The Interactions of DNA Repair, Telomere Homeostasis, and p53 Mutational Status in Solid Cancers: Risk, Prognosis, and Prediction

. 2021 Jan 27 ; 13 (3) : . [epub] 20210127

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33513745

Grantová podpora
18-09709S Grantová Agentura České Republiky
19-10543S Grantová Agentura České Republiky
NV18-00199 Agentura Pro Zdravotnický Výzkum České Republiky
PROGRES Q 28 Grantová Agentura, Univerzita Karlova
UNCE/MED/006 Grantová Agentura, Univerzita Karlova
CZ.02.1.01/0.0./0.0/16_019/0000787 Ministerstvo Školství, Mládeže a Tělovýchovy

The disruption of genomic integrity due to the accumulation of various kinds of DNA damage, deficient DNA repair capacity, and telomere shortening constitute the hallmarks of malignant diseases. DNA damage response (DDR) is a signaling network to process DNA damage with importance for both cancer development and chemotherapy outcome. DDR represents the complex events that detect DNA lesions and activate signaling networks (cell cycle checkpoint induction, DNA repair, and induction of cell death). TP53, the guardian of the genome, governs the cell response, resulting in cell cycle arrest, DNA damage repair, apoptosis, and senescence. The mutational status of TP53 has an impact on DDR, and somatic mutations in this gene represent one of the critical events in human carcinogenesis. Telomere dysfunction in cells that lack p53-mediated surveillance of genomic integrity along with the involvement of DNA repair in telomeric DNA regions leads to genomic instability. While the role of individual players (DDR, telomere homeostasis, and TP53) in human cancers has attracted attention for some time, there is insufficient understanding of the interactions between these pathways. Since solid cancer is a complex and multifactorial disease with considerable inter- and intra-tumor heterogeneity, we mainly dedicated this review to the interactions of DNA repair, telomere homeostasis, and TP53 mutational status, in relation to (a) cancer risk, (b) cancer progression, and (c) cancer therapy.

Zobrazit více v PubMed

Hanahan D., Weinberg R.A. Hallmarks of cancer: The next generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013. PubMed DOI

Vodicka P., Vodenkova S., Opattova A., Vodickova L. DNA damage and repair measured by comet assay in cancer patients. Mutat. Res. 2019;843:95–110. doi: 10.1016/j.mrgentox.2019.05.009. PubMed DOI

Vodicka P., Urbanova M., Makovicky P., Tomasova K., Kroupa M., Stetina R., Opattova A., Kostovcikova K., Siskova A., Schneiderova M., et al. Oxidative Damage in Sporadic Colorectal Cancer: Molecular Mapping of Base Excision Repair Glycosylases in Colorectal Cancer Patients. Int. J. Mol. Sci. 2020;21:2473. doi: 10.3390/ijms21072473. PubMed DOI PMC

Tomasova K., Cumova A., Seborova K., Horak J., Koucka K., Vodickova L., Vaclavikova R., Vodicka P. DNA Repair and Ovarian Carcinogenesis: Impact on Risk, Prognosis and Therapy Outcome. Cancers. 2020;12:1713. doi: 10.3390/cancers12071713. PubMed DOI PMC

Tubbs A., Nussenzweig A. Endogenous DNA Damage as a Source of Genomic Instability in Cancer. Cell. 2017;168:644–656. doi: 10.1016/j.cell.2017.01.002. PubMed DOI PMC

Niazi Y., Thomsen H., Smolkova B., Vodickova L., Vodenkova S., Kroupa M., Vymetalkova V., Kazimirova A., Barancokova M., Volkovova K., et al. Impact of genetic polymorphisms in kinetochore and spindle assembly genes on chromosomal aberration frequency in healthy humans. Mutat. Res. 2020;858–860:503253. doi: 10.1016/j.mrgentox.2020.503253. PubMed DOI

Vodicka P., Musak L., Vodickova L., Vodenkova S., Catalano C., Kroupa M., Naccarati A., Polivkova Z., Vymetalkova V., Forsti A., et al. Genetic variation of acquired structural chromosomal aberrations. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2018;836:13–21. doi: 10.1016/j.mrgentox.2018.05.014. PubMed DOI

Goldstein M., Kastan M.B. The DNA damage response: Implications for tumor responses to radiation and chemotherapy. Annu. Rev. Med. 2015;66:129–143. doi: 10.1146/annurev-med-081313-121208. PubMed DOI

Lindahl T., Barnes D.E. Repair of endogenous DNA damage. Cold Spring Harb. Symp. Quant. Biol. 2000;65:127–133. doi: 10.1101/sqb.2000.65.127. PubMed DOI

Giglia-Mari G., Zotter A., Vermeulen W. DNA damage response. Cold Spring Harb. Perspect. Biol. 2011;3:a000745. doi: 10.1101/cshperspect.a000745. PubMed DOI PMC

Burrell R.A., McClelland S.E., Endesfelder D., Groth P., Weller M.C., Shaikh N., Domingo E., Kanu N., Dewhurst S.M., Gronroos E., et al. Replication stress links structural and numerical cancer chromosomal instability. Nature. 2013;494:492–496. doi: 10.1038/nature11935. PubMed DOI PMC

Nagel Z.D., Chaim I.A., Samson L.D. Inter-individual variation in DNA repair capacity: A need for multi-pathway functional assays to promote translational DNA repair research. DNA Repair. 2014;19:199–213. doi: 10.1016/j.dnarep.2014.03.009. PubMed DOI PMC

Roos W.P., Kaina B. DNA damage-induced cell death: From specific DNA lesions to the DNA damage response and apoptosis. Cancer Lett. 2013;332:237–248. doi: 10.1016/j.canlet.2012.01.007. PubMed DOI

Reinhardt H.C., Schumacher B. The p53 network: Cellular and systemic DNA damage responses in aging and cancer. Trends Genet. 2012;28:128–136. doi: 10.1016/j.tig.2011.12.002. PubMed DOI PMC

Rodriguez-Brenes I.A., Komarova N.L., Wodarz D. The role of telomere shortening in carcinogenesis: A hybrid stochastic-deterministic approach. J. Theor. Biol. 2019;460:144–152. doi: 10.1016/j.jtbi.2018.09.003. PubMed DOI PMC

Tomasova K., Kroupa M., Forsti A., Vodicka P., Vodickova L. Telomere maintenance in interplay with DNA repair in pathogenesis and treatment of colorectal cancer. Mutagenesis. 2020;35:261–271. doi: 10.1093/mutage/geaa005. PubMed DOI

Fearon E.R., Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61:759–767. doi: 10.1016/0092-8674(90)90186-I. PubMed DOI

Naccarati A., Polakova V., Pardini B., Vodickova L., Hemminki K., Kumar R., Vodicka P. Mutations and polymorphisms in TP53 gene—An overview on the role in colorectal cancer. Mutagenesis. 2012;27:211–218. doi: 10.1093/mutage/ger067. PubMed DOI

Bouaoun L., Sonkin D., Ardin M., Hollstein M., Byrnes G., Zavadil J., Olivier M. TP53 Variations in Human Cancers: New Lessons from the IARC TP53 Database and Genomics Data. Hum. Mutat. 2016;37:865–876. doi: 10.1002/humu.23035. PubMed DOI

Kaiser A.M., Attardi L.D. Deconstructing networks of p53-mediated tumor suppression in vivo. Cell Death Differ. 2018;25:93–103. doi: 10.1038/cdd.2017.171. PubMed DOI PMC

Stein Y., Rotter V., Aloni-Grinstein R. Gain-of-Function Mutant p53: All the Roads Lead to Tumorigenesis. Int. J. Mol. Sci. 2019;20:6197. doi: 10.3390/ijms20246197. PubMed DOI PMC

Zhang C., Liu J., Xu D., Zhang T., Hu W., Feng Z. Gain-of-function mutant p53 in cancer progression and therapy. J. Mol. Cell Biol. 2020;12:674–687. doi: 10.1093/jmcb/mjaa040. PubMed DOI PMC

Loh S.N. Follow the Mutations: Toward Class-Specific, Small-Molecule Reactivation of p53. Biomolecules. 2020;10:303. doi: 10.3390/biom10020303. PubMed DOI PMC

Murphy N., Moreno V., Hughes D.J., Vodicka L., Vodicka P., Aglago E.K., Gunter M.J., Jenab M. Lifestyle and dietary environmental factors in colorectal cancer susceptibility. Mol. Aspects Med. 2019;69:2–9. doi: 10.1016/j.mam.2019.06.005. PubMed DOI

Ozaki T., Nakagawara A. Role of p53 in Cell Death and Human Cancers. Cancers. 2011;3:994–1013. doi: 10.3390/cancers3010994. PubMed DOI PMC

Pitolli C., Wang Y., Candi E., Shi Y., Melino G., Amelio I. p53-Mediated Tumor Suppression: DNA-Damage Response and Alternative Mechanisms. Cancers. 2019;11:1983. doi: 10.3390/cancers11121983. PubMed DOI PMC

Mantovani F., Collavin L., Del Sal G. Mutant p53 as a guardian of the cancer cell. Cell Death Differ. 2019;26:199–212. doi: 10.1038/s41418-018-0246-9. PubMed DOI PMC

Aubrey B.J., Kelly G.L., Janic A., Herold M.J., Strasser A. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ. 2018;25:104–113. doi: 10.1038/cdd.2017.169. PubMed DOI PMC

He L., He X., Lim L.P., de Stanchina E., Xuan Z., Liang Y., Xue W., Zender L., Magnus J., Ridzon D., et al. A microRNA component of the p53 tumour suppressor network. Nature. 2007;447:1130–1134. doi: 10.1038/nature05939. PubMed DOI PMC

Chipuk J.E., Kuwana T., Bouchier-Hayes L., Droin N.M., Newmeyer D.D., Schuler M., Green D.R. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science. 2004;303:1010–1014. doi: 10.1126/science.1092734. PubMed DOI

Vaseva A.V., Marchenko N.D., Ji K., Tsirka S.E., Holzmann S., Moll U.M. p53 opens the mitochondrial permeability transition pore to trigger necrosis. Cell. 2012;149:1536–1548. doi: 10.1016/j.cell.2012.05.014. PubMed DOI PMC

Jiang L., Kon N., Li T., Wang S.J., Su T., Hibshoosh H., Baer R., Gu W. Ferroptosis as a p53-mediated activity during tumour suppression. Nature. 2015;520:57–62. doi: 10.1038/nature14344. PubMed DOI PMC

Seillier M., Peuget S., Gayet O., Gauthier C., N’Guessan P., Monte M., Carrier A., Iovanna J.L., Dusetti N.J. TP53INP1, a tumor suppressor, interacts with LC3 and ATG8-family proteins through the LC3-interacting region (LIR) and promotes autophagy-dependent cell death. Cell Death Differ. 2012;19:1525–1535. doi: 10.1038/cdd.2012.30. PubMed DOI PMC

Crighton D., Wilkinson S., O’Prey J., Syed N., Smith P., Harrison P.R., Gasco M., Garrone O., Crook T., Ryan K.M. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell. 2006;126:121–134. doi: 10.1016/j.cell.2006.05.034. PubMed DOI

Mijit M., Caracciolo V., Melillo A., Amicarelli F., Giordano A. Role of p53 in the Regulation of Cellular Senescence. Biomolecules. 2020;10:420. doi: 10.3390/biom10030420. PubMed DOI PMC

El-Deiry W.S., Tokino T., Velculescu V.E., Levy D.B., Parsons R., Trent J.M., Lin D., Mercer W.E., Kinzler K.W., Vogelstein B. WAF1, a potential mediator of p53 tumor suppression. Cell. 1993;75:817–825. doi: 10.1016/0092-8674(93)90500-P. PubMed DOI

Yosef R., Pilpel N., Papismadov N., Gal H., Ovadya Y., Vadai E., Miller S., Porat Z., Ben-Dor S., Krizhanovsky V. p21 maintains senescent cell viability under persistent DNA damage response by restraining JNK and caspase signaling. EMBO J. 2017;36:2280–2295. doi: 10.15252/embj.201695553. PubMed DOI PMC

Lisek K., Campaner E., Ciani Y., Walerych D., Del Sal G. Mutant p53 tunes the NRF2-dependent antioxidant response to support survival of cancer cells. Oncotarget. 2018;9:20508–20523. doi: 10.18632/oncotarget.24974. PubMed DOI PMC

Zhou J., Ahn J., Wilson S.H., Prives C. A role for p53 in base excision repair. EMBO J. 2001;20:914–923. doi: 10.1093/emboj/20.4.914. PubMed DOI PMC

Zaky A., Busso C., Izumi T., Chattopadhyay R., Bassiouny A., Mitra S., Bhakat K.K. Regulation of the human AP-endonuclease (APE1/Ref-1) expression by the tumor suppressor p53 in response to DNA damage. Nucleic Acids Res. 2008;36:1555–1566. doi: 10.1093/nar/gkm1173. PubMed DOI PMC

Offer H., Wolkowicz R., Matas D., Blumenstein S., Livneh Z., Rotter V. Direct involvement of p53 in the base excision repair pathway of the DNA repair machinery. FEBS Lett. 1999;450:197–204. doi: 10.1016/S0014-5793(99)00505-0. PubMed DOI

Jung H.J., Kim H.L., Kim Y.J., Weon J.I., Seo Y.R. A novel chemopreventive mechanism of selenomethionine: Enhancement of APE1 enzyme activity via a Gadd45a, PCNA and APE1 protein complex that regulates p53-mediated base excision repair. Oncol. Rep. 2013;30:1581–1586. doi: 10.3892/or.2013.2613. PubMed DOI PMC

Seo Y.R., Fishel M.L., Amundson S., Kelley M.R., Smith M.L. Implication of p53 in base excision DNA repair: In vivo evidence. Oncogene. 2002;21:731–737. doi: 10.1038/sj.onc.1205129. PubMed DOI

Offer H., Zurer I., Banfalvi G., Reha’k M., Falcovitz A., Milyavsky M., Goldfinger N., Rotter V. p53 modulates base excision repair activity in a cell cycle-specific manner after genotoxic stress. Cancer Res. 2001;61:88–96. PubMed

Smith M.L., Seo Y.R. p53 regulation of DNA excision repair pathways. Mutagenesis. 2002;17:149–156. doi: 10.1093/mutage/17.2.149. PubMed DOI

Williams A.B., Schumacher B. p53 in the DNA-Damage-Repair Process. Cold Spring Harb. Perspect. Med. 2016;6 doi: 10.1101/cshperspect.a026070. PubMed DOI PMC

Wang X.W., Yeh H., Schaeffer L., Roy R., Moncollin V., Egly J.M., Wang Z., Freidberg E.C., Evans M.K., Taffe B.G., et al. p53 modulation of TFIIH-associated nucleotide excision repair activity. Nat. Genet. 1995;10:188–195. doi: 10.1038/ng0695-188. PubMed DOI

Schwartz D., Goldfinger N., Kam Z., Rotter V. p53 controls low DNA damage-dependent premeiotic checkpoint and facilitates DNA repair during spermatogenesis. Cell Growth Differ. 1999;10:665–675. PubMed

Zurer I., Hofseth L.J., Cohen Y., Xu-Welliver M., Hussain S.P., Harris C.C., Rotter V. The role of p53 in base excision repair following genotoxic stress. Carcinogenesis. 2004;25:11–19. doi: 10.1093/carcin/bgg186. PubMed DOI

Song H., Hollstein M., Xu Y. p53 gain-of-function cancer mutants induce genetic instability by inactivating ATM. Nat. Cell Biol. 2007;9:573–580. doi: 10.1038/ncb1571. PubMed DOI

Menon V., Povirk L. Involvement of p53 in the repair of DNA double strand breaks: Multifaceted Roles of p53 in homologous recombination repair (HRR) and non-homologous end joining (NHEJ) Subcell. Biochem. 2014;85:321–336. doi: 10.1007/978-94-017-9211-0_17. PubMed DOI PMC

Yoon D., Wang Y., Stapleford K., Wiesmuller L., Chen J. P53 inhibits strand exchange and replication fork regression promoted by human Rad51. J. Mol. Biol. 2004;336:639–654. doi: 10.1016/j.jmb.2003.12.050. PubMed DOI

Zhang Y.X., Pan W.Y., Chen J. p53 and its isoforms in DNA double-stranded break repair. J. Zhejiang Univ. Sci. B. 2019;20:457–466. doi: 10.1631/jzus.B1900167. PubMed DOI PMC

Mehigan B.J., Ashman J.N., Baker R.P., Macdonald A., Greenman J., Monson J.R., Cawkwell L. Mismatch repair, p53 and chromosomal aberrations in primary colorectal carcinomas. Acta Oncol. 2006;45:61–66. doi: 10.1080/02841860500374463. PubMed DOI

Lin C.S., Huang Y.Y., Pan S.C., Cheng C.T., Liu C.C., Shih C.H., Ho H.L., Yeh Y.C., Chou T.Y., Lee M.Y., et al. Involvement of increased p53 expression in the decrease of mitochondrial DNA copy number and increase of SUVmax of FDG-PET scan in esophageal squamous cell carcinoma. Mitochondrion. 2019;47:54–63. doi: 10.1016/j.mito.2019.05.001. PubMed DOI

Shay J.W., Wright W.E. Senescence and immortalization: Role of telomeres and telomerase. Carcinogenesis. 2005;26:867–874. doi: 10.1093/carcin/bgh296. PubMed DOI

Jones K.R., Elmore L.W., Jackson-Cook C., Demasters G., Povirk L.F., Holt S.E., Gewirtz D.A. p53-Dependent accelerated senescence induced by ionizing radiation in breast tumour cells. Int. J. Radiat. Biol. 2005;81:445–458. doi: 10.1080/09553000500168549. PubMed DOI

Artandi S.E., Attardi L.D. Pathways connecting telomeres and p53 in senescence, apoptosis, and cancer. Biochem. Biophys. Res. Commun. 2005;331:881–890. doi: 10.1016/j.bbrc.2005.03.211. PubMed DOI

Roake C.M., Artandi S.E. Control of Cellular Aging, Tissue Function, and Cancer by p53 Downstream of Telomeres. Cold Spring Harb. Perspect. Med. 2017;7 doi: 10.1101/cshperspect.a026088. PubMed DOI PMC

Toufektchan E., Toledo F. The Guardian of the Genome Revisited: p53 Downregulates Genes Required for Telomere Maintenance, DNA Repair, and Centromere Structure. Cancers. 2018;10:135. doi: 10.3390/cancers10050135. PubMed DOI PMC

Ge Y., Wu S., Zhang Z., Li X., Li F., Yan S., Liu H., Huang J., Zhao Y. Inhibition of p53 and/or AKT as a new therapeutic approach specifically targeting ALT cancers. Protein Cell. 2019;10:808–824. doi: 10.1007/s13238-019-0634-z. PubMed DOI PMC

Kwong A., Shin V.Y., Ho C.Y.S., Au C.H., Slavin T.P., Weitzel J.N., Chan T.L., Ma E.S.K. Mutation screening of germline TP53 mutations in high-risk Chinese breast cancer patients. BMC Cancer. 2020;20:1053. doi: 10.1186/s12885-020-07476-y. PubMed DOI PMC

Wang X., Sun Q. TP53 mutations, expression and interaction networks in human cancers. Oncotarget. 2017;8:624–643. doi: 10.18632/oncotarget.13483. PubMed DOI PMC

Nakayama M., Oshima M. Mutant p53 in colon cancer. J. Mol. Cell Biol. 2019;11:267–276. doi: 10.1093/jmcb/mjy075. PubMed DOI PMC

Oh H.J., Bae J.M., Wen X., Jung S., Kim Y., Kim K.J., Cho N.Y., Kim J.H., Han S.W., Kim T.Y., et al. p53 expression status is associated with cancer-specific survival in stage III and high-risk stage II colorectal cancer patients treated with oxaliplatin-based adjuvant chemotherapy. Br. J. Cancer. 2019;120:797–805. doi: 10.1038/s41416-019-0429-2. PubMed DOI PMC

Li H., Zhang J., Tong J.H.M., Chan A.W.H., Yu J., Kang W., To K.F. Targeting the Oncogenic p53 Mutants in Colorectal Cancer and Other Solid Tumors. Int. J. Mol. Sci. 2019;20:5999. doi: 10.3390/ijms20235999. PubMed DOI PMC

Donehower L.A., Soussi T., Korkut A., Liu Y., Schultz A., Cardenas M., Li X., Babur O., Hsu T.K., Lichtarge O., et al. Integrated Analysis of TP53 Gene and Pathway Alterations in The Cancer Genome Atlas. Cell Rep. 2019;28:1370–1384.e5. doi: 10.1016/j.celrep.2019.07.001. PubMed DOI PMC

Baker S.J., Preisinger A.C., Jessup J.M., Paraskeva C., Markowitz S., Willson J.K., Hamilton S., Vogelstein B. p53 gene mutations occur in combination with 17p allelic deletions as late events in colorectal tumorigenesis. Cancer Res. 1990;50:7717–7722. PubMed

Iacopetta B., Russo A., Bazan V., Dardanoni G., Gebbia N., Soussi T., Kerr D., Elsaleh H., Soong R., Kandioler D., et al. Functional categories of TP53 mutation in colorectal cancer: Results of an International Collaborative Study. Ann. Oncol. 2006;17:842–847. doi: 10.1093/annonc/mdl035. PubMed DOI

Bargonetti J., Prives C. Gain-of-function mutant p53: History and speculation. J. Mol. Cell Biol. 2019;11:605–609. doi: 10.1093/jmcb/mjz067. PubMed DOI PMC

Mirzayans R., Andrais B., Scott A., Murray D. New insights into p53 signaling and cancer cell response to DNA damage: Implications for cancer therapy. J. Biomed. Biotechnol. 2012;2012:170325. doi: 10.1155/2012/170325. PubMed DOI PMC

Grady W.M., Markowitz S.D. The molecular pathogenesis of colorectal cancer and its potential application to colorectal cancer screening. Dig. Dis. Sci. 2015;60:762–772. doi: 10.1007/s10620-014-3444-4. PubMed DOI PMC

Hao X.P., Frayling I.M., Sgouros J.G., Du M.Q., Willcocks T.C., Talbot I.C., Tomlinson I.P. The spectrum of p53 mutations in colorectal adenomas differs from that in colorectal carcinomas. Gut. 2002;50:834–839. doi: 10.1136/gut.50.6.834. PubMed DOI PMC

Hainaut P., Pfeifer G.P. Somatic TP53 Mutations in the Era of Genome Sequencing. Cold Spring Harb. Perspect. Med. 2016;6:a026179. doi: 10.1101/cshperspect.a026179. PubMed DOI PMC

Russo A., Bazan V., Iacopetta B., Kerr D., Soussi T., Gebbia N., Group T.C.C.S. The TP53 colorectal cancer international collaborative study on the prognostic and predictive significance of p53 mutation: Influence of tumor site, type of mutation, and adjuvant treatment. J. Clin. Oncol. 2005;23:7518–7528. doi: 10.1200/JCO.2005.00.471. PubMed DOI

Carethers J.M., Jung B.H. Genetics and Genetic Biomarkers in Sporadic Colorectal Cancer. Gastroenterology. 2015;149:1177–1190.e3. doi: 10.1053/j.gastro.2015.06.047. PubMed DOI PMC

Baran B., Mert Ozupek N., Yerli Tetik N., Acar E., Bekcioglu O., Baskin Y. Difference Between Left-Sided and Right-Sided Colorectal Cancer: A Focused Review of Literature. Gastroenterol. Res. 2018;11:264–273. doi: 10.14740/gr1062w. PubMed DOI PMC

Spencer J.M., Morgan M.B., Trapp K.M., Moon S.D. Topical formulation engendered alteration in p53 and cyclobutane pyrimidine dimer expression in chronic photodamaged patients. J. Drugs Dermatol. 2013;12:336–340. PubMed

Cardin R., Piciocchi M., Tieppo C., Maddalo G., Zaninotto G., Mescoli C., Rugge M., Farinati F. Oxidative DNA damage in Barrett mucosa: Correlation with telomeric dysfunction and p53 mutation. Ann. Surg. Oncol. 2013;20(Suppl. 3):S583–S589. doi: 10.1245/s10434-013-3043-1. PubMed DOI

ElBadre H.M., El-Mahdy R.I., Mohamed N.A., Zakhary M.M., Maximous D.W. Tissue Indices of Telomere Length and p53 in Patients with Different Gastrointestinal Tumors: Correlation with Clinicopathological Status. Appl. Biochem. Biotechnol. 2018;186:764–778. doi: 10.1007/s12010-018-2759-6. PubMed DOI

Borbora D., Dutta H.K., Devi K.R., Mahanta J., Medhi P., Narain K. Long telomeres cooperate with p53, MDM2, and p21 polymorphisms to raise pediatric solid tumor risk. Pediatr. Int. 2019;61:759–767. doi: 10.1111/ped.13915. PubMed DOI

Scalise J.R., Pocas R.C., Caneloi T.P., Lopes C.O., Kanno D.T., Marques M.G., Valdivia J.C., Maximo F.R., Pereira J.A., Ribeiro M.L., et al. DNA Damage Is a Potential Marker for TP53 Mutation in Colorectal Carcinogenesis. J. Gastrointest. Cancer. 2016;47:409–416. doi: 10.1007/s12029-016-9846-0. PubMed DOI

Caja F., Vodickova L., Kral J., Vymetalkova V., Naccarati A., Vodicka P. DNA Mismatch Repair Gene Variants in Sporadic Solid Cancers. Int. J. Mol. Sci. 2020;21:5561. doi: 10.3390/ijms21155561. PubMed DOI PMC

Wang S., Zhang Y., Chen M., Wang Y., Feng Y., Xu Z., Zhang D., Sun Y., Fu Z. Association of genetic variants in ATR-CHEK1 and ATM-CHEK2 pathway genes with risk of colorectal cancer in a Chinese population. Oncotarget. 2018;9:26616–26624. doi: 10.18632/oncotarget.24299. PubMed DOI PMC

Jordan J.J., Inga A., Conway K., Edmiston S., Carey L.A., Wu L., Resnick M.A. Altered-function p53 missense mutations identified in breast cancers can have subtle effects on transactivation. Mol. Cancer Res. 2010;8:701–716. doi: 10.1158/1541-7786.MCR-09-0442. PubMed DOI PMC

Siegel M.B., He X., Hoadley K.A., Hoyle A., Pearce J.B., Garrett A.L., Kumar S., Moylan V.J., Brady C.M., Van Swearingen A.E., et al. Integrated RNA and DNA sequencing reveals early drivers of metastatic breast cancer. J. Clin. Investig. 2018;128:1371–1383. doi: 10.1172/JCI96153. PubMed DOI PMC

Zagouri F., Kotoula V., Kouvatseas G., Sotiropoulou M., Koletsa T., Gavressea T., Valavanis C., Trihia H., Bobos M., Lazaridis G., et al. Protein expression patterns of cell cycle regulators in operable breast cancer. PLoS ONE. 2017;12:e0180489. doi: 10.1371/journal.pone.0180489. PubMed DOI PMC

Mollevi D.G., Serrano T., Ginesta M.M., Valls J., Torras J., Navarro M., Ramos E., Germa J.R., Jaurrieta E., Moreno V., et al. Mutations in TP53 are a prognostic factor in colorectal hepatic metastases undergoing surgical resection. Carcinogenesis. 2007;28:1241–1246. doi: 10.1093/carcin/bgm012. PubMed DOI

Huang D., Sun W., Zhou Y., Li P., Chen F., Chen H., Xia D., Xu E., Lai M., Wu Y., et al. Mutations of key driver genes in colorectal cancer progression and metastasis. Cancer Metastasis Rev. 2018;37:173–187. doi: 10.1007/s10555-017-9726-5. PubMed DOI

Westra J.L., Schaapveld M., Hollema H., de Boer J.P., Kraak M.M., de Jong D., ter Elst A., Mulder N.H., Buys C.H., Hofstra R.M., et al. Determination of TP53 mutation is more relevant than microsatellite instability status for the prediction of disease-free survival in adjuvant-treated stage III colon cancer patients. J. Clin. Oncol. 2005;23:5635–5643. doi: 10.1200/JCO.2005.04.096. PubMed DOI

Fry E.A., Niehans G.E., Kratzke R.A., Kai F., Inoue K. Survival of Lung Cancer Patients Dependent on the LOH Status for DMP1, ARF, and p53. Int. J. Mol. Sci. 2020;21:7971. doi: 10.3390/ijms21217971. PubMed DOI PMC

Wang F., Zhao N., Gao G., Deng H.B., Wang Z.H., Deng L.L., Yang Y., Lu C. Prognostic value of TP53 co-mutation status combined with EGFR mutation in patients with lung adenocarcinoma. J. Cancer Res. Clin. Oncol. 2020;146:2851–2859. doi: 10.1007/s00432-020-03340-5. PubMed DOI

Sirotkovic-Skerlev M., Plavetic N.D., Sedlic F., Kuna S.K., Vrbanec D., Belev B., Plestina S., Kovac Z., Kulic A. Prognostic value of circulating Bcl-2 and anti-p53 antibodies in patients with breast cancer: A long term follow-up (17.5 years) Cancer Biomark. 2020 doi: 10.3233/CBM-201497. PubMed DOI

Grosser B., Kohlruss M., Slotta-Huspenina J., Jesinghaus M., Pfarr N., Steiger K., Novotny A., Gaida M.M., Schmidt T., Hapfelmeier A., et al. Impact of Tumor Localization and Molecular Subtypes on the Prognostic and Predictive Significance of p53 Expression in Gastric Cancer. Cancers. 2020;12:1689. doi: 10.3390/cancers12061689. PubMed DOI PMC

Vakili S.A., George A., Ayatollahi S.A., Martorell M., Ostrander E.A., Salehi B., Martins N., Sharifi-Rad J. Phenolic compounds, saponins and alkaloids on cancer progression: Emphasis on p53 expression and telomere length. Cell. Mol. Biol. 2020;66:110–119. doi: 10.14715/cmb/2020.66.4.15. PubMed DOI

Opattova A., Horak J., Vodenkova S., Kostovcikova K., Cumova A., Macinga P., Galanova N., Rejhova A., Vodickova L., Kozics K., et al. Ganoderma Lucidum induces oxidative DNA damage and enhances the effect of 5-Fluorouracil in colorectal cancer in vitro and in vivo. Mutat. Res. 2019;845:403065. doi: 10.1016/j.mrgentox.2019.06.001. PubMed DOI

Li X.L., Zhou J., Chen Z.R., Chng W.J. P53 mutations in colorectal cancer—Molecular pathogenesis and pharmacological reactivation. World J. Gastroenterol. 2015;21:84–93. doi: 10.3748/wjg.v21.i1.84. PubMed DOI PMC

Thottassery J.V., Zambetti G.P., Arimori K., Schuetz E.G., Schuetz J.D. p53-dependent regulation of MDR1 gene expression causes selective resistance to chemotherapeutic agents. Proc. Natl. Acad. Sci. USA. 1997;94:11037–11042. doi: 10.1073/pnas.94.20.11037. PubMed DOI PMC

Sampath J., Sun D., Kidd V.J., Grenet J., Gandhi A., Shapiro L.H., Wang Q., Zambetti G.P., Schuetz J.D. Mutant p53 cooperates with ETS and selectively up-regulates human MDR1 not MRP1. J. Biol. Chem. 2001;276:39359–39367. doi: 10.1074/jbc.M103429200. PubMed DOI

Pabla N., Huang S., Mi Q.S., Daniel R., Dong Z. ATR-Chk2 signaling in p53 activation and DNA damage response during cisplatin-induced apoptosis. J. Biol. Chem. 2008;283:6572–6583. doi: 10.1074/jbc.M707568200. PubMed DOI

Li Z., Pearlman A.H., Hsieh P. DNA mismatch repair and the DNA damage response. DNA Repair. 2016;38:94–101. doi: 10.1016/j.dnarep.2015.11.019. PubMed DOI PMC

Sundar R., Brown J., Ingles Russo A., Yap T.A. Targeting ATR in cancer medicine. Curr. Probl. Cancer. 2017;41:302–315. doi: 10.1016/j.currproblcancer.2017.05.002. PubMed DOI

Williamson C.T., Miller R., Pemberton H.N., Jones S.E., Campbell J., Konde A., Badham N., Rafiq R., Brough R., Gulati A., et al. ATR inhibitors as a synthetic lethal therapy for tumours deficient in ARID1A. Nat. Commun. 2016;7:13837. doi: 10.1038/ncomms13837. PubMed DOI PMC

Jin M.H., Oh D.Y. ATM in DNA repair in cancer. Pharmacol. Ther. 2019;203:107391. doi: 10.1016/j.pharmthera.2019.07.002. PubMed DOI

Karnitz L.M., Zou L. Molecular Pathways: Targeting ATR in Cancer Therapy. Clin. Cancer Res. 2015;21:4780–4785. doi: 10.1158/1078-0432.CCR-15-0479. PubMed DOI PMC

Anuja K., Chowdhury A.R., Saha A., Roy S., Rath A.K., Kar M., Banerjee B. Radiation-induced DNA damage response and resistance in colorectal cancer stem-like cells. Int. J. Radiat. Biol. 2019;95:667–679. doi: 10.1080/09553002.2019.1580401. PubMed DOI

Weber A.M., Ryan A.J. ATM and ATR as therapeutic targets in cancer. Pharmacol. Ther. 2015;149:124–138. doi: 10.1016/j.pharmthera.2014.12.001. PubMed DOI

Qiu Z., Oleinick N.L., Zhang J. ATR/CHK1 inhibitors and cancer therapy. Radiother. Oncol. 2018;126:450–464. doi: 10.1016/j.radonc.2017.09.043. PubMed DOI PMC

Jabbour-Leung N.A., Chen X., Bui T., Jiang Y., Yang D., Vijayaraghavan S., McArthur M.J., Hunt K.K., Keyomarsi K. Sequential Combination Therapy of CDK Inhibition and Doxorubicin Is Synthetically Lethal in p53-Mutant Triple-Negative Breast Cancer. Mol. Cancer Ther. 2016;15:593–607. doi: 10.1158/1535-7163.MCT-15-0519. PubMed DOI PMC

Kong Y.W., Dreaden E.C., Morandell S., Zhou W., Dhara S.S., Sriram G., Lam F.C., Patterson J.C., Quadir M., Dinh A., et al. Enhancing chemotherapy response through augmented synthetic lethality by co-targeting nucleotide excision repair and cell-cycle checkpoints. Nat. Commun. 2020;11:4124. doi: 10.1038/s41467-020-17958-z. PubMed DOI PMC

Leijen S., van Geel R.M., Sonke G.S., de Jong D., Rosenberg E.H., Marchetti S., Pluim D., van Werkhoven E., Rose S., Lee M.A., et al. Phase II Study of WEE1 Inhibitor AZD1775 Plus Carboplatin in Patients With TP53-Mutated Ovarian Cancer Refractory or Resistant to First-Line Therapy Within 3 Months. J. Clin. Oncol. 2016;34:4354–4361. doi: 10.1200/JCO.2016.67.5942. PubMed DOI

Lee E.K., Fader A.N., Santin A.D., Liu J.F. Uterine serous carcinoma: Molecular features, clinical management, and new and future therapies. Gynecol. Oncol. 2021;160:322–332. doi: 10.1016/j.ygyno.2020.10.017. PubMed DOI

Oza A.M., Estevez-Diz M., Grischke E.M., Hall M., Marme F., Provencher D., Uyar D., Weberpals J.I., Wenham R.M., Laing N., et al. A Biomarker-enriched, Randomized Phase II Trial of Adavosertib (AZD1775) Plus Paclitaxel and Carboplatin for Women with Platinum-sensitive TP53-mutant Ovarian Cancer. Clin. Cancer Res. 2020;26:4767–4776. doi: 10.1158/1078-0432.CCR-20-0219. PubMed DOI

Lheureux S., Lai Z., Dougherty B.A., Runswick S., Hodgson D.R., Timms K.M., Lanchbury J.S., Kaye S., Gourley C., Bowtell D., et al. Long-Term Responders on Olaparib Maintenance in High-Grade Serous Ovarian Cancer: Clinical and Molecular Characterization. Clin. Cancer Res. 2017;23:4086–4094. doi: 10.1158/1078-0432.CCR-16-2615. PubMed DOI

Wilsker D.F., Barrett A.M., Dull A.B., Lawrence S.M., Hollingshead M.G., Chen A., Kummar S., Parchment R.E., Doroshow J.H., Kinders R.J. Evaluation of Pharmacodynamic Responses to Cancer Therapeutic Agents Using DNA Damage Markers. Clin. Cancer Res. 2019;25:3084–3095. doi: 10.1158/1078-0432.CCR-18-2523. PubMed DOI PMC

Plimack E.R., Hoffman-Censits J.H., Viterbo R., Trabulsi E.J., Ross E.A., Greenberg R.E., Chen D.Y., Lallas C.D., Wong Y.N., Lin J., et al. Accelerated methotrexate, vinblastine, doxorubicin, and cisplatin is safe, effective, and efficient neoadjuvant treatment for muscle-invasive bladder cancer: Results of a multicenter phase II study with molecular correlates of response and toxicity. J. Clin. Oncol. 2014;32:1895–1901. doi: 10.1200/JCO.2013.53.2465. PubMed DOI PMC

Engeland K. Cell cycle arrest through indirect transcriptional repression by p53: I have a DREAM. Cell Death Differ. 2018;25:114–132. doi: 10.1038/cdd.2017.172. PubMed DOI PMC

Christmann M., Kaina B. Epigenetic regulation of DNA repair genes and implications for tumor therapy. Mutat. Res. 2019;780:15–28. doi: 10.1016/j.mrrev.2017.10.001. PubMed DOI

Slyskova J., Korenkova V., Collins A.R., Prochazka P., Vodickova L., Svec J., Lipska L., Levy M., Schneiderova M., Liska V., et al. Functional, genetic, and epigenetic aspects of base and nucleotide excision repair in colorectal carcinomas. Clin. Cancer Res. 2012;18:5878–5887. doi: 10.1158/1078-0432.CCR-12-1380. PubMed DOI

Farkas S.A., Vymetalkova V., Vodickova L., Vodicka P., Nilsson T.K. DNA methylation changes in genes frequently mutated in sporadic colorectal cancer and in the DNA repair and Wnt/beta-catenin signaling pathway genes. Epigenomics. 2014;6:179–191. doi: 10.2217/epi.14.7. PubMed DOI

Naccarati A., Pardini B., Stefano L., Landi D., Slyskova J., Novotny J., Levy M., Polakova V., Lipska L., Vodicka P. Polymorphisms in miRNA-binding sites of nucleotide excision repair genes and colorectal cancer risk. Carcinogenesis. 2012;33:1346–1351. doi: 10.1093/carcin/bgs172. PubMed DOI

Schneiderova M., Naccarati A., Pardini B., Rosa F., Gaetano C.D., Jiraskova K., Opattova A., Levy M., Veskrna K., Veskrnova V., et al. MicroRNA-binding site polymorphisms in genes involved in colorectal cancer etiopathogenesis and their impact on disease prognosis. Mutagenesis. 2017;32:533–542. doi: 10.1093/mutage/gex026. PubMed DOI

Pardini B., Rosa F., Barone E., Di Gaetano C., Slyskova J., Novotny J., Levy M., Garritano S., Vodickova L., Buchler T., et al. Variation within 3′-UTRs of base excision repair genes and response to therapy in colorectal cancer patients: A potential modulation of microRNAs binding. Clin. Cancer Res. 2013;19:6044–6056. doi: 10.1158/1078-0432.CCR-13-0314. PubMed DOI

Naccarati A., Rosa F., Vymetalkova V., Barone E., Jiraskova K., Di Gaetano C., Novotny J., Levy M., Vodickova L., Gemignani F., et al. Double-strand break repair and colorectal cancer: Gene variants within 3′ UTRs and microRNAs binding as modulators of cancer risk and clinical outcome. Oncotarget. 2016;7:23156–23169. doi: 10.18632/oncotarget.6804. PubMed DOI PMC

Gronke K., Hernandez P.P., Zimmermann J., Klose C.S.N., Kofoed-Branzk M., Guendel F., Witkowski M., Tizian C., Amann L., Schumacher F., et al. Interleukin-22 protects intestinal stem cells against genotoxic stress. Nature. 2019;566:249–253. doi: 10.1038/s41586-019-0899-7. PubMed DOI PMC

Mukherjee S., Abdisalaam S., Bhattacharya S., Srinivasan K., Sinha D., Asaithamby A. Mechanistic link between DNA damage sensing, repairing and signaling factors and immune signaling. Adv. Protein Chem. Struct. Biol. 2019;115:297–324. doi: 10.1016/bs.apcsb.2018.11.004. PubMed DOI PMC

Tan A.S., Baty J.W., Dong L.F., Bezawork-Geleta A., Endaya B., Goodwin J., Bajzikova M., Kovarova J., Peterka M., Yan B., et al. Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metab. 2015;21:81–94. doi: 10.1016/j.cmet.2014.12.003. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Editorial: Current understanding of genomic and chromosomal instabilities in solid malignancies

. 2023 ; 13 () : 1245087. [epub] 20230824

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...