sciences. 2017;18(7):1339. doi: 10.3390/ijms18071339. DOI
Lukasova E, et al. Topography of genetic loci in the nuclei of cells of colorectal carcinoma and adjacent tissue of colonic epithelium. Chromosoma. 2004;112:221–230. doi: 10.1007/s00412-003-0263-3. PubMed DOI
Leffak Michael. Break-induced replication links microsatellite expansion to complex genome rearrangements. BioEssays. 2017;39(8):1700025. doi: 10.1002/bies.201700025. PubMed DOI PMC
Jones RM, Petermann E. Replication fork dynamics and the DNA damage response. Biochemical Journal. 2012;443:13–26. doi: 10.1042/BJ20112100. PubMed DOI
Berti M, Vindigni A. Replication stress: getting back on track. Nature Structural & Molecular Biology. 2016;23:103–109. doi: 10.1038/nsmb.3163. PubMed DOI PMC
Techer H, Koundrioukoff S, Nicolas A, Debatisse M. The impact of replication stress on replication dynamics and DNA damage in vertebrate cells. Nature Reviews Genetics. 2017;18:535–550. doi: 10.1038/nrg.2017.46. PubMed DOI
Isachenko E, et al. DNA integrity and motility of human spermatozoa after standard slow freezing versus cryoprotectant-free vitrification. Human Reproduction. 2004;19:932–939. doi: 10.1093/humrep/deh194. PubMed DOI
Pellicioli A, Foiani M. Recombination at collapsed replication forks: the payoff for survival. Mol Cell. 2005;18:614–615. doi: 10.1016/j.molcel.2005.05.018. PubMed DOI
Petermann E, Orta ML, Issaeva N, Schultz N, Helleday T. Hydroxyurea-Stalled Replication Forks Become Progressively Inactivated and Require Two Different RAD51-Mediated Pathways for Restart and Repair. Mol Cell. 2010;37:492–502. doi: 10.1016/j.molcel.2010.01.021. PubMed DOI PMC
Cortez D. Preventing replication fork collapse to maintain genome integrity. DNA Repair. 2015;32:149–157. doi: 10.1016/j.dnarep.2015.04.026. PubMed DOI PMC
Morales JC, et al. Role for the BRCA1 C-terminal repeats (BRCT) protein 53BP1 in maintaining genomic stability. J Biol Chem. 2003;278:14971–14977. doi: 10.1074/jbc.M212484200. PubMed DOI
Takeuchi K, et al. Inhibitory effects of trehalose on fibroblast proliferation and implications for ocular surgery. Exp. Eye Res. 2010;91:567–577. doi: 10.1016/j.exer.2010.07.002. PubMed DOI
Kudo T, Takeuchi K, Ebina Y, Nakazawa M. Inhibitory effects of trehalose on malignant melanoma cell growth: implications for a novel topical anticancer agent on the ocular surface. ISRN ophthalmology. 2012;2012:968493. doi: 10.5402/2012/968493. PubMed DOI PMC
Kim TM, Son MY, Dodds S, Hu L, Hasty P. Deletion of BRCA2 exon 27 causes defects in response to both stalled and collapsed replication forks. Mutation research. 2014;766-767:66–72. doi: 10.1016/j.mrfmmm.2014.06.003. PubMed DOI
Khurana S, Oberdoerffer P. Replication Stress: A Lifetime of Epigenetic Change. Genes. 2015;6:858–877. doi: 10.3390/genes6030858. PubMed DOI PMC
Kwang-Hyun Baek, D.Z.S. Production of reactive oxygen species by freezing stress and the protective roles of antioxidant enzymes in plants. Journal of Agricultural Chemistry and Environment (2012).
Noda M, et al. A single-molecule assessment of the protective effect of DMSO against DNA double-strand breaks induced by photo-and gamma-ray-irradiation, and freezing. Sci Rep. 2017;7:8557. doi: 10.1038/s41598-017-08894-y. PubMed DOI PMC
Dixon BP, Chu A, Henry J, Kim R, Bissler JJ. Increased cancer risk of augmentation cystoplasty: possible role for hyperosmolal microenvironment on DNA damage recognition. Mutation research. 2009;670:88–95. doi: 10.1016/j.mrfmmm.2009.07.010. PubMed DOI PMC
Alexander JL, Orr-Weaver TL. Replication fork instability and the consequences of fork collisions from rereplication. Gene Dev. 2016;30:2241–2252. doi: 10.1101/gad.288142.116. PubMed DOI PMC
Rowlands H, Dhavarasa P, Cheng A, Yankulov K. Forks on the Run: Can the Stalling of DNA Replication Promote Epigenetic Changes. Frontiers in genetics. 2017;8:86. doi: 10.3389/fgene.2017.00086. PubMed DOI PMC
Burrell RA, et al. Replication stress links structural and numerical cancer chromosomal instability. Nature. 2013;494:492–496. doi: 10.1038/nature11935. PubMed DOI PMC
Sevcik J, et al. The BRCA1 alternative splicing variant Delta 14-15 with an in-frame deletion of part of the regulatory serine-containing domain (SCD) impairs the DNA repair capacity in MCF-7 cells. Cellular Signalling. 2012;24:1023–1030. doi: 10.1016/j.cellsig.2011.12.023. PubMed DOI