The Interactions of DNA Repair, Telomere Homeostasis, and p53 Mutational Status in Solid Cancers: Risk, Prognosis, and Prediction
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
18-09709S
Grantová Agentura České Republiky
19-10543S
Grantová Agentura České Republiky
NV18-00199
Agentura Pro Zdravotnický Výzkum České Republiky
PROGRES Q 28
Grantová Agentura, Univerzita Karlova
UNCE/MED/006
Grantová Agentura, Univerzita Karlova
CZ.02.1.01/0.0./0.0/16_019/0000787
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
33513745
PubMed Central
PMC7865496
DOI
10.3390/cancers13030479
PII: cancers13030479
Knihovny.cz E-zdroje
- Klíčová slova
- DNA damage response, TP53 mutational status, cancer progression, cancer risk, cancer therapy, interactions, telomere homeostasis,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The disruption of genomic integrity due to the accumulation of various kinds of DNA damage, deficient DNA repair capacity, and telomere shortening constitute the hallmarks of malignant diseases. DNA damage response (DDR) is a signaling network to process DNA damage with importance for both cancer development and chemotherapy outcome. DDR represents the complex events that detect DNA lesions and activate signaling networks (cell cycle checkpoint induction, DNA repair, and induction of cell death). TP53, the guardian of the genome, governs the cell response, resulting in cell cycle arrest, DNA damage repair, apoptosis, and senescence. The mutational status of TP53 has an impact on DDR, and somatic mutations in this gene represent one of the critical events in human carcinogenesis. Telomere dysfunction in cells that lack p53-mediated surveillance of genomic integrity along with the involvement of DNA repair in telomeric DNA regions leads to genomic instability. While the role of individual players (DDR, telomere homeostasis, and TP53) in human cancers has attracted attention for some time, there is insufficient understanding of the interactions between these pathways. Since solid cancer is a complex and multifactorial disease with considerable inter- and intra-tumor heterogeneity, we mainly dedicated this review to the interactions of DNA repair, telomere homeostasis, and TP53 mutational status, in relation to (a) cancer risk, (b) cancer progression, and (c) cancer therapy.
1st Medical Faculty Charles University 121 08 Prague Czech Republic
Biomedical Center Faculty of Medicine in Pilsen Charles University 301 00 Pilsen Czech Republic
Institute of Biotechnology AS CR 252 50 Vestec Czech Republic
Institute of Experimental Medicine AS CR 142 20 Prague Czech Republic
Institute of Molecular Genetics AS CR 142 20 Prague Czech Republic
Zobrazit více v PubMed
Hanahan D., Weinberg R.A. Hallmarks of cancer: The next generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013. PubMed DOI
Vodicka P., Vodenkova S., Opattova A., Vodickova L. DNA damage and repair measured by comet assay in cancer patients. Mutat. Res. 2019;843:95–110. doi: 10.1016/j.mrgentox.2019.05.009. PubMed DOI
Vodicka P., Urbanova M., Makovicky P., Tomasova K., Kroupa M., Stetina R., Opattova A., Kostovcikova K., Siskova A., Schneiderova M., et al. Oxidative Damage in Sporadic Colorectal Cancer: Molecular Mapping of Base Excision Repair Glycosylases in Colorectal Cancer Patients. Int. J. Mol. Sci. 2020;21:2473. doi: 10.3390/ijms21072473. PubMed DOI PMC
Tomasova K., Cumova A., Seborova K., Horak J., Koucka K., Vodickova L., Vaclavikova R., Vodicka P. DNA Repair and Ovarian Carcinogenesis: Impact on Risk, Prognosis and Therapy Outcome. Cancers. 2020;12:1713. doi: 10.3390/cancers12071713. PubMed DOI PMC
Tubbs A., Nussenzweig A. Endogenous DNA Damage as a Source of Genomic Instability in Cancer. Cell. 2017;168:644–656. doi: 10.1016/j.cell.2017.01.002. PubMed DOI PMC
Niazi Y., Thomsen H., Smolkova B., Vodickova L., Vodenkova S., Kroupa M., Vymetalkova V., Kazimirova A., Barancokova M., Volkovova K., et al. Impact of genetic polymorphisms in kinetochore and spindle assembly genes on chromosomal aberration frequency in healthy humans. Mutat. Res. 2020;858–860:503253. doi: 10.1016/j.mrgentox.2020.503253. PubMed DOI
Vodicka P., Musak L., Vodickova L., Vodenkova S., Catalano C., Kroupa M., Naccarati A., Polivkova Z., Vymetalkova V., Forsti A., et al. Genetic variation of acquired structural chromosomal aberrations. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2018;836:13–21. doi: 10.1016/j.mrgentox.2018.05.014. PubMed DOI
Goldstein M., Kastan M.B. The DNA damage response: Implications for tumor responses to radiation and chemotherapy. Annu. Rev. Med. 2015;66:129–143. doi: 10.1146/annurev-med-081313-121208. PubMed DOI
Lindahl T., Barnes D.E. Repair of endogenous DNA damage. Cold Spring Harb. Symp. Quant. Biol. 2000;65:127–133. doi: 10.1101/sqb.2000.65.127. PubMed DOI
Giglia-Mari G., Zotter A., Vermeulen W. DNA damage response. Cold Spring Harb. Perspect. Biol. 2011;3:a000745. doi: 10.1101/cshperspect.a000745. PubMed DOI PMC
Burrell R.A., McClelland S.E., Endesfelder D., Groth P., Weller M.C., Shaikh N., Domingo E., Kanu N., Dewhurst S.M., Gronroos E., et al. Replication stress links structural and numerical cancer chromosomal instability. Nature. 2013;494:492–496. doi: 10.1038/nature11935. PubMed DOI PMC
Nagel Z.D., Chaim I.A., Samson L.D. Inter-individual variation in DNA repair capacity: A need for multi-pathway functional assays to promote translational DNA repair research. DNA Repair. 2014;19:199–213. doi: 10.1016/j.dnarep.2014.03.009. PubMed DOI PMC
Roos W.P., Kaina B. DNA damage-induced cell death: From specific DNA lesions to the DNA damage response and apoptosis. Cancer Lett. 2013;332:237–248. doi: 10.1016/j.canlet.2012.01.007. PubMed DOI
Reinhardt H.C., Schumacher B. The p53 network: Cellular and systemic DNA damage responses in aging and cancer. Trends Genet. 2012;28:128–136. doi: 10.1016/j.tig.2011.12.002. PubMed DOI PMC
Rodriguez-Brenes I.A., Komarova N.L., Wodarz D. The role of telomere shortening in carcinogenesis: A hybrid stochastic-deterministic approach. J. Theor. Biol. 2019;460:144–152. doi: 10.1016/j.jtbi.2018.09.003. PubMed DOI PMC
Tomasova K., Kroupa M., Forsti A., Vodicka P., Vodickova L. Telomere maintenance in interplay with DNA repair in pathogenesis and treatment of colorectal cancer. Mutagenesis. 2020;35:261–271. doi: 10.1093/mutage/geaa005. PubMed DOI
Fearon E.R., Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61:759–767. doi: 10.1016/0092-8674(90)90186-I. PubMed DOI
Naccarati A., Polakova V., Pardini B., Vodickova L., Hemminki K., Kumar R., Vodicka P. Mutations and polymorphisms in TP53 gene—An overview on the role in colorectal cancer. Mutagenesis. 2012;27:211–218. doi: 10.1093/mutage/ger067. PubMed DOI
Bouaoun L., Sonkin D., Ardin M., Hollstein M., Byrnes G., Zavadil J., Olivier M. TP53 Variations in Human Cancers: New Lessons from the IARC TP53 Database and Genomics Data. Hum. Mutat. 2016;37:865–876. doi: 10.1002/humu.23035. PubMed DOI
Kaiser A.M., Attardi L.D. Deconstructing networks of p53-mediated tumor suppression in vivo. Cell Death Differ. 2018;25:93–103. doi: 10.1038/cdd.2017.171. PubMed DOI PMC
Stein Y., Rotter V., Aloni-Grinstein R. Gain-of-Function Mutant p53: All the Roads Lead to Tumorigenesis. Int. J. Mol. Sci. 2019;20:6197. doi: 10.3390/ijms20246197. PubMed DOI PMC
Zhang C., Liu J., Xu D., Zhang T., Hu W., Feng Z. Gain-of-function mutant p53 in cancer progression and therapy. J. Mol. Cell Biol. 2020;12:674–687. doi: 10.1093/jmcb/mjaa040. PubMed DOI PMC
Loh S.N. Follow the Mutations: Toward Class-Specific, Small-Molecule Reactivation of p53. Biomolecules. 2020;10:303. doi: 10.3390/biom10020303. PubMed DOI PMC
Murphy N., Moreno V., Hughes D.J., Vodicka L., Vodicka P., Aglago E.K., Gunter M.J., Jenab M. Lifestyle and dietary environmental factors in colorectal cancer susceptibility. Mol. Aspects Med. 2019;69:2–9. doi: 10.1016/j.mam.2019.06.005. PubMed DOI
Ozaki T., Nakagawara A. Role of p53 in Cell Death and Human Cancers. Cancers. 2011;3:994–1013. doi: 10.3390/cancers3010994. PubMed DOI PMC
Pitolli C., Wang Y., Candi E., Shi Y., Melino G., Amelio I. p53-Mediated Tumor Suppression: DNA-Damage Response and Alternative Mechanisms. Cancers. 2019;11:1983. doi: 10.3390/cancers11121983. PubMed DOI PMC
Mantovani F., Collavin L., Del Sal G. Mutant p53 as a guardian of the cancer cell. Cell Death Differ. 2019;26:199–212. doi: 10.1038/s41418-018-0246-9. PubMed DOI PMC
Aubrey B.J., Kelly G.L., Janic A., Herold M.J., Strasser A. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ. 2018;25:104–113. doi: 10.1038/cdd.2017.169. PubMed DOI PMC
He L., He X., Lim L.P., de Stanchina E., Xuan Z., Liang Y., Xue W., Zender L., Magnus J., Ridzon D., et al. A microRNA component of the p53 tumour suppressor network. Nature. 2007;447:1130–1134. doi: 10.1038/nature05939. PubMed DOI PMC
Chipuk J.E., Kuwana T., Bouchier-Hayes L., Droin N.M., Newmeyer D.D., Schuler M., Green D.R. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science. 2004;303:1010–1014. doi: 10.1126/science.1092734. PubMed DOI
Vaseva A.V., Marchenko N.D., Ji K., Tsirka S.E., Holzmann S., Moll U.M. p53 opens the mitochondrial permeability transition pore to trigger necrosis. Cell. 2012;149:1536–1548. doi: 10.1016/j.cell.2012.05.014. PubMed DOI PMC
Jiang L., Kon N., Li T., Wang S.J., Su T., Hibshoosh H., Baer R., Gu W. Ferroptosis as a p53-mediated activity during tumour suppression. Nature. 2015;520:57–62. doi: 10.1038/nature14344. PubMed DOI PMC
Seillier M., Peuget S., Gayet O., Gauthier C., N’Guessan P., Monte M., Carrier A., Iovanna J.L., Dusetti N.J. TP53INP1, a tumor suppressor, interacts with LC3 and ATG8-family proteins through the LC3-interacting region (LIR) and promotes autophagy-dependent cell death. Cell Death Differ. 2012;19:1525–1535. doi: 10.1038/cdd.2012.30. PubMed DOI PMC
Crighton D., Wilkinson S., O’Prey J., Syed N., Smith P., Harrison P.R., Gasco M., Garrone O., Crook T., Ryan K.M. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell. 2006;126:121–134. doi: 10.1016/j.cell.2006.05.034. PubMed DOI
Mijit M., Caracciolo V., Melillo A., Amicarelli F., Giordano A. Role of p53 in the Regulation of Cellular Senescence. Biomolecules. 2020;10:420. doi: 10.3390/biom10030420. PubMed DOI PMC
El-Deiry W.S., Tokino T., Velculescu V.E., Levy D.B., Parsons R., Trent J.M., Lin D., Mercer W.E., Kinzler K.W., Vogelstein B. WAF1, a potential mediator of p53 tumor suppression. Cell. 1993;75:817–825. doi: 10.1016/0092-8674(93)90500-P. PubMed DOI
Yosef R., Pilpel N., Papismadov N., Gal H., Ovadya Y., Vadai E., Miller S., Porat Z., Ben-Dor S., Krizhanovsky V. p21 maintains senescent cell viability under persistent DNA damage response by restraining JNK and caspase signaling. EMBO J. 2017;36:2280–2295. doi: 10.15252/embj.201695553. PubMed DOI PMC
Lisek K., Campaner E., Ciani Y., Walerych D., Del Sal G. Mutant p53 tunes the NRF2-dependent antioxidant response to support survival of cancer cells. Oncotarget. 2018;9:20508–20523. doi: 10.18632/oncotarget.24974. PubMed DOI PMC
Zhou J., Ahn J., Wilson S.H., Prives C. A role for p53 in base excision repair. EMBO J. 2001;20:914–923. doi: 10.1093/emboj/20.4.914. PubMed DOI PMC
Zaky A., Busso C., Izumi T., Chattopadhyay R., Bassiouny A., Mitra S., Bhakat K.K. Regulation of the human AP-endonuclease (APE1/Ref-1) expression by the tumor suppressor p53 in response to DNA damage. Nucleic Acids Res. 2008;36:1555–1566. doi: 10.1093/nar/gkm1173. PubMed DOI PMC
Offer H., Wolkowicz R., Matas D., Blumenstein S., Livneh Z., Rotter V. Direct involvement of p53 in the base excision repair pathway of the DNA repair machinery. FEBS Lett. 1999;450:197–204. doi: 10.1016/S0014-5793(99)00505-0. PubMed DOI
Jung H.J., Kim H.L., Kim Y.J., Weon J.I., Seo Y.R. A novel chemopreventive mechanism of selenomethionine: Enhancement of APE1 enzyme activity via a Gadd45a, PCNA and APE1 protein complex that regulates p53-mediated base excision repair. Oncol. Rep. 2013;30:1581–1586. doi: 10.3892/or.2013.2613. PubMed DOI PMC
Seo Y.R., Fishel M.L., Amundson S., Kelley M.R., Smith M.L. Implication of p53 in base excision DNA repair: In vivo evidence. Oncogene. 2002;21:731–737. doi: 10.1038/sj.onc.1205129. PubMed DOI
Offer H., Zurer I., Banfalvi G., Reha’k M., Falcovitz A., Milyavsky M., Goldfinger N., Rotter V. p53 modulates base excision repair activity in a cell cycle-specific manner after genotoxic stress. Cancer Res. 2001;61:88–96. PubMed
Smith M.L., Seo Y.R. p53 regulation of DNA excision repair pathways. Mutagenesis. 2002;17:149–156. doi: 10.1093/mutage/17.2.149. PubMed DOI
Williams A.B., Schumacher B. p53 in the DNA-Damage-Repair Process. Cold Spring Harb. Perspect. Med. 2016;6 doi: 10.1101/cshperspect.a026070. PubMed DOI PMC
Wang X.W., Yeh H., Schaeffer L., Roy R., Moncollin V., Egly J.M., Wang Z., Freidberg E.C., Evans M.K., Taffe B.G., et al. p53 modulation of TFIIH-associated nucleotide excision repair activity. Nat. Genet. 1995;10:188–195. doi: 10.1038/ng0695-188. PubMed DOI
Schwartz D., Goldfinger N., Kam Z., Rotter V. p53 controls low DNA damage-dependent premeiotic checkpoint and facilitates DNA repair during spermatogenesis. Cell Growth Differ. 1999;10:665–675. PubMed
Zurer I., Hofseth L.J., Cohen Y., Xu-Welliver M., Hussain S.P., Harris C.C., Rotter V. The role of p53 in base excision repair following genotoxic stress. Carcinogenesis. 2004;25:11–19. doi: 10.1093/carcin/bgg186. PubMed DOI
Song H., Hollstein M., Xu Y. p53 gain-of-function cancer mutants induce genetic instability by inactivating ATM. Nat. Cell Biol. 2007;9:573–580. doi: 10.1038/ncb1571. PubMed DOI
Menon V., Povirk L. Involvement of p53 in the repair of DNA double strand breaks: Multifaceted Roles of p53 in homologous recombination repair (HRR) and non-homologous end joining (NHEJ) Subcell. Biochem. 2014;85:321–336. doi: 10.1007/978-94-017-9211-0_17. PubMed DOI PMC
Yoon D., Wang Y., Stapleford K., Wiesmuller L., Chen J. P53 inhibits strand exchange and replication fork regression promoted by human Rad51. J. Mol. Biol. 2004;336:639–654. doi: 10.1016/j.jmb.2003.12.050. PubMed DOI
Zhang Y.X., Pan W.Y., Chen J. p53 and its isoforms in DNA double-stranded break repair. J. Zhejiang Univ. Sci. B. 2019;20:457–466. doi: 10.1631/jzus.B1900167. PubMed DOI PMC
Mehigan B.J., Ashman J.N., Baker R.P., Macdonald A., Greenman J., Monson J.R., Cawkwell L. Mismatch repair, p53 and chromosomal aberrations in primary colorectal carcinomas. Acta Oncol. 2006;45:61–66. doi: 10.1080/02841860500374463. PubMed DOI
Lin C.S., Huang Y.Y., Pan S.C., Cheng C.T., Liu C.C., Shih C.H., Ho H.L., Yeh Y.C., Chou T.Y., Lee M.Y., et al. Involvement of increased p53 expression in the decrease of mitochondrial DNA copy number and increase of SUVmax of FDG-PET scan in esophageal squamous cell carcinoma. Mitochondrion. 2019;47:54–63. doi: 10.1016/j.mito.2019.05.001. PubMed DOI
Shay J.W., Wright W.E. Senescence and immortalization: Role of telomeres and telomerase. Carcinogenesis. 2005;26:867–874. doi: 10.1093/carcin/bgh296. PubMed DOI
Jones K.R., Elmore L.W., Jackson-Cook C., Demasters G., Povirk L.F., Holt S.E., Gewirtz D.A. p53-Dependent accelerated senescence induced by ionizing radiation in breast tumour cells. Int. J. Radiat. Biol. 2005;81:445–458. doi: 10.1080/09553000500168549. PubMed DOI
Artandi S.E., Attardi L.D. Pathways connecting telomeres and p53 in senescence, apoptosis, and cancer. Biochem. Biophys. Res. Commun. 2005;331:881–890. doi: 10.1016/j.bbrc.2005.03.211. PubMed DOI
Roake C.M., Artandi S.E. Control of Cellular Aging, Tissue Function, and Cancer by p53 Downstream of Telomeres. Cold Spring Harb. Perspect. Med. 2017;7 doi: 10.1101/cshperspect.a026088. PubMed DOI PMC
Toufektchan E., Toledo F. The Guardian of the Genome Revisited: p53 Downregulates Genes Required for Telomere Maintenance, DNA Repair, and Centromere Structure. Cancers. 2018;10:135. doi: 10.3390/cancers10050135. PubMed DOI PMC
Ge Y., Wu S., Zhang Z., Li X., Li F., Yan S., Liu H., Huang J., Zhao Y. Inhibition of p53 and/or AKT as a new therapeutic approach specifically targeting ALT cancers. Protein Cell. 2019;10:808–824. doi: 10.1007/s13238-019-0634-z. PubMed DOI PMC
Kwong A., Shin V.Y., Ho C.Y.S., Au C.H., Slavin T.P., Weitzel J.N., Chan T.L., Ma E.S.K. Mutation screening of germline TP53 mutations in high-risk Chinese breast cancer patients. BMC Cancer. 2020;20:1053. doi: 10.1186/s12885-020-07476-y. PubMed DOI PMC
Wang X., Sun Q. TP53 mutations, expression and interaction networks in human cancers. Oncotarget. 2017;8:624–643. doi: 10.18632/oncotarget.13483. PubMed DOI PMC
Nakayama M., Oshima M. Mutant p53 in colon cancer. J. Mol. Cell Biol. 2019;11:267–276. doi: 10.1093/jmcb/mjy075. PubMed DOI PMC
Oh H.J., Bae J.M., Wen X., Jung S., Kim Y., Kim K.J., Cho N.Y., Kim J.H., Han S.W., Kim T.Y., et al. p53 expression status is associated with cancer-specific survival in stage III and high-risk stage II colorectal cancer patients treated with oxaliplatin-based adjuvant chemotherapy. Br. J. Cancer. 2019;120:797–805. doi: 10.1038/s41416-019-0429-2. PubMed DOI PMC
Li H., Zhang J., Tong J.H.M., Chan A.W.H., Yu J., Kang W., To K.F. Targeting the Oncogenic p53 Mutants in Colorectal Cancer and Other Solid Tumors. Int. J. Mol. Sci. 2019;20:5999. doi: 10.3390/ijms20235999. PubMed DOI PMC
Donehower L.A., Soussi T., Korkut A., Liu Y., Schultz A., Cardenas M., Li X., Babur O., Hsu T.K., Lichtarge O., et al. Integrated Analysis of TP53 Gene and Pathway Alterations in The Cancer Genome Atlas. Cell Rep. 2019;28:1370–1384.e5. doi: 10.1016/j.celrep.2019.07.001. PubMed DOI PMC
Baker S.J., Preisinger A.C., Jessup J.M., Paraskeva C., Markowitz S., Willson J.K., Hamilton S., Vogelstein B. p53 gene mutations occur in combination with 17p allelic deletions as late events in colorectal tumorigenesis. Cancer Res. 1990;50:7717–7722. PubMed
Iacopetta B., Russo A., Bazan V., Dardanoni G., Gebbia N., Soussi T., Kerr D., Elsaleh H., Soong R., Kandioler D., et al. Functional categories of TP53 mutation in colorectal cancer: Results of an International Collaborative Study. Ann. Oncol. 2006;17:842–847. doi: 10.1093/annonc/mdl035. PubMed DOI
Bargonetti J., Prives C. Gain-of-function mutant p53: History and speculation. J. Mol. Cell Biol. 2019;11:605–609. doi: 10.1093/jmcb/mjz067. PubMed DOI PMC
Mirzayans R., Andrais B., Scott A., Murray D. New insights into p53 signaling and cancer cell response to DNA damage: Implications for cancer therapy. J. Biomed. Biotechnol. 2012;2012:170325. doi: 10.1155/2012/170325. PubMed DOI PMC
Grady W.M., Markowitz S.D. The molecular pathogenesis of colorectal cancer and its potential application to colorectal cancer screening. Dig. Dis. Sci. 2015;60:762–772. doi: 10.1007/s10620-014-3444-4. PubMed DOI PMC
Hao X.P., Frayling I.M., Sgouros J.G., Du M.Q., Willcocks T.C., Talbot I.C., Tomlinson I.P. The spectrum of p53 mutations in colorectal adenomas differs from that in colorectal carcinomas. Gut. 2002;50:834–839. doi: 10.1136/gut.50.6.834. PubMed DOI PMC
Hainaut P., Pfeifer G.P. Somatic TP53 Mutations in the Era of Genome Sequencing. Cold Spring Harb. Perspect. Med. 2016;6:a026179. doi: 10.1101/cshperspect.a026179. PubMed DOI PMC
Russo A., Bazan V., Iacopetta B., Kerr D., Soussi T., Gebbia N., Group T.C.C.S. The TP53 colorectal cancer international collaborative study on the prognostic and predictive significance of p53 mutation: Influence of tumor site, type of mutation, and adjuvant treatment. J. Clin. Oncol. 2005;23:7518–7528. doi: 10.1200/JCO.2005.00.471. PubMed DOI
Carethers J.M., Jung B.H. Genetics and Genetic Biomarkers in Sporadic Colorectal Cancer. Gastroenterology. 2015;149:1177–1190.e3. doi: 10.1053/j.gastro.2015.06.047. PubMed DOI PMC
Baran B., Mert Ozupek N., Yerli Tetik N., Acar E., Bekcioglu O., Baskin Y. Difference Between Left-Sided and Right-Sided Colorectal Cancer: A Focused Review of Literature. Gastroenterol. Res. 2018;11:264–273. doi: 10.14740/gr1062w. PubMed DOI PMC
Spencer J.M., Morgan M.B., Trapp K.M., Moon S.D. Topical formulation engendered alteration in p53 and cyclobutane pyrimidine dimer expression in chronic photodamaged patients. J. Drugs Dermatol. 2013;12:336–340. PubMed
Cardin R., Piciocchi M., Tieppo C., Maddalo G., Zaninotto G., Mescoli C., Rugge M., Farinati F. Oxidative DNA damage in Barrett mucosa: Correlation with telomeric dysfunction and p53 mutation. Ann. Surg. Oncol. 2013;20(Suppl. 3):S583–S589. doi: 10.1245/s10434-013-3043-1. PubMed DOI
ElBadre H.M., El-Mahdy R.I., Mohamed N.A., Zakhary M.M., Maximous D.W. Tissue Indices of Telomere Length and p53 in Patients with Different Gastrointestinal Tumors: Correlation with Clinicopathological Status. Appl. Biochem. Biotechnol. 2018;186:764–778. doi: 10.1007/s12010-018-2759-6. PubMed DOI
Borbora D., Dutta H.K., Devi K.R., Mahanta J., Medhi P., Narain K. Long telomeres cooperate with p53, MDM2, and p21 polymorphisms to raise pediatric solid tumor risk. Pediatr. Int. 2019;61:759–767. doi: 10.1111/ped.13915. PubMed DOI
Scalise J.R., Pocas R.C., Caneloi T.P., Lopes C.O., Kanno D.T., Marques M.G., Valdivia J.C., Maximo F.R., Pereira J.A., Ribeiro M.L., et al. DNA Damage Is a Potential Marker for TP53 Mutation in Colorectal Carcinogenesis. J. Gastrointest. Cancer. 2016;47:409–416. doi: 10.1007/s12029-016-9846-0. PubMed DOI
Caja F., Vodickova L., Kral J., Vymetalkova V., Naccarati A., Vodicka P. DNA Mismatch Repair Gene Variants in Sporadic Solid Cancers. Int. J. Mol. Sci. 2020;21:5561. doi: 10.3390/ijms21155561. PubMed DOI PMC
Wang S., Zhang Y., Chen M., Wang Y., Feng Y., Xu Z., Zhang D., Sun Y., Fu Z. Association of genetic variants in ATR-CHEK1 and ATM-CHEK2 pathway genes with risk of colorectal cancer in a Chinese population. Oncotarget. 2018;9:26616–26624. doi: 10.18632/oncotarget.24299. PubMed DOI PMC
Jordan J.J., Inga A., Conway K., Edmiston S., Carey L.A., Wu L., Resnick M.A. Altered-function p53 missense mutations identified in breast cancers can have subtle effects on transactivation. Mol. Cancer Res. 2010;8:701–716. doi: 10.1158/1541-7786.MCR-09-0442. PubMed DOI PMC
Siegel M.B., He X., Hoadley K.A., Hoyle A., Pearce J.B., Garrett A.L., Kumar S., Moylan V.J., Brady C.M., Van Swearingen A.E., et al. Integrated RNA and DNA sequencing reveals early drivers of metastatic breast cancer. J. Clin. Investig. 2018;128:1371–1383. doi: 10.1172/JCI96153. PubMed DOI PMC
Zagouri F., Kotoula V., Kouvatseas G., Sotiropoulou M., Koletsa T., Gavressea T., Valavanis C., Trihia H., Bobos M., Lazaridis G., et al. Protein expression patterns of cell cycle regulators in operable breast cancer. PLoS ONE. 2017;12:e0180489. doi: 10.1371/journal.pone.0180489. PubMed DOI PMC
Mollevi D.G., Serrano T., Ginesta M.M., Valls J., Torras J., Navarro M., Ramos E., Germa J.R., Jaurrieta E., Moreno V., et al. Mutations in TP53 are a prognostic factor in colorectal hepatic metastases undergoing surgical resection. Carcinogenesis. 2007;28:1241–1246. doi: 10.1093/carcin/bgm012. PubMed DOI
Huang D., Sun W., Zhou Y., Li P., Chen F., Chen H., Xia D., Xu E., Lai M., Wu Y., et al. Mutations of key driver genes in colorectal cancer progression and metastasis. Cancer Metastasis Rev. 2018;37:173–187. doi: 10.1007/s10555-017-9726-5. PubMed DOI
Westra J.L., Schaapveld M., Hollema H., de Boer J.P., Kraak M.M., de Jong D., ter Elst A., Mulder N.H., Buys C.H., Hofstra R.M., et al. Determination of TP53 mutation is more relevant than microsatellite instability status for the prediction of disease-free survival in adjuvant-treated stage III colon cancer patients. J. Clin. Oncol. 2005;23:5635–5643. doi: 10.1200/JCO.2005.04.096. PubMed DOI
Fry E.A., Niehans G.E., Kratzke R.A., Kai F., Inoue K. Survival of Lung Cancer Patients Dependent on the LOH Status for DMP1, ARF, and p53. Int. J. Mol. Sci. 2020;21:7971. doi: 10.3390/ijms21217971. PubMed DOI PMC
Wang F., Zhao N., Gao G., Deng H.B., Wang Z.H., Deng L.L., Yang Y., Lu C. Prognostic value of TP53 co-mutation status combined with EGFR mutation in patients with lung adenocarcinoma. J. Cancer Res. Clin. Oncol. 2020;146:2851–2859. doi: 10.1007/s00432-020-03340-5. PubMed DOI
Sirotkovic-Skerlev M., Plavetic N.D., Sedlic F., Kuna S.K., Vrbanec D., Belev B., Plestina S., Kovac Z., Kulic A. Prognostic value of circulating Bcl-2 and anti-p53 antibodies in patients with breast cancer: A long term follow-up (17.5 years) Cancer Biomark. 2020 doi: 10.3233/CBM-201497. PubMed DOI
Grosser B., Kohlruss M., Slotta-Huspenina J., Jesinghaus M., Pfarr N., Steiger K., Novotny A., Gaida M.M., Schmidt T., Hapfelmeier A., et al. Impact of Tumor Localization and Molecular Subtypes on the Prognostic and Predictive Significance of p53 Expression in Gastric Cancer. Cancers. 2020;12:1689. doi: 10.3390/cancers12061689. PubMed DOI PMC
Vakili S.A., George A., Ayatollahi S.A., Martorell M., Ostrander E.A., Salehi B., Martins N., Sharifi-Rad J. Phenolic compounds, saponins and alkaloids on cancer progression: Emphasis on p53 expression and telomere length. Cell. Mol. Biol. 2020;66:110–119. doi: 10.14715/cmb/2020.66.4.15. PubMed DOI
Opattova A., Horak J., Vodenkova S., Kostovcikova K., Cumova A., Macinga P., Galanova N., Rejhova A., Vodickova L., Kozics K., et al. Ganoderma Lucidum induces oxidative DNA damage and enhances the effect of 5-Fluorouracil in colorectal cancer in vitro and in vivo. Mutat. Res. 2019;845:403065. doi: 10.1016/j.mrgentox.2019.06.001. PubMed DOI
Li X.L., Zhou J., Chen Z.R., Chng W.J. P53 mutations in colorectal cancer—Molecular pathogenesis and pharmacological reactivation. World J. Gastroenterol. 2015;21:84–93. doi: 10.3748/wjg.v21.i1.84. PubMed DOI PMC
Thottassery J.V., Zambetti G.P., Arimori K., Schuetz E.G., Schuetz J.D. p53-dependent regulation of MDR1 gene expression causes selective resistance to chemotherapeutic agents. Proc. Natl. Acad. Sci. USA. 1997;94:11037–11042. doi: 10.1073/pnas.94.20.11037. PubMed DOI PMC
Sampath J., Sun D., Kidd V.J., Grenet J., Gandhi A., Shapiro L.H., Wang Q., Zambetti G.P., Schuetz J.D. Mutant p53 cooperates with ETS and selectively up-regulates human MDR1 not MRP1. J. Biol. Chem. 2001;276:39359–39367. doi: 10.1074/jbc.M103429200. PubMed DOI
Pabla N., Huang S., Mi Q.S., Daniel R., Dong Z. ATR-Chk2 signaling in p53 activation and DNA damage response during cisplatin-induced apoptosis. J. Biol. Chem. 2008;283:6572–6583. doi: 10.1074/jbc.M707568200. PubMed DOI
Li Z., Pearlman A.H., Hsieh P. DNA mismatch repair and the DNA damage response. DNA Repair. 2016;38:94–101. doi: 10.1016/j.dnarep.2015.11.019. PubMed DOI PMC
Sundar R., Brown J., Ingles Russo A., Yap T.A. Targeting ATR in cancer medicine. Curr. Probl. Cancer. 2017;41:302–315. doi: 10.1016/j.currproblcancer.2017.05.002. PubMed DOI
Williamson C.T., Miller R., Pemberton H.N., Jones S.E., Campbell J., Konde A., Badham N., Rafiq R., Brough R., Gulati A., et al. ATR inhibitors as a synthetic lethal therapy for tumours deficient in ARID1A. Nat. Commun. 2016;7:13837. doi: 10.1038/ncomms13837. PubMed DOI PMC
Jin M.H., Oh D.Y. ATM in DNA repair in cancer. Pharmacol. Ther. 2019;203:107391. doi: 10.1016/j.pharmthera.2019.07.002. PubMed DOI
Karnitz L.M., Zou L. Molecular Pathways: Targeting ATR in Cancer Therapy. Clin. Cancer Res. 2015;21:4780–4785. doi: 10.1158/1078-0432.CCR-15-0479. PubMed DOI PMC
Anuja K., Chowdhury A.R., Saha A., Roy S., Rath A.K., Kar M., Banerjee B. Radiation-induced DNA damage response and resistance in colorectal cancer stem-like cells. Int. J. Radiat. Biol. 2019;95:667–679. doi: 10.1080/09553002.2019.1580401. PubMed DOI
Weber A.M., Ryan A.J. ATM and ATR as therapeutic targets in cancer. Pharmacol. Ther. 2015;149:124–138. doi: 10.1016/j.pharmthera.2014.12.001. PubMed DOI
Qiu Z., Oleinick N.L., Zhang J. ATR/CHK1 inhibitors and cancer therapy. Radiother. Oncol. 2018;126:450–464. doi: 10.1016/j.radonc.2017.09.043. PubMed DOI PMC
Jabbour-Leung N.A., Chen X., Bui T., Jiang Y., Yang D., Vijayaraghavan S., McArthur M.J., Hunt K.K., Keyomarsi K. Sequential Combination Therapy of CDK Inhibition and Doxorubicin Is Synthetically Lethal in p53-Mutant Triple-Negative Breast Cancer. Mol. Cancer Ther. 2016;15:593–607. doi: 10.1158/1535-7163.MCT-15-0519. PubMed DOI PMC
Kong Y.W., Dreaden E.C., Morandell S., Zhou W., Dhara S.S., Sriram G., Lam F.C., Patterson J.C., Quadir M., Dinh A., et al. Enhancing chemotherapy response through augmented synthetic lethality by co-targeting nucleotide excision repair and cell-cycle checkpoints. Nat. Commun. 2020;11:4124. doi: 10.1038/s41467-020-17958-z. PubMed DOI PMC
Leijen S., van Geel R.M., Sonke G.S., de Jong D., Rosenberg E.H., Marchetti S., Pluim D., van Werkhoven E., Rose S., Lee M.A., et al. Phase II Study of WEE1 Inhibitor AZD1775 Plus Carboplatin in Patients With TP53-Mutated Ovarian Cancer Refractory or Resistant to First-Line Therapy Within 3 Months. J. Clin. Oncol. 2016;34:4354–4361. doi: 10.1200/JCO.2016.67.5942. PubMed DOI
Lee E.K., Fader A.N., Santin A.D., Liu J.F. Uterine serous carcinoma: Molecular features, clinical management, and new and future therapies. Gynecol. Oncol. 2021;160:322–332. doi: 10.1016/j.ygyno.2020.10.017. PubMed DOI
Oza A.M., Estevez-Diz M., Grischke E.M., Hall M., Marme F., Provencher D., Uyar D., Weberpals J.I., Wenham R.M., Laing N., et al. A Biomarker-enriched, Randomized Phase II Trial of Adavosertib (AZD1775) Plus Paclitaxel and Carboplatin for Women with Platinum-sensitive TP53-mutant Ovarian Cancer. Clin. Cancer Res. 2020;26:4767–4776. doi: 10.1158/1078-0432.CCR-20-0219. PubMed DOI
Lheureux S., Lai Z., Dougherty B.A., Runswick S., Hodgson D.R., Timms K.M., Lanchbury J.S., Kaye S., Gourley C., Bowtell D., et al. Long-Term Responders on Olaparib Maintenance in High-Grade Serous Ovarian Cancer: Clinical and Molecular Characterization. Clin. Cancer Res. 2017;23:4086–4094. doi: 10.1158/1078-0432.CCR-16-2615. PubMed DOI
Wilsker D.F., Barrett A.M., Dull A.B., Lawrence S.M., Hollingshead M.G., Chen A., Kummar S., Parchment R.E., Doroshow J.H., Kinders R.J. Evaluation of Pharmacodynamic Responses to Cancer Therapeutic Agents Using DNA Damage Markers. Clin. Cancer Res. 2019;25:3084–3095. doi: 10.1158/1078-0432.CCR-18-2523. PubMed DOI PMC
Plimack E.R., Hoffman-Censits J.H., Viterbo R., Trabulsi E.J., Ross E.A., Greenberg R.E., Chen D.Y., Lallas C.D., Wong Y.N., Lin J., et al. Accelerated methotrexate, vinblastine, doxorubicin, and cisplatin is safe, effective, and efficient neoadjuvant treatment for muscle-invasive bladder cancer: Results of a multicenter phase II study with molecular correlates of response and toxicity. J. Clin. Oncol. 2014;32:1895–1901. doi: 10.1200/JCO.2013.53.2465. PubMed DOI PMC
Engeland K. Cell cycle arrest through indirect transcriptional repression by p53: I have a DREAM. Cell Death Differ. 2018;25:114–132. doi: 10.1038/cdd.2017.172. PubMed DOI PMC
Christmann M., Kaina B. Epigenetic regulation of DNA repair genes and implications for tumor therapy. Mutat. Res. 2019;780:15–28. doi: 10.1016/j.mrrev.2017.10.001. PubMed DOI
Slyskova J., Korenkova V., Collins A.R., Prochazka P., Vodickova L., Svec J., Lipska L., Levy M., Schneiderova M., Liska V., et al. Functional, genetic, and epigenetic aspects of base and nucleotide excision repair in colorectal carcinomas. Clin. Cancer Res. 2012;18:5878–5887. doi: 10.1158/1078-0432.CCR-12-1380. PubMed DOI
Farkas S.A., Vymetalkova V., Vodickova L., Vodicka P., Nilsson T.K. DNA methylation changes in genes frequently mutated in sporadic colorectal cancer and in the DNA repair and Wnt/beta-catenin signaling pathway genes. Epigenomics. 2014;6:179–191. doi: 10.2217/epi.14.7. PubMed DOI
Naccarati A., Pardini B., Stefano L., Landi D., Slyskova J., Novotny J., Levy M., Polakova V., Lipska L., Vodicka P. Polymorphisms in miRNA-binding sites of nucleotide excision repair genes and colorectal cancer risk. Carcinogenesis. 2012;33:1346–1351. doi: 10.1093/carcin/bgs172. PubMed DOI
Schneiderova M., Naccarati A., Pardini B., Rosa F., Gaetano C.D., Jiraskova K., Opattova A., Levy M., Veskrna K., Veskrnova V., et al. MicroRNA-binding site polymorphisms in genes involved in colorectal cancer etiopathogenesis and their impact on disease prognosis. Mutagenesis. 2017;32:533–542. doi: 10.1093/mutage/gex026. PubMed DOI
Pardini B., Rosa F., Barone E., Di Gaetano C., Slyskova J., Novotny J., Levy M., Garritano S., Vodickova L., Buchler T., et al. Variation within 3′-UTRs of base excision repair genes and response to therapy in colorectal cancer patients: A potential modulation of microRNAs binding. Clin. Cancer Res. 2013;19:6044–6056. doi: 10.1158/1078-0432.CCR-13-0314. PubMed DOI
Naccarati A., Rosa F., Vymetalkova V., Barone E., Jiraskova K., Di Gaetano C., Novotny J., Levy M., Vodickova L., Gemignani F., et al. Double-strand break repair and colorectal cancer: Gene variants within 3′ UTRs and microRNAs binding as modulators of cancer risk and clinical outcome. Oncotarget. 2016;7:23156–23169. doi: 10.18632/oncotarget.6804. PubMed DOI PMC
Gronke K., Hernandez P.P., Zimmermann J., Klose C.S.N., Kofoed-Branzk M., Guendel F., Witkowski M., Tizian C., Amann L., Schumacher F., et al. Interleukin-22 protects intestinal stem cells against genotoxic stress. Nature. 2019;566:249–253. doi: 10.1038/s41586-019-0899-7. PubMed DOI PMC
Mukherjee S., Abdisalaam S., Bhattacharya S., Srinivasan K., Sinha D., Asaithamby A. Mechanistic link between DNA damage sensing, repairing and signaling factors and immune signaling. Adv. Protein Chem. Struct. Biol. 2019;115:297–324. doi: 10.1016/bs.apcsb.2018.11.004. PubMed DOI PMC
Tan A.S., Baty J.W., Dong L.F., Bezawork-Geleta A., Endaya B., Goodwin J., Bajzikova M., Kovarova J., Peterka M., Yan B., et al. Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metab. 2015;21:81–94. doi: 10.1016/j.cmet.2014.12.003. PubMed DOI