Replication stress links structural and numerical cancer chromosomal instability

. 2013 Feb 28 ; 494 (7438) : 492-496.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid23446422

Grantová podpora
A4688 Cancer Research UK - United Kingdom
A19310 Cancer Research UK - United Kingdom
Medical Research Council - United Kingdom
090532 Wellcome Trust - United Kingdom
15679 Cancer Research UK - United Kingdom
A17786 Cancer Research UK - United Kingdom
A11590 Cancer Research UK - United Kingdom
16459 Cancer Research UK - United Kingdom

Cancer chromosomal instability (CIN) results in an increased rate of change of chromosome number and structure and generates intratumour heterogeneity. CIN is observed in most solid tumours and is associated with both poor prognosis and drug resistance. Understanding a mechanistic basis for CIN is therefore paramount. Here we find evidence for impaired replication fork progression and increased DNA replication stress in CIN(+) colorectal cancer (CRC) cells relative to CIN(-) CRC cells, with structural chromosome abnormalities precipitating chromosome missegregation in mitosis. We identify three new CIN-suppressor genes (PIGN (also known as MCD4), MEX3C (RKHD2) and ZNF516 (KIAA0222)) encoded on chromosome 18q that are subject to frequent copy number loss in CIN(+) CRC. Chromosome 18q loss was temporally associated with aneuploidy onset at the adenoma-carcinoma transition. CIN-suppressor gene silencing leads to DNA replication stress, structural chromosome abnormalities and chromosome missegregation. Supplementing cells with nucleosides, to alleviate replication-associated damage, reduces the frequency of chromosome segregation errors after CIN-suppressor gene silencing, and attenuates segregation errors and DNA damage in CIN(+) cells. These data implicate a central role for replication stress in the generation of structural and numerical CIN, which may inform new therapeutic approaches to limit intratumour heterogeneity.

Erratum v

Nature. 2013 Aug 22;500(7463):490 PubMed

Komentář v

PubMed

Zobrazit více v PubMed

Gerlinger M, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366:883–892. doi:10.1056/NEJMoa1113205. PubMed PMC

Ding L, et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature. 2012;481:506–510. doi:10.1038/nature10738 nature10738 [pii] PubMed PMC

Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature. 1998;396:643–649. doi:10.1038/25292. PubMed

McGranahan N, Burrell RA, Endesfelder D, Novelli MR, Swanton C. Cancer chromosomal instability: therapeutic and diagnostic challenges. EMBO Rep. 2012;13:528–538. doi:10.1038/embor.2012.61. PubMed PMC

Bester AC, et al. Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell. 2011;145:435–446. doi:S0092-8674(11)00378-3 [pii] 10.1016/j.cell.2011.03.044. PubMed PMC

Thompson SL, Compton DA. Chromosomes and cancer cells. Chromosome Res. 2011;19:433–444. doi:10.1007/s10577-010-9179-y. PubMed PMC

Janssen A, van der Burg M, Szuhai K, Kops GJ, Medema RH. Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations. Science. 2011;333:1895–1898. doi:10.1126/science.1210214. PubMed

Crasta K, et al. DNA breaks and chromosome pulverization from errors in mitosis. Nature. 2012;482:53–58. doi:10.1038/nature10802. PubMed PMC

Pampalona J, Soler D, Genesca A, Tusell L. Whole chromosome loss is promoted by telomere dysfunction in primary cells. Genes Chromosomes Cancer. 2010;49:368–378. doi:10.1002/gcc.20749. PubMed

Ichijima Y, et al. DNA lesions induced by replication stress trigger mitotic aberration and tetraploidy development. PLoS One. 2010;5:e8821. doi:10.1371/journal.pone.0008821. PubMed PMC

Thompson SL, Compton DA. Examining the link between chromosomal instability and aneuploidy in human cells. J Cell Biol. 2008;180:665–672. doi:jcb.200712029 [pii] 10.1083/jcb.200712029. PubMed PMC

Gisselsson D. Classification of chromosome segregation errors in cancer. Chromosoma. 2008;117:511–519. doi:10.1007/s00412-008-0169-1. PubMed

Bartkova J, et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature. 2005;434:864–870. doi:nature03482 [pii] 10.1038/nature03482. PubMed

Tort F, et al. Retinoblastoma pathway defects show differential ability to activate the constitutive DNA damage response in human tumorigenesis. Cancer Res. 2006;66:10258–10263. doi:66/21/10258 [pii] 10.1158/0008-5472.CAN-06-2178. PubMed

Lukas C, et al. 53BP1 nuclear bodies form around DNA lesions generated by mitotic transmission of chromosomes under replication stress. Nat Cell Biol. 2011;13:243–253. doi:ncb2201 [pii] 10.1038/ncb2201. PubMed

Chan KL, Palmai-Pallag T, Ying S, Hickson ID. Replication stress induces sister-chromatid bridging at fragile site loci in mitosis. Nat Cell Biol. 2009;11:753–760. doi:ncb1882 [pii] 10.1038/ncb1882. PubMed

Kawabata T, et al. Stalled fork rescue via dormant replication origins in unchallenged S phase promotes proper chromosome segregation and tumor suppression. Mol Cell. 2011;41:543–553. doi:10.1016/j.molcel.2011.02.006. PubMed PMC

Harrigan JA, et al. Replication stress induces 53BP1-containing OPT domains in G1 cells. J Cell Biol. 2011;193:97–108. doi:jcb.201011083 [pii] 10.1083/jcb.201011083. PubMed PMC

Cancer Genome Atlas Research Network Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–337. doi:10.1038/nature11252. PubMed PMC

Bunz F, et al. Targeted inactivation of p53 in human cells does not result in aneuploidy. Cancer Res. 2002;62:1129–1133. PubMed

Halazonetis TD, Gorgoulis VG, Bartek J. An oncogene-induced DNA damage model for cancer development. Science. 2008;319:1352–1355. doi:319/5868/1352 [pii] 10.1126/science.1140735. PubMed

Rowan A, et al. Refining molecular analysis in the pathways of colorectal carcinogenesis. Clin Gastroenterol Hepatol. 2005;3:1115–1123. doi:S1542-3565(05)00618-X [pii] PubMed

Pasello G, et al. DNA copy number alterations correlate with survival of esophageal adenocarcinoma patients. Mod Pathol. 2009;22:58–65. doi:10.1038/modpathol.2008.150. PubMed

Yatsuoka T, et al. Association of poor prognosis with loss of 12q, 17p, and 18q, and concordant loss of 6q/17p and 12q/18q in human pancreatic ductal adenocarcinoma. Am J Gastroenterol. 2000;95:2080–2085. doi:10.1111/j.1572-0241.2000.02171.x. PubMed

Sigoillot FD, et al. A bioinformatics method identifies prominent off-targeted transcripts in RNAi screens. Nat Methods. 2012;9:363–366. doi:10.1038/nmeth.1898. PubMed PMC

Dereli-Oz A, Versini G, Halazonetis TD. Studies of genomic copy number changes in human cancers reveal signatures of DNA replication stress. Mol Oncol. 2011;5:308–314. doi:S1574-7891(11)00051-2 [pii] 10.1016/j.molonc.2011.05.002. PubMed PMC

Chan KL, Hickson ID. On the origins of ultra-fine anaphase bridges. Cell Cycle. 2009;8:3065–3066. doi:9513 [pii] PubMed

Lee AJ, et al. Chromosomal instability confers intrinsic multidrug resistance. Cancer Res. 2011;71:1858–1870. doi:71/5/1858 [pii] 10.1158/0008-5472.CAN-10-3604. PubMed PMC

Cesare AJ, et al. Spontaneous occurrence of telomeric DNA damage response in the absence of chromosome fusions. Nat Struct Mol Biol. 2009;16:1244–1251. doi:10.1038/nsmb.1725. PubMed

Groth P, et al. Methylated DNA causes a physical block to replication forks independently of damage signalling, O(6)-methylguanine or DNA single-strand breaks and results in DNA damage. J Mol Biol. 2010;402:70–82. doi:S0022-2836(10)00763-1 [pii] 10.1016/j.jmb.2010.07.010. PubMed

Greenman CD, et al. PICNIC: an algorithm to predict absolute allelic copy number variation with microarray cancer data. Biostatistics. 2010;11:164–175. doi:kxp045 [pii] 10.1093/biostatistics/kxp045. PubMed PMC

Popova T, et al. Genome Alteration Print (GAP): a tool to visualize and mine complex cancer genomic profiles obtained by SNP arrays. Genome Biol. 2009;10:R128. doi:gb-2009-10-11-r128 [pii] 10.1186/gb-2009-10-11-r128. PubMed PMC

Chin SF, et al. High-resolution aCGH and expression profiling identifies a novel genomic subtype of ER negative breast cancer. Genome Biol. 2007;8:R215. doi:gb-2007-8-10-r215 [pii] 10.1186/gb-2007-8-10-r215. PubMed PMC

Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B (Methodological) 1995;57:289–300.

Beroukhim R, et al. Assessing the significance of chromosomal aberrations in cancer: methodology and application to glioma. Proc Natl Acad Sci U S A. 2007;104:20007–20012. doi:0710052104 [pii] 10.1073/pnas.0710052104. PubMed PMC

Storey JD, Siegmund D. Approximate p-values for local sequence alignments: numerical studies. J Comput Biol. 2001;8:549–556. doi:10.1089/106652701753216530. PubMed

Durinck S, et al. BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis. Bioinformatics. 2005;21:3439–3440. doi:21/16/3439 [pii] 10.1093/bioinformatics/bti525. PubMed

Thirlwell C, et al. Clonality assessment and clonal ordering of individual neoplastic crypts shows polyclonality of colorectal adenomas. Gastroenterology. 2010;138:1441–1454. 1454, e1441–1447. doi:S0016-5085(10)00097-1 [pii] 10.1053/j.gastro.2010.01.033. PubMed

Leedham SJ, et al. Clonality, founder mutations, and field cancerization in human ulcerative colitis-associated neoplasia. Gastroenterology. 2009;136:542–550. e546. doi:S0016-5085(08)02039-8 [pii] 10.1053/j.gastro.2008.10.086. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Histone H3 serine-57 is a CHK1 substrate whose phosphorylation affects DNA repair

. 2023 Aug 22 ; 14 (1) : 5104. [epub] 20230822

Human cytomegalovirus hijacks host stress response fueling replication stress and genome instability

. 2022 Aug ; 29 (8) : 1639-1653. [epub] 20220222

DNA Repair Gene Polymorphisms and Chromosomal Aberrations in Exposed Populations

. 2021 ; 12 () : 691947. [epub] 20210616

The Interactions of DNA Repair, Telomere Homeostasis, and p53 Mutational Status in Solid Cancers: Risk, Prognosis, and Prediction

. 2021 Jan 27 ; 13 (3) : . [epub] 20210127

Colorectal Adenomas-Genetics and Searching for New Molecular Screening Biomarkers

. 2020 May 05 ; 21 (9) : . [epub] 20200505

Autophagy role(s) in response to oncogenes and DNA replication stress

. 2020 Mar ; 27 (3) : 1134-1153. [epub] 20190814

Chromatin architecture changes and DNA replication fork collapse are critical features in cryopreserved cells that are differentially controlled by cryoprotectants

. 2018 Oct 02 ; 8 (1) : 14694. [epub] 20181002

Common Chemical Inductors of Replication Stress: Focus on Cell-Based Studies

. 2017 Feb 21 ; 7 (1) : . [epub] 20170221

BRCA1-regulated RRM2 expression protects glioblastoma cells from endogenous replication stress and promotes tumorigenicity

. 2016 Nov 15 ; 7 () : 13398. [epub] 20161115

SETD2 loss-of-function promotes renal cancer branched evolution through replication stress and impaired DNA repair

. 2015 Nov 12 ; 34 (46) : 5699-708. [epub] 20150302

Topoisomerase-1 and -2A gene copy numbers are elevated in mismatch repair-proficient colorectal cancers

. 2015 Jun ; 9 (6) : 1207-17. [epub] 20150304

Myc and Ras oncogenes engage different energy metabolism programs and evoke distinct patterns of oxidative and DNA replication stress

. 2015 Mar ; 9 (3) : 601-16. [epub] 20141115

Regulation and roles of Cdc7 kinase under replication stress

. 2014 ; 13 (12) : 1859-66. [epub] 20140519

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...