Replication stress links structural and numerical cancer chromosomal instability
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
A4688
Cancer Research UK - United Kingdom
A19310
Cancer Research UK - United Kingdom
Medical Research Council - United Kingdom
090532
Wellcome Trust - United Kingdom
15679
Cancer Research UK - United Kingdom
A17786
Cancer Research UK - United Kingdom
A11590
Cancer Research UK - United Kingdom
16459
Cancer Research UK - United Kingdom
PubMed
23446422
PubMed Central
PMC4636055
DOI
10.1038/nature11935
Knihovny.cz E-zdroje
- MeSH
- aneuploidie MeSH
- chromozomální nestabilita účinky léků genetika MeSH
- delece genu MeSH
- fosfotransferasy genetika MeSH
- kolorektální nádory genetika patologie MeSH
- lidé MeSH
- lidské chromozomy, pár 18 účinky léků genetika MeSH
- mitóza účinky léků MeSH
- nádorové buněčné linie MeSH
- nukleosidy farmakologie MeSH
- poškození DNA účinky léků genetika MeSH
- proteiny vázající RNA genetika MeSH
- replikace DNA účinky léků genetika MeSH
- segregace chromozomů účinky léků genetika MeSH
- tumor supresorové geny MeSH
- umlčování genů MeSH
- variabilita počtu kopií segmentů DNA genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fosfotransferasy MeSH
- MEX3C protein, human MeSH Prohlížeč
- nukleosidy MeSH
- PIGN protein, human MeSH Prohlížeč
- proteiny vázající RNA MeSH
Cancer chromosomal instability (CIN) results in an increased rate of change of chromosome number and structure and generates intratumour heterogeneity. CIN is observed in most solid tumours and is associated with both poor prognosis and drug resistance. Understanding a mechanistic basis for CIN is therefore paramount. Here we find evidence for impaired replication fork progression and increased DNA replication stress in CIN(+) colorectal cancer (CRC) cells relative to CIN(-) CRC cells, with structural chromosome abnormalities precipitating chromosome missegregation in mitosis. We identify three new CIN-suppressor genes (PIGN (also known as MCD4), MEX3C (RKHD2) and ZNF516 (KIAA0222)) encoded on chromosome 18q that are subject to frequent copy number loss in CIN(+) CRC. Chromosome 18q loss was temporally associated with aneuploidy onset at the adenoma-carcinoma transition. CIN-suppressor gene silencing leads to DNA replication stress, structural chromosome abnormalities and chromosome missegregation. Supplementing cells with nucleosides, to alleviate replication-associated damage, reduces the frequency of chromosome segregation errors after CIN-suppressor gene silencing, and attenuates segregation errors and DNA damage in CIN(+) cells. These data implicate a central role for replication stress in the generation of structural and numerical CIN, which may inform new therapeutic approaches to limit intratumour heterogeneity.
Cancer Research UK London Research Institute 44 Lincoln's Inn Fields London UK
Danish Cancer Society Research Center Strandboulevarden 49 Copenhagen Denmark
Department of Physics of Complex Systems Weizmann Institute of Science Rehovot Israel
Institute of Molecular and Translational Medicine Palacky University Olomouc Czech republic
UCL Cancer Institute Paul O'Gorman Building Huntley St London UK
University of Applied Sciences Mathematics and Techniques Remagen Germany
Zobrazit více v PubMed
Gerlinger M, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366:883–892. doi:10.1056/NEJMoa1113205. PubMed PMC
Ding L, et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature. 2012;481:506–510. doi:10.1038/nature10738 nature10738 [pii] PubMed PMC
Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature. 1998;396:643–649. doi:10.1038/25292. PubMed
McGranahan N, Burrell RA, Endesfelder D, Novelli MR, Swanton C. Cancer chromosomal instability: therapeutic and diagnostic challenges. EMBO Rep. 2012;13:528–538. doi:10.1038/embor.2012.61. PubMed PMC
Bester AC, et al. Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell. 2011;145:435–446. doi:S0092-8674(11)00378-3 [pii] 10.1016/j.cell.2011.03.044. PubMed PMC
Thompson SL, Compton DA. Chromosomes and cancer cells. Chromosome Res. 2011;19:433–444. doi:10.1007/s10577-010-9179-y. PubMed PMC
Janssen A, van der Burg M, Szuhai K, Kops GJ, Medema RH. Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations. Science. 2011;333:1895–1898. doi:10.1126/science.1210214. PubMed
Crasta K, et al. DNA breaks and chromosome pulverization from errors in mitosis. Nature. 2012;482:53–58. doi:10.1038/nature10802. PubMed PMC
Pampalona J, Soler D, Genesca A, Tusell L. Whole chromosome loss is promoted by telomere dysfunction in primary cells. Genes Chromosomes Cancer. 2010;49:368–378. doi:10.1002/gcc.20749. PubMed
Ichijima Y, et al. DNA lesions induced by replication stress trigger mitotic aberration and tetraploidy development. PLoS One. 2010;5:e8821. doi:10.1371/journal.pone.0008821. PubMed PMC
Thompson SL, Compton DA. Examining the link between chromosomal instability and aneuploidy in human cells. J Cell Biol. 2008;180:665–672. doi:jcb.200712029 [pii] 10.1083/jcb.200712029. PubMed PMC
Gisselsson D. Classification of chromosome segregation errors in cancer. Chromosoma. 2008;117:511–519. doi:10.1007/s00412-008-0169-1. PubMed
Bartkova J, et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature. 2005;434:864–870. doi:nature03482 [pii] 10.1038/nature03482. PubMed
Tort F, et al. Retinoblastoma pathway defects show differential ability to activate the constitutive DNA damage response in human tumorigenesis. Cancer Res. 2006;66:10258–10263. doi:66/21/10258 [pii] 10.1158/0008-5472.CAN-06-2178. PubMed
Lukas C, et al. 53BP1 nuclear bodies form around DNA lesions generated by mitotic transmission of chromosomes under replication stress. Nat Cell Biol. 2011;13:243–253. doi:ncb2201 [pii] 10.1038/ncb2201. PubMed
Chan KL, Palmai-Pallag T, Ying S, Hickson ID. Replication stress induces sister-chromatid bridging at fragile site loci in mitosis. Nat Cell Biol. 2009;11:753–760. doi:ncb1882 [pii] 10.1038/ncb1882. PubMed
Kawabata T, et al. Stalled fork rescue via dormant replication origins in unchallenged S phase promotes proper chromosome segregation and tumor suppression. Mol Cell. 2011;41:543–553. doi:10.1016/j.molcel.2011.02.006. PubMed PMC
Harrigan JA, et al. Replication stress induces 53BP1-containing OPT domains in G1 cells. J Cell Biol. 2011;193:97–108. doi:jcb.201011083 [pii] 10.1083/jcb.201011083. PubMed PMC
Cancer Genome Atlas Research Network Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–337. doi:10.1038/nature11252. PubMed PMC
Bunz F, et al. Targeted inactivation of p53 in human cells does not result in aneuploidy. Cancer Res. 2002;62:1129–1133. PubMed
Halazonetis TD, Gorgoulis VG, Bartek J. An oncogene-induced DNA damage model for cancer development. Science. 2008;319:1352–1355. doi:319/5868/1352 [pii] 10.1126/science.1140735. PubMed
Rowan A, et al. Refining molecular analysis in the pathways of colorectal carcinogenesis. Clin Gastroenterol Hepatol. 2005;3:1115–1123. doi:S1542-3565(05)00618-X [pii] PubMed
Pasello G, et al. DNA copy number alterations correlate with survival of esophageal adenocarcinoma patients. Mod Pathol. 2009;22:58–65. doi:10.1038/modpathol.2008.150. PubMed
Yatsuoka T, et al. Association of poor prognosis with loss of 12q, 17p, and 18q, and concordant loss of 6q/17p and 12q/18q in human pancreatic ductal adenocarcinoma. Am J Gastroenterol. 2000;95:2080–2085. doi:10.1111/j.1572-0241.2000.02171.x. PubMed
Sigoillot FD, et al. A bioinformatics method identifies prominent off-targeted transcripts in RNAi screens. Nat Methods. 2012;9:363–366. doi:10.1038/nmeth.1898. PubMed PMC
Dereli-Oz A, Versini G, Halazonetis TD. Studies of genomic copy number changes in human cancers reveal signatures of DNA replication stress. Mol Oncol. 2011;5:308–314. doi:S1574-7891(11)00051-2 [pii] 10.1016/j.molonc.2011.05.002. PubMed PMC
Chan KL, Hickson ID. On the origins of ultra-fine anaphase bridges. Cell Cycle. 2009;8:3065–3066. doi:9513 [pii] PubMed
Lee AJ, et al. Chromosomal instability confers intrinsic multidrug resistance. Cancer Res. 2011;71:1858–1870. doi:71/5/1858 [pii] 10.1158/0008-5472.CAN-10-3604. PubMed PMC
Cesare AJ, et al. Spontaneous occurrence of telomeric DNA damage response in the absence of chromosome fusions. Nat Struct Mol Biol. 2009;16:1244–1251. doi:10.1038/nsmb.1725. PubMed
Groth P, et al. Methylated DNA causes a physical block to replication forks independently of damage signalling, O(6)-methylguanine or DNA single-strand breaks and results in DNA damage. J Mol Biol. 2010;402:70–82. doi:S0022-2836(10)00763-1 [pii] 10.1016/j.jmb.2010.07.010. PubMed
Greenman CD, et al. PICNIC: an algorithm to predict absolute allelic copy number variation with microarray cancer data. Biostatistics. 2010;11:164–175. doi:kxp045 [pii] 10.1093/biostatistics/kxp045. PubMed PMC
Popova T, et al. Genome Alteration Print (GAP): a tool to visualize and mine complex cancer genomic profiles obtained by SNP arrays. Genome Biol. 2009;10:R128. doi:gb-2009-10-11-r128 [pii] 10.1186/gb-2009-10-11-r128. PubMed PMC
Chin SF, et al. High-resolution aCGH and expression profiling identifies a novel genomic subtype of ER negative breast cancer. Genome Biol. 2007;8:R215. doi:gb-2007-8-10-r215 [pii] 10.1186/gb-2007-8-10-r215. PubMed PMC
Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B (Methodological) 1995;57:289–300.
Beroukhim R, et al. Assessing the significance of chromosomal aberrations in cancer: methodology and application to glioma. Proc Natl Acad Sci U S A. 2007;104:20007–20012. doi:0710052104 [pii] 10.1073/pnas.0710052104. PubMed PMC
Storey JD, Siegmund D. Approximate p-values for local sequence alignments: numerical studies. J Comput Biol. 2001;8:549–556. doi:10.1089/106652701753216530. PubMed
Durinck S, et al. BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis. Bioinformatics. 2005;21:3439–3440. doi:21/16/3439 [pii] 10.1093/bioinformatics/bti525. PubMed
Thirlwell C, et al. Clonality assessment and clonal ordering of individual neoplastic crypts shows polyclonality of colorectal adenomas. Gastroenterology. 2010;138:1441–1454. 1454, e1441–1447. doi:S0016-5085(10)00097-1 [pii] 10.1053/j.gastro.2010.01.033. PubMed
Leedham SJ, et al. Clonality, founder mutations, and field cancerization in human ulcerative colitis-associated neoplasia. Gastroenterology. 2009;136:542–550. e546. doi:S0016-5085(08)02039-8 [pii] 10.1053/j.gastro.2008.10.086. PubMed
Histone H3 serine-57 is a CHK1 substrate whose phosphorylation affects DNA repair
Human cytomegalovirus hijacks host stress response fueling replication stress and genome instability
DNA Repair Gene Polymorphisms and Chromosomal Aberrations in Exposed Populations
Colorectal Adenomas-Genetics and Searching for New Molecular Screening Biomarkers
Autophagy role(s) in response to oncogenes and DNA replication stress
Common Chemical Inductors of Replication Stress: Focus on Cell-Based Studies
Regulation and roles of Cdc7 kinase under replication stress