Chromatin architecture changes and DNA replication fork collapse are critical features in cryopreserved cells that are differentially controlled by cryoprotectants

. 2018 Oct 02 ; 8 (1) : 14694. [epub] 20181002

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid30279538

Grantová podpora
P20 GM103432 NIGMS NIH HHS - United States

Odkazy

PubMed 30279538
PubMed Central PMC6168476
DOI 10.1038/s41598-018-32939-5
PII: 10.1038/s41598-018-32939-5
Knihovny.cz E-zdroje

In this work, we shed new light on the highly debated issue of chromatin fragmentation in cryopreserved cells. Moreover, for the first time, we describe replicating cell-specific DNA damage and higher-order chromatin alterations after freezing and thawing. We identified DNA structural changes associated with the freeze-thaw process and correlated them with the viability of frozen and thawed cells. We simultaneously evaluated DNA defects and the higher-order chromatin structure of frozen and thawed cells with and without cryoprotectant treatment. We found that in replicating (S phase) cells, DNA was preferentially damaged by replication fork collapse, potentially leading to DNA double strand breaks (DSBs), which represent an important source of both genome instability and defects in epigenome maintenance. This induction of DNA defects by the freeze-thaw process was not prevented by any cryoprotectant studied. Both in replicating and non-replicating cells, freezing and thawing altered the chromatin structure in a cryoprotectant-dependent manner. Interestingly, cells with condensed chromatin, which was strongly stimulated by dimethyl sulfoxide (DMSO) prior to freezing had the highest rate of survival after thawing. Our results will facilitate the design of compounds and procedures to decrease injury to cryopreserved cells.

Zobrazit více v PubMed

Fuller BJ. Cryoprotectants: The essential antifreezes to protect life in the frozen state. Cryoletters. 2004;25:375–388. PubMed

Liu XS, Little JB, Yuan ZM. Glycolytic metabolism influences global chromatin structure. Oncotarget. 2015;6:4214–4225. PubMed PMC

Kratochvilova I, et al. Theoretical and experimental study of the antifreeze protein AFP752, trehalose and dimethyl sulfoxide cryoprotection mechanism: correlation with cryopreserved cell viability. Rsc Advances. 2017;7:352–360. doi: 10.1039/C6RA25095E. PubMed DOI PMC

Ceelen M, van Weissenbruch MM, Vermeiden JPW, van Leeuwen FE, Delemarre-van de Waal HA. Growth and development of children born after in vitro fertilization. Fertility and Sterility. 2008;90:1662–1673. doi: 10.1016/j.fertnstert.2007.09.005. PubMed DOI

Di Santo M, Nadalini TN, Borini M. A Human Sperm Cryopreservation: Update on Techniques, Effect on DNA Integrity, and Implications for ART. Adv Urol. 2012;2012:12. doi: 10.1155/2012/854837. PubMed DOI PMC

Matsumura, K., Jain, M. & Rajan, R. Cell and Materials Interface in Cryobiology and Cryoprotection, Vol. 52. (Crc Press-Taylor & Francis Group, Boca Raton; 2016).

Donnelly ET, McClure N, Lewis SEM. Cryopreservation of human semen and prepared sperm: effects on motility parameters and DNA integrity. Fertility and Sterility. 2001;76:892–900. doi: 10.1016/S0015-0282(01)02834-5. PubMed DOI

Duru NK, Morshedi MS, Schuffner A, Oehninger S. Cryopreservation-thawing of fractionated human spermatozoa is associated with membrane phosphatidylserine externalization and not DNA fragmentation. Journal of Andrology. 2001;22:646–651. PubMed

Paasch U, et al. Cryopreservation and thawing is associated with varying extent of activation of apoptotic machinery in subsets of ejaculated human spermatozoal. Biology of Reproduction. 2004;71:1828–1837. doi: 10.1095/biolreprod.103.025627. PubMed DOI

Fraser L, Strzezek J, Kordan W. Effect of Freezing on Sperm Nuclear DNA. Reprod. Domest. Anim. 2011;46:14–17. PubMed

de Paula TS, et al. Effect of cryopreservation on sperm apoptotic deoxyribonucleic acid fragmentation in patients with oligozoospermia. Fertility and Sterility. 2006;86:597–600. doi: 10.1016/j.fertnstert.2006.01.047. PubMed DOI

Kopeika J, Thornhill A, Khalaf Y. The effect of cryopreservation on the genome of gametes and embryos: principles of cryobiology and critical appraisal of the evidence. Human Reproduction Update. 2015;21:209–227. doi: 10.1093/humupd/dmu063. PubMed DOI

https://www.medicalnewstoday.com/articles/251768.php New Orleans (2012).

Stokich B, et al. Cryopreservation of hepatocyte (HepG2) cell monolayers: Impact of trehalose. Cryobiology. 2014;69:281–290. doi: 10.1016/j.cryobiol.2014.08.001. PubMed DOI

Masek J, et al. Metallochelating liposomes with associated lipophilised norAbuMDP as biocompatible platform for construction of vaccines with recombinant His-tagged antigens: Preparation, structural study and immune response towards rHsp90. J. Control. Release. 2011;151:193–201. doi: 10.1016/j.jconrel.2011.01.016. PubMed DOI

Tarkowski R, Rzaca M. Cryosurgery in the treatment of women with breast cancer-a review. Gland surgery. 2014;3:88–93. PubMed PMC

Theodorescu D. Cancer cryotherapy: evolution and biology. Reviews in urology. 2004;6(Suppl 4):S9–S19. PubMed PMC

Konc, J., Kanyo, K., Kriston, R., Somoskoi, B. & Cseh, S. Cryopreservation of Embryos and Oocytes in Human AssistedReproduction. Biomed Research International (2014). PubMed PMC

Falk M, Lukasova E, Kozubek S. Chromatin structure influences the sensitivity of DNA to gamma-radiation. Biochimica Et Biophysica Acta-Molecular Cell Research. 2008;1783:2398–2414. doi: 10.1016/j.bbamcr.2008.07.010. PubMed DOI

Falk M, Lukasova E, Gabrielova B, Ondrej V, Kozubek S. Chromatin dynamics during DSB repair. Biochimica Et Biophysica Acta-Molecular Cell Research. 2007;1773:1534–1545. doi: 10.1016/j.bbamcr.2007.07.002. PubMed DOI

Kozubek M, et al. Combined confocal and wide-field high-resolution cytometry of fluorescent in situ hybridization-stained cells. Cytometry. 2001;45:1–12. doi: 10.1002/1097-0320(20010901)45:1<1::AID-CYTO1138>3.0.CO;2-M. PubMed DOI

Wolkers WF, Walker NJ, Tablin F, Crowe JH. Human platelets loaded with trehalose survive freeze-drying. Cryobiology. 2001;42:79–87. doi: 10.1006/cryo.2001.2306. PubMed DOI

Simons M, et al. Directly interrogating single quantum dot labelled UvrA(2) molecules on DNA tightropes using an optically trapped nanoprobe. Scientific Reports. 2015;5:29. doi: 10.1038/srep14126. PubMed DOI PMC

Ventham NT, et al. Integrative epigenome-wide analysis demonstrates that DNA methylation may mediate genetic risk in inflammatory bowel disease. Nat. Commun. 2016;7:14. doi: 10.1038/ncomms13507. PubMed DOI PMC

Kad NM, Van Houten B. DNA REPAIR Clamping down on copy errors. Nature. 2016;539:498–499. doi: 10.1038/nature20475. PubMed DOI PMC

Ismail IH, Wadhra TI, Hammarsten O. An optimized method for detecting gamma-H2AX in blood cells reveals a significant interindividual variation in the gamma-H2AX response among humans. Nucleic Acids Res. 2007;35:10. doi: 10.1093/nar/gkl1169. PubMed DOI PMC

Wiss T, et al. Properties of the high burnup structure in nuclear light water reactor fuel. Radiochim. Acta. 2017;105:893–906. doi: 10.1515/ract-2017-2831. DOI

Noda, M. et al. Protective effect of DMSO on DNA double-strand break among different lesions: gamma-ray, photo-induced active oxygen and freezing. Molecular Biology of the Cell27 (2016).

Noda, M. et al. A single-molecule assessment of the protective effect of DMSO against DNA double-strand breaks induced by photo-and gamma-ray-irradiation, and freezing. Scientific Reports7 (2017). PubMed PMC

Soleimani R, et al. Oxidative-Stress Induces Double Strand Dna Breaks During Ovarian Tissue Storage And Cryopreservation For Fertility Preservation. Fertility and Sterility. 2011;96:S77–S77. doi: 10.1016/j.fertnstert.2011.07.297. DOI

Hofer M, et al. Two New Faces of Amifostine: Protector from DNA Damage in Normal Cells and Inhibitor of DNA Repair in Cancer Cells. Journal of Medicinal Chemistry. 2016;59:3003–3017. doi: 10.1021/acs.jmedchem.5b01628. PubMed DOI

Loebrich M, et al. gamma H2AX foci analysis for monitoring DNA double-strand break repair Strengths, limitations and optimization. Cell Cycle. 2010;9:662–669. doi: 10.4161/cc.9.4.10764. PubMed DOI

Schultz LB, Chehab NH, Malikzay A, Halazonetis TD. p53 Binding protein 1 (53BP1) is an early participant in the cellular response to DNA double-strand breaks. Journal of Cell Biology. 2000;151:1381–1390. doi: 10.1083/jcb.151.7.1381. PubMed DOI PMC

Berniak K, et al. Relationship Between DNA Damage Response, Initiated by Camptothecin or Oxidative Stress, and DNA Replication, Analyzed by Quantitative 3D Image Analysis. Cytometry Part A. 2013;83:913–924. PubMed PMC

Zhao H, Rybak P, Dobrucki J, Traganos F, Darzynkiewicz Z. Relationship of DNA damage signaling to DNA replication following treatment with DNA topoisomerase inhibitors camptothecin/topotecan, mitoxantrone, or etoposide. Cytometry Part A. 2012;81A:45–51. doi: 10.1002/cyto.a.21172. PubMed DOI PMC

Maya-Mendoza A, et al. Immortalised breast epithelia survive prolonged DNA replication stress and return to cycle from a senescent-like state. Cell Death Dis. 2014;5:13. doi: 10.1038/cddis.2014.315. PubMed DOI PMC

Fugger K, et al. FBH1 Catalyzes Regression of Stalled Replication Forks. Cell Reports. 2015;10:1749–1757. doi: 10.1016/j.celrep.2015.02.028. PubMed DOI

Yingjie Zhu, A.B., Benjamin Pardo, Romain Forey, Norbert Dojer, Raziyeh Yousefi, Jules Berlin, Nde Kengne, Bernard Fongang, Abhishek Mitra, Ji Li, Magdalena Skrzypczak, Andrzej Kudlicki, Philippe Pasero, Krzysztof Ginalski, Maga Rowicka in bioRxiv (2017).

Sarni Dan, Kerem Batsheva. Oncogene-Induced Replication Stress Drives Genome Instability and Tumorigenesis. International Journal of Molecular Sciences. 2017;18(7):1339. doi: 10.3390/ijms18071339. DOI

Lukasova E, et al. Topography of genetic loci in the nuclei of cells of colorectal carcinoma and adjacent tissue of colonic epithelium. Chromosoma. 2004;112:221–230. doi: 10.1007/s00412-003-0263-3. PubMed DOI

Leffak Michael. Break-induced replication links microsatellite expansion to complex genome rearrangements. BioEssays. 2017;39(8):1700025. doi: 10.1002/bies.201700025. PubMed DOI PMC

Jones RM, Petermann E. Replication fork dynamics and the DNA damage response. Biochemical Journal. 2012;443:13–26. doi: 10.1042/BJ20112100. PubMed DOI

Berti M, Vindigni A. Replication stress: getting back on track. Nature Structural & Molecular Biology. 2016;23:103–109. doi: 10.1038/nsmb.3163. PubMed DOI PMC

Techer H, Koundrioukoff S, Nicolas A, Debatisse M. The impact of replication stress on replication dynamics and DNA damage in vertebrate cells. Nature Reviews Genetics. 2017;18:535–550. doi: 10.1038/nrg.2017.46. PubMed DOI

Isachenko E, et al. DNA integrity and motility of human spermatozoa after standard slow freezing versus cryoprotectant-free vitrification. Human Reproduction. 2004;19:932–939. doi: 10.1093/humrep/deh194. PubMed DOI

Pellicioli A, Foiani M. Recombination at collapsed replication forks: the payoff for survival. Mol Cell. 2005;18:614–615. doi: 10.1016/j.molcel.2005.05.018. PubMed DOI

Petermann E, Orta ML, Issaeva N, Schultz N, Helleday T. Hydroxyurea-Stalled Replication Forks Become Progressively Inactivated and Require Two Different RAD51-Mediated Pathways for Restart and Repair. Mol Cell. 2010;37:492–502. doi: 10.1016/j.molcel.2010.01.021. PubMed DOI PMC

Cortez D. Preventing replication fork collapse to maintain genome integrity. DNA Repair. 2015;32:149–157. doi: 10.1016/j.dnarep.2015.04.026. PubMed DOI PMC

Morales JC, et al. Role for the BRCA1 C-terminal repeats (BRCT) protein 53BP1 in maintaining genomic stability. J Biol Chem. 2003;278:14971–14977. doi: 10.1074/jbc.M212484200. PubMed DOI

Takeuchi K, et al. Inhibitory effects of trehalose on fibroblast proliferation and implications for ocular surgery. Exp. Eye Res. 2010;91:567–577. doi: 10.1016/j.exer.2010.07.002. PubMed DOI

Kudo T, Takeuchi K, Ebina Y, Nakazawa M. Inhibitory effects of trehalose on malignant melanoma cell growth: implications for a novel topical anticancer agent on the ocular surface. ISRN ophthalmology. 2012;2012:968493. doi: 10.5402/2012/968493. PubMed DOI PMC

Kim TM, Son MY, Dodds S, Hu L, Hasty P. Deletion of BRCA2 exon 27 causes defects in response to both stalled and collapsed replication forks. Mutation research. 2014;766-767:66–72. doi: 10.1016/j.mrfmmm.2014.06.003. PubMed DOI

Khurana S, Oberdoerffer P. Replication Stress: A Lifetime of Epigenetic Change. Genes. 2015;6:858–877. doi: 10.3390/genes6030858. PubMed DOI PMC

Kwang-Hyun Baek, D.Z.S. Production of reactive oxygen species by freezing stress and the protective roles of antioxidant enzymes in plants. Journal of Agricultural Chemistry and Environment (2012).

Noda M, et al. A single-molecule assessment of the protective effect of DMSO against DNA double-strand breaks induced by photo-and gamma-ray-irradiation, and freezing. Sci Rep. 2017;7:8557. doi: 10.1038/s41598-017-08894-y. PubMed DOI PMC

Dixon BP, Chu A, Henry J, Kim R, Bissler JJ. Increased cancer risk of augmentation cystoplasty: possible role for hyperosmolal microenvironment on DNA damage recognition. Mutation research. 2009;670:88–95. doi: 10.1016/j.mrfmmm.2009.07.010. PubMed DOI PMC

Alexander JL, Orr-Weaver TL. Replication fork instability and the consequences of fork collisions from rereplication. Gene Dev. 2016;30:2241–2252. doi: 10.1101/gad.288142.116. PubMed DOI PMC

Rowlands H, Dhavarasa P, Cheng A, Yankulov K. Forks on the Run: Can the Stalling of DNA Replication Promote Epigenetic Changes. Frontiers in genetics. 2017;8:86. doi: 10.3389/fgene.2017.00086. PubMed DOI PMC

Burrell RA, et al. Replication stress links structural and numerical cancer chromosomal instability. Nature. 2013;494:492–496. doi: 10.1038/nature11935. PubMed DOI PMC

Sevcik J, et al. The BRCA1 alternative splicing variant Delta 14-15 with an in-frame deletion of part of the regulatory serine-containing domain (SCD) impairs the DNA repair capacity in MCF-7 cells. Cellular Signalling. 2012;24:1023–1030. doi: 10.1016/j.cellsig.2011.12.023. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Composition of Nonextractable Polyphenols from Sweet Cherry Pomace Determined by DART-Orbitrap-HRMS and Their In Vitro and In Vivo Potential Antioxidant, Antiaging, and Neuroprotective Activities

. 2022 Jul 06 ; 70 (26) : 7993-8009. [epub] 20220621

Incorporation of Low Concentrations of Gold Nanoparticles: Complex Effects on Radiation Response and Fate of Cancer Cells

. 2022 Jan 11 ; 14 (1) : . [epub] 20220111

DeepFoci: Deep learning-based algorithm for fast automatic analysis of DNA double-strand break ionizing radiation-induced foci

. 2021 ; 19 () : 6465-6480. [epub] 20211118

Topological Analysis of γH2AX and MRE11 Clusters Detected by Localization Microscopy during X-ray-Induced DNA Double-Strand Break Repair

. 2021 Nov 05 ; 13 (21) : . [epub] 20211105

Elucidation of the Clustered Nano-Architecture of Radiation-Induced DNA Damage Sites and Surrounding Chromatin in Cancer Cells: A Single Molecule Localization Microscopy Approach

. 2021 Mar 31 ; 22 (7) : . [epub] 20210331

A Paradigm Revolution or Just Better Resolution-Will Newly Emerging Superresolution Techniques Identify Chromatin Architecture as a Key Factor in Radiation-Induced DNA Damage and Repair Regulation?

. 2020 Dec 23 ; 13 (1) : . [epub] 20201223

Simple Syntheses of New Pegylated Trehalose Derivatives as a Chemical Tool for Potential Evaluation of Cryoprotectant Effects on Cell Membrane

. 2020 Jan 23 ; 25 (3) : . [epub] 20200123

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...