DNA Repair and Ovarian Carcinogenesis: Impact on Risk, Prognosis and Therapy Outcome
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
19-10543S
Grantová Agentura České Republiky
NV-18/03/00199
Agentura Pro Zdravotnický Výzkum České Republiky
LTC19020
Ministerstvo Školství, Mládeže a Tělovýchovy
(NPU I) Nr. LO1503
Ministerstvo Školství, Mládeže a Tělovýchovy
PROGRES Q 28
Univerzita Karlova v Praze
UNCE/MED/006
Univerzita Karlova v Praze
PubMed
32605254
PubMed Central
PMC7408288
DOI
10.3390/cancers12071713
PII: cancers12071713
Knihovny.cz E-zdroje
- Klíčová slova
- DNA repair, carcinogenesis, ovarian cancer, prognosis, therapy response,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
There is ample evidence for the essential involvement of DNA repair and DNA damage response in the onset of solid malignancies, including ovarian cancer. Indeed, highpenetrance germline mutations in DNA repair genes are important players in familial cancers: BRCA1, BRCA2 mutations or mismatch repair, and polymerase deficiency in colorectal, breast, and ovarian cancers. Recently, some molecular hallmarks (e.g., TP53, KRAS, BRAF, RAD51C/D or PTEN mutations) of ovarian carcinomas were identified. The manuscript overviews the role of DNA repair machinery in ovarian cancer, its risk, prognosis, and therapy outcome. We have attempted to expose molecular hallmarks of ovarian cancer with a focus on DNA repair system and scrutinized genetic, epigenetic, functional, and protein alterations in individual DNA repair pathways (homologous recombination, non-homologous end-joining, DNA mismatch repair, base- and nucleotide-excision repair, and direct repair). We suggest that lack of knowledge particularly in non-homologous end joining repair pathway and the interplay between DNA repair pathways needs to be confronted. The most important genes of the DNA repair system are emphasized and their targeting in ovarian cancer will deserve further attention. The function of those genes, as well as the functional status of the entire DNA repair pathways, should be investigated in detail in the near future.
3rd Faculty of Medicine Charles University Ruska 87 10000 Prague Czech Republic
Toxicogenomics Unit National Institute of Public Health Srobarova 48 10042 Prague Czech Republic
Zobrazit více v PubMed
Reilly N.M., Novara L., Di Nicolantonio F., Bardelli A. Exploiting DNA repair defects in colorectal cancer. Mol. Oncol. 2019;13:681–700. doi: 10.1002/1878-0261.12467. PubMed DOI PMC
Vodicka P., Vodenkova S., Buchler T., Vodickova L. DNA repair capacity and response to treatment of colon cancer. Pharmacogenomics. 2019;20:1225–1233. doi: 10.2217/pgs-2019-0070. PubMed DOI
Vodicka P., Vodenkova S., Opattova A., Vodickova L. DNA damage and repair measured by comet assay in cancer patients. Mutat. Res. 2019;843:95–110. doi: 10.1016/j.mrgentox.2019.05.009. PubMed DOI
Pearl L.H., Schierz A.C., Ward S.E., Al-Lazikani B., Pearl F.M. Therapeutic opportunities within the DNA damage response. Nat. Rev. Cancer. 2015;15:166–180. doi: 10.1038/nrc3891. PubMed DOI
Goyal G., Fan T., Silberstein P.T. Hereditary cancer syndromes: Utilizing DNA repair deficiency as therapeutic target. Fam. Cancer. 2016;15:359–366. doi: 10.1007/s10689-016-9883-7. PubMed DOI PMC
Grady W.M., Markowitz S.D. The molecular pathogenesis of colorectal cancer and its potential application to colorectal cancer screening. Dig. Dis. Sci. 2015;60:762–772. doi: 10.1007/s10620-014-3444-4. PubMed DOI PMC
Niskakoski A., Pasanen A., Porkka N., Eldfors S., Lassus H., Renkonen-Sinisalo L., Kaur S., Mecklin J.P., Butzow R., Peltomaki P. Converging endometrial and ovarian tumorigenesis in Lynch syndrome: Shared origin of synchronous carcinomas. Gynecol. Oncol. 2018;150:92–98. doi: 10.1016/j.ygyno.2018.04.566. PubMed DOI
Nielsen F.C., van Overeem Hansen T., Sorensen C.S. Hereditary breast and ovarian cancer: New genes in confined pathways. Nat. Rev. Cancer. 2016;16:599–612. doi: 10.1038/nrc.2016.72. PubMed DOI
Song H., Dicks E., Ramus S.J., Tyrer J.P., Intermaggio M.P., Hayward J., Edlund C.K., Conti D., Harrington P., Fraser L., et al. Contribution of Germline Mutations in the RAD51B, RAD51C, and RAD51D Genes to Ovarian Cancer in the Population. J. Clin. Oncol. 2015;33:2901–2907. doi: 10.1200/JCO.2015.61.2408. PubMed DOI PMC
Ferlay J., Colombet M., Soerjomataram I., Mathers C., Parkin D.M., Pineros M., Znaor A., Bray F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer. 2019;144:1941–1953. doi: 10.1002/ijc.31937. PubMed DOI
Matulonis U.A., Sood A.K., Fallowfield L., Howitt B.E., Sehouli J., Karlan B.Y. Ovarian cancer. Nat. Rev. Dis. Prim. 2016;2:16061. doi: 10.1038/nrdp.2016.61. PubMed DOI PMC
Rojas V., Hirshfield K.M., Ganesan S., Rodriguez-Rodriguez L. Molecular Characterization of Epithelial Ovarian Cancer: Implications for Diagnosis and Treatment. Int. J. Mol. Sci. 2016;17 doi: 10.3390/ijms17122113. PubMed DOI PMC
Bowtell D.D., Bohm S., Ahmed A.A., Aspuria P.J., Bast R.C., Jr., Beral V., Berek J.S., Birrer M.J., Blagden S., Bookman M.A., et al. Rethinking ovarian cancer II: Reducing mortality from high-grade serous ovarian cancer. Nat. Rev. Cancer. 2015;15:668–679. doi: 10.1038/nrc4019. PubMed DOI PMC
Kurman R.J., Shih Ie M. The Dualistic Model of Ovarian Carcinogenesis: Revisited, Revised, and Expanded. Am. J. Pathol. 2016;186:733–747. doi: 10.1016/j.ajpath.2015.11.011. PubMed DOI PMC
Testa U., Petrucci E., Pasquini L., Castelli G., Pelosi E. Ovarian Cancers: Genetic Abnormalities, Tumor Heterogeneity and Progression, Clonal Evolution and Cancer Stem Cells. Medcines. 2018;5:16. doi: 10.3390/medicines5010016. PubMed DOI PMC
Kurman R.J., Shih Ie M. Molecular pathogenesis and extraovarian origin of epithelial ovarian cancer--shifting the paradigm. Hum. Pathol. 2011;42:918–931. doi: 10.1016/j.humpath.2011.03.003. PubMed DOI PMC
Markman M. Optimizing primary chemotherapy in ovarian cancer. Hematol. Oncol. Clin. N. Am. 2003;17:957–968. doi: 10.1016/S0889-8588(03)00058-3. PubMed DOI
Davis A., Tinker A.V., Friedlander M. “Platinum resistant” ovarian cancer: What is it, who to treat and how to measure benefit? Gynecol. Oncol. 2014;133:624–631. doi: 10.1016/j.ygyno.2014.02.038. PubMed DOI
Cortez A.J., Tudrej P., Kujawa K.A., Lisowska K.M. Advances in ovarian cancer therapy. Cancer Chemother. Pharmacol. 2018;81:17–38. doi: 10.1007/s00280-017-3501-8. PubMed DOI PMC
Lisio M.A., Fu L., Goyeneche A., Gao Z.H., Telleria C. High-Grade Serous Ovarian Cancer: Basic Sciences, Clinical and Therapeutic Standpoints. Int. J. Mol. Sci. 2019;20:952. doi: 10.3390/ijms20040952. PubMed DOI PMC
Allemani C., Weir H.K., Carreira H., Harewood R., Spika D., Wang X.S., Bannon F., Ahn J.V., Johnson C.J., Bonaventure A., et al. Global surveillance of cancer survival 1995-2009: Analysis of individual data for 25,676,887 patients from 279 population-based registries in 67 countries (CONCORD-2) Lancet. 2015;385:977–1010. doi: 10.1016/S0140-6736(14)62038-9. PubMed DOI PMC
The World Ovarian Cancer Coalition Atlas, Global Trends in Incidence, Mortality and Survival. [(accessed on 18 March 2020)]; Available online: https://worldovariancancercoalition.org/wp-content/uploads/2018/10/THE-WORLD-OVARIAN-CANCER-COALITION-ATLAS-2018.pdf.
DNA Repair Genes Pertinent Cancer Susceptibility (Version 1.1) [(accessed on 27 May 2020)]; Available online: https://panelapp.genomicsengland.co.uk/panels/256/
Mirza-Aghazadeh-Attari M., Ostadian C., Saei A.A., Mihanfar A., Darband S.G., Sadighparvar S., Kaviani M., Samadi Kafil H., Yousefi B., Majidinia M. DNA damage response and repair in ovarian cancer: Potential targets for therapeutic strategies. DNA Repair. 2019;80:59–84. doi: 10.1016/j.dnarep.2019.06.005. PubMed DOI
Gee M.E., Faraahi Z., McCormick A., Edmondson R.J. DNA damage repair in ovarian cancer: Unlocking the heterogeneity. J. Ovarian Res. 2018;11:50. doi: 10.1186/s13048-018-0424-x. PubMed DOI PMC
Qiao B., Zhang Z., Li Y. Association of MGMT promoter methylation with tumorigenesis features in patients with ovarian cancer: A systematic meta-analysis. Mol. Genet. Genom. Med. 2018;6:69–76. doi: 10.1002/mgg3.349. PubMed DOI PMC
Chang H.H.Y., Pannunzio N.R., Adachi N., Lieber M.R. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat. Rev. Mol. Cell Biol. 2017;18:495–506. doi: 10.1038/nrm.2017.48. PubMed DOI PMC
Branzei D., Foiani M. Regulation of DNA repair throughout the cell cycle. Nat. Rev. Mol. Cell Biol. 2008;9:297–308. doi: 10.1038/nrm2351. PubMed DOI
Li G.M. Mechanisms and functions of DNA mismatch repair. Cell Res. 2008;18:85–98. doi: 10.1038/cr.2007.115. PubMed DOI
Brandsma I., Gent D.C. Pathway choice in DNA double strand break repair: Observations of a balancing act. Genome Integr. 2012;3:9. doi: 10.1186/2041-9414-3-9. PubMed DOI PMC
Silwal-Pandit L., Langerod A., Borresen-Dale A.L. TP53 Mutations in Breast and Ovarian Cancer. Cold Spring Harb. Perspect Med. 2017;7 doi: 10.1101/cshperspect.a026252. PubMed DOI PMC
Leroy B., Anderson M., Soussi T. TP53 mutations in human cancer: Database reassessment and prospects for the next decade. Hum. Mutat. 2014;35:672–688. doi: 10.1002/humu.22552. PubMed DOI
Hernandez G., Ramirez M.J., Minguillon J., Quiles P., Ruiz de Garibay G., Aza-Carmona M., Bogliolo M., Pujol R., Prados-Carvajal R., Fernandez J., et al. Decapping protein EDC4 regulates DNA repair and phenocopies BRCA1. Nat. Commun. 2018;9:967. doi: 10.1038/s41467-018-03433-3. PubMed DOI PMC
Knijnenburg T.A., Wang L., Zimmermann M.T., Chambwe N., Gao G.F., Cherniack A.D., Fan H., Shen H., Way G.P., Greene C.S., et al. Genomic and Molecular Landscape of DNA Damage Repair Deficiency across The Cancer Genome Atlas. Cell Rep. 2018;23:239–254. doi: 10.1016/j.celrep.2018.03.076. PubMed DOI PMC
O’Sullivan Coyne G., Chen A.P., Meehan R., Doroshow J.H. PARP Inhibitors in Reproductive System Cancers: Current Use and Developments. Drugs. 2017;77:113–130. doi: 10.1007/s40265-016-0688-7. PubMed DOI PMC
Rejhova A., Opattova A., Cumova A., Sliva D., Vodicka P. Natural compounds and combination therapy in colorectal cancer treatment. Eur. J. Med. Chem. 2018;144:582–594. doi: 10.1016/j.ejmech.2017.12.039. PubMed DOI
Jeggo P.A., Geuting V., Lobrich M. The role of homologous recombination in radiation-induced double-strand break repair. Radiother. Oncol. 2011;101:7–12. doi: 10.1016/j.radonc.2011.06.019. PubMed DOI
Covo S., Ma W., Westmoreland J.W., Gordenin D.A., Resnick M.A. Understanding the origins of UV-induced recombination through manipulation of sister chromatid cohesion. Cell Cycle. 2012;11:3937–3944. doi: 10.4161/cc.21945. PubMed DOI PMC
Reliene R., Bishop A.J., Schiestl R.H. Involvement of homologous recombination in carcinogenesis. Adv. Genet. 2007;58:67–87. doi: 10.1016/S0065-2660(06)58003-4. PubMed DOI
Pennington K.P., Walsh T., Harrell M.I., Lee M.K., Pennil C.C., Rendi M.H., Thornton A., Norquist B.M., Casadei S., Nord A.S., et al. Germline and somatic mutations in homologous recombination genes predict platinum response and survival in ovarian, fallopian tube, and peritoneal carcinomas. Clin. Cancer Res. 2014;20:764–775. doi: 10.1158/1078-0432.CCR-13-2287. PubMed DOI PMC
Moynahan M.E., Chiu J.W., Koller B.H., Jasin M. Brca1 controls homology-directed DNA repair. Mol. Cell. 1999;4:511–518. doi: 10.1016/S1097-2765(00)80202-6. PubMed DOI
Moynahan M.E., Pierce A.J., Jasin M. BRCA2 is required for homology-directed repair of chromosomal breaks. Mol. Cell. 2001;7:263–272. doi: 10.1016/S1097-2765(01)00174-5. PubMed DOI
Konstantinopoulos P.A., Ceccaldi R., Shapiro G.I., D’Andrea A.D. Homologous Recombination Deficiency: Exploiting the Fundamental Vulnerability of Ovarian Cancer. Cancer Discov. 2015;5:1137–1154. doi: 10.1158/2159-8290.CD-15-0714. PubMed DOI PMC
Yi C., He C. DNA repair by reversal of DNA damage. Cold Spring Harb. Perspect. Biol. 2013;5:a012575. doi: 10.1101/cshperspect.a012575. PubMed DOI PMC
Kuchenbaecker K.B., Hopper J.L., Barnes D.R., Phillips K.A., Mooij T.M., Roos-Blom M.J., Jervis S., van Leeuwen F.E., Milne R.L., Andrieu N., et al. Risks of Breast, Ovarian, and Contralateral Breast Cancer for BRCA1 and BRCA2 Mutation Carriers. JAMA. 2017;317:2402–2416. doi: 10.1001/jama.2017.7112. PubMed DOI
Kotsopoulos J., Gronwald J., Karlan B., Rosen B., Huzarski T., Moller P., Lynch H.T., Singer C.F., Senter L., Neuhausen S.L., et al. Age-specific ovarian cancer risks among women with a BRCA1 or BRCA2 mutation. Gynecol. Oncol. 2018;150:85–91. doi: 10.1016/j.ygyno.2018.05.011. PubMed DOI
Doufekas K., Olaitan A. Clinical epidemiology of epithelial ovarian cancer in the UK. Int. J. Womens Health. 2014;6:537–545. doi: 10.2147/IJWH.S40894. PubMed DOI PMC
SEER Cancer Statistics Review (CSR) 1975–2015. [(accessed on 18 March 2020)]; Available online: https://seer.cancer.gov/csr/1975_2017/
Rebbeck T.R., Mitra N., Wan F., Sinilnikova O.M., Healey S., McGuffog L., Mazoyer S., Chenevix-Trench G., Easton D.F., Antoniou A.C., et al. Association of type and location of BRCA1 and BRCA2 mutations with risk of breast and ovarian cancer. JAMA. 2015;313:1347–1361. doi: 10.1001/jama.2014.5985. PubMed DOI PMC
Bolton K.L., Chenevix-Trench G., Goh C., Sadetzki S., Ramus S.J., Karlan B.Y., Lambrechts D., Despierre E., Barrowdale D., McGuffog L., et al. Association between BRCA1 and BRCA2 mutations and survival in women with invasive epithelial ovarian cancer. JAMA. 2012;307:382–390. doi: 10.1001/jama.2012.20. PubMed DOI PMC
Ruscito I., Dimitrova D., Vasconcelos I., Gellhaus K., Schwachula T., Bellati F., Zeillinger R., Benedetti-Panici P., Vergote I., Mahner S., et al. BRCA1 gene promoter methylation status in high-grade serous ovarian cancer patients—A study of the tumour Bank ovarian cancer (TOC) and ovarian cancer diagnosis consortium (OVCAD) Eur. J. Cancer. 2014;50:2090–2098. doi: 10.1016/j.ejca.2014.05.001. PubMed DOI
Gourley C., Michie C.O., Roxburgh P., Yap T.A., Harden S., Paul J., Ragupathy K., Todd R., Petty R., Reed N., et al. Increased incidence of visceral metastases in scottish patients with BRCA1/2-defective ovarian cancer: An extension of the ovarian BRCAness phenotype. J. Clin. Oncol. 2010;28:2505–2511. doi: 10.1200/JCO.2009.25.1082. PubMed DOI
Yang D., Khan S., Sun Y., Hess K., Shmulevich I., Sood A.K., Zhang W. Association of BRCA1 and BRCA2 mutations with survival, chemotherapy sensitivity, and gene mutator phenotype in patients with ovarian cancer. JAMA. 2011;306:1557–1565. doi: 10.1001/jama.2011.1456. PubMed DOI PMC
Alsop K., Fereday S., Meldrum C., deFazio A., Emmanuel C., George J., Dobrovic A., Birrer M.J., Webb P.M., Stewart C., et al. BRCA mutation frequency and patterns of treatment response in BRCA mutation-positive women with ovarian cancer: A report from the Australian Ovarian Cancer Study Group. J. Clin. Oncol. 2012;30:2654–2663. doi: 10.1200/JCO.2011.39.8545. PubMed DOI PMC
Jiang X., Li X., Li W., Bai H., Zhang Z. PARP inhibitors in ovarian cancer: Sensitivity prediction and resistance mechanisms. J. Cell Mol. Med. 2019;23:2303–2313. doi: 10.1111/jcmm.14133. PubMed DOI PMC
D’Andrea A.D. Mechanisms of PARP inhibitor sensitivity and resistance. DNA Repair. 2018;71:172–176. doi: 10.1016/j.dnarep.2018.08.021. PubMed DOI
Vaz F., Hanenberg H., Schuster B., Barker K., Wiek C., Erven V., Neveling K., Endt D., Kesterton I., Autore F., et al. Mutation of the RAD51C gene in a Fanconi anemia-like disorder. Nat. Genet. 2010;42:406–409. doi: 10.1038/ng.570. PubMed DOI
Cunningham J.M., Cicek M.S., Larson N.B., Davila J., Wang C., Larson M.C., Song H., Dicks E.M., Harrington P., Wick M., et al. Clinical characteristics of ovarian cancer classified by BRCA1, BRCA2, and RAD51C status. Sci. Rep. 2014;4:4026. doi: 10.1038/srep04026. PubMed DOI PMC
Loveday C., Turnbull C., Ruark E., Xicola R.M., Ramsay E., Hughes D., Warren-Perry M., Snape K., Breast Cancer Susceptibility C., Eccles D., et al. Germline RAD51C mutations confer susceptibility to ovarian cancer. Nat. Genet. 2012;44:475–476. doi: 10.1038/ng.2224. PubMed DOI
Arvai K.J., Roberts M.E., Torene R.I., Susswein L.R., Marshall M.L., Zhang Z., Carter N.J., Yackowski L., Rinella E.S., Klein R.T., et al. Age-adjusted association of homologous recombination genes with ovarian cancer using clinical exomes as controls. Hered. Cancer Clin. Pract. 2019;17:19. doi: 10.1186/s13053-019-0119-3. PubMed DOI PMC
Thompson E.R., Rowley S.M., Sawyer S., Eccles D.M., Trainer A.H., Mitchell G., James P.A., Campbell I.G. Analysis of RAD51D in ovarian cancer patients and families with a history of ovarian or breast cancer. PLoS ONE. 2013;8:e54772. doi: 10.1371/journal.pone.0054772. PubMed DOI PMC
Norquist B.M., Harrell M.I., Brady M.F., Walsh T., Lee M.K., Gulsuner S., Bernards S.S., Casadei S., Yi Q., Burger R.A., et al. Inherited Mutations in Women With Ovarian Carcinoma. JAMA Oncol. 2016;2:482–490. doi: 10.1001/jamaoncol.2015.5495. PubMed DOI PMC
Loveday C., Turnbull C., Ramsay E., Hughes D., Ruark E., Frankum J.R., Bowden G., Kalmyrzaev B., Warren-Perry M., Snape K., et al. Germline mutations in RAD51D confer susceptibility to ovarian cancer. Nat. Genet. 2011;43:879–882. doi: 10.1038/ng.893. PubMed DOI PMC
AlHilli M.M., Becker M.A., Weroha S.J., Flatten K.S., Hurley R.M., Harrell M.I., Oberg A.L., Maurer M.J., Hawthorne K.M., Hou X., et al. In vivo anti-tumor activity of the PARP inhibitor niraparib in homologous recombination deficient and proficient ovarian carcinoma. Gynecol. Oncol. 2016;143:379–388. doi: 10.1016/j.ygyno.2016.08.328. PubMed DOI PMC
Kondrashova O., Nguyen M., Shield-Artin K., Tinker A.V., Teng N.N.H., Harrell M.I., Kuiper M.J., Ho G.Y., Barker H., Jasin M., et al. Secondary Somatic Mutations Restoring RAD51C and RAD51D Associated with Acquired Resistance to the PARP Inhibitor Rucaparib in High-Grade Ovarian Carcinoma. Cancer Discov. 2017;7:984–998. doi: 10.1158/2159-8290.CD-17-0419. PubMed DOI PMC
Heeke A.L., Pishvaian M.J., Lynce F., Xiu J., Brody J.R., Chen W.J., Baker T.M., Marshall J.L., Isaacs C. Prevalence of Homologous Recombination-Related Gene Mutations Across Multiple Cancer Types. JCO Precis Oncol. 2018;2018 doi: 10.1200/PO.17.00286. PubMed DOI PMC
Brandt S., Samartzis E.P., Zimmermann A.K., Fink D., Moch H., Noske A., Dedes K.J. Lack of MRE11-RAD50-NBS1 (MRN) complex detection occurs frequently in low-grade epithelial ovarian cancer. BMC Cancer. 2017;17:44. doi: 10.1186/s12885-016-3026-2. PubMed DOI PMC
Kessous R., Octeau D., Klein K., Tonin P.N., Greenwood C.M.T., Pelmus M., Laskov I., Kogan L., Salvador S., Lau S., et al. Distinct homologous recombination gene expression profiles after neoadjuvant chemotherapy associated with clinical outcome in patients with ovarian cancer. Gynecol. Oncol. 2018;148:553–558. doi: 10.1016/j.ygyno.2018.01.017. PubMed DOI
Zhang M., Liu G., Xue F., Edwards R., Sood A.K., Zhang W., Yang D. Copy number deletion of RAD50 as predictive marker of BRCAness and PARP inhibitor response in BRCA wild type ovarian cancer. Gynecol. Oncol. 2016;141:57–64. doi: 10.1016/j.ygyno.2016.01.004. PubMed DOI PMC
Nepomuceno T.C., De Gregoriis G., de Oliveira F.M.B., Suarez-Kurtz G., Monteiro A.N., Carvalho M.A. The Role of PALB2 in the DNA Damage Response and Cancer Predisposition. Int. J. Mol. Sci. 2017;18:1886. doi: 10.3390/ijms18091886. PubMed DOI PMC
Antoniou A.C., Casadei S., Heikkinen T., Barrowdale D., Pylkas K., Roberts J., Lee A., Subramanian D., De Leeneer K., Fostira F., et al. Breast-cancer risk in families with mutations in PALB2. N. Engl. J. Med. 2014;371:497–506. doi: 10.1056/NEJMoa1400382. PubMed DOI PMC
Kluska A., Balabas A., Piatkowska M., Czarny K., Paczkowska K., Nowakowska D., Mikula M., Ostrowski J. PALB2 mutations in BRCA1/2-mutation negative breast and ovarian cancer patients from Poland. BMC Med. Genom. 2017;10:14. doi: 10.1186/s12920-017-0251-8. PubMed DOI PMC
Yang X., Leslie G., Doroszuk A., Schneider S., Allen J., Decker B., Dunning A.M., Redman J., Scarth J., Plaskocinska I., et al. Cancer Risks Associated With Germline PALB2 Pathogenic Variants: An International Study of 524 Families. J. Clin. Oncol. 2020;38:674–685. doi: 10.1200/JCO.19.01907. PubMed DOI PMC
Poti A., Gyergyak H., Nemeth E., Rusz O., Toth S., Kovacshazi C., Chen D., Szikriszt B., Spisak S., Takeda S., et al. Correlation of homologous recombination deficiency induced mutational signatures with sensitivity to PARP inhibitors and cytotoxic agents. Genome Biol. 2019;20:240. doi: 10.1186/s13059-019-1867-0. PubMed DOI PMC
Smith M.A., Hampton O.A., Reynolds C.P., Kang M.H., Maris J.M., Gorlick R., Kolb E.A., Lock R., Carol H., Keir S.T., et al. Initial testing (stage 1) of the PARP inhibitor BMN 673 by the pediatric preclinical testing program: PALB2 mutation predicts exceptional in vivo response to BMN 673. Pediatr. Blood Cancer. 2015;62:91–98. doi: 10.1002/pbc.25201. PubMed DOI PMC
Buys S.S., Sandbach J.F., Gammon A., Patel G., Kidd J., Brown K.L., Sharma L., Saam J., Lancaster J., Daly M.B. A study of over 35,000 women with breast cancer tested with a 25-gene panel of hereditary cancer genes. Cancer. 2017;123:1721–1730. doi: 10.1002/cncr.30498. PubMed DOI
Seal S., Thompson D., Renwick A., Elliott A., Kelly P., Barfoot R., Chagtai T., Jayatilake H., Ahmed M., Spanova K., et al. Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles. Nat. Genet. 2006;38:1239–1241. doi: 10.1038/ng1902. PubMed DOI
Thompson E.R., Rowley S.M., Li N., McInerny S., Devereux L., Wong-Brown M.W., Trainer A.H., Mitchell G., Scott R.J., James P.A., et al. Panel Testing for Familial Breast Cancer: Calibrating the Tension Between Research and Clinical Care. J. Clin. Oncol. 2016;34:1455–1459. doi: 10.1200/JCO.2015.63.7454. PubMed DOI
Couch F.J., Shimelis H., Hu C., Hart S.N., Polley E.C., Na J., Hallberg E., Moore R., Thomas A., Lilyquist J., et al. Associations Between Cancer Predisposition Testing Panel Genes and Breast Cancer. JAMA Oncol. 2017;3:1190–1196. doi: 10.1001/jamaoncol.2017.0424. PubMed DOI PMC
Easton D.F., Lesueur F., Decker B., Michailidou K., Li J., Allen J., Luccarini C., Pooley K.A., Shah M., Bolla M.K., et al. No evidence that protein truncating variants in BRIP1 are associated with breast cancer risk: Implications for gene panel testing. J. Med. Genet. 2016;53:298–309. doi: 10.1136/jmedgenet-2015-103529. PubMed DOI PMC
Slavin T.P., Maxwell K.N., Lilyquist J., Vijai J., Neuhausen S.L., Hart S.N., Ravichandran V., Thomas T., Maria A., Villano D., et al. The contribution of pathogenic variants in breast cancer susceptibility genes to familial breast cancer risk. NPJ Breast Cancer. 2017;3:22. doi: 10.1038/s41523-017-0024-8. PubMed DOI PMC
Ramus S.J., Song H., Dicks E., Tyrer J.P., Rosenthal A.N., Intermaggio M.P., Fraser L., Gentry-Maharaj A., Hayward J., Philpott S., et al. Germline Mutations in the BRIP1, BARD1, PALB2, and NBN Genes in Women With Ovarian Cancer. J. Natl. Cancer Inst. 2015;107 doi: 10.1093/jnci/djv214. PubMed DOI PMC
Weber-Lassalle N., Hauke J., Ramser J., Richters L., Gross E., Blumcke B., Gehrig A., Kahlert A.K., Muller C.R., Hackmann K., et al. BRIP1 loss-of-function mutations confer high risk for familial ovarian cancer, but not familial breast cancer. Breast Cancer Res. 2018;20:7. doi: 10.1186/s13058-018-0935-9. PubMed DOI PMC
Moyer C.L., Ivanovich J., Gillespie J.L., Doberstein R., Radke M.R., Richardson M.E., Kaufmann S.H., Swisher E.M., Goodfellow P.J. Rare BRIP1 Missense Alleles Confer Risk for Ovarian and Breast Cancer. Cancer Res. 2020;80:857–867. doi: 10.1158/0008-5472.CAN-19-1991. PubMed DOI PMC
Zhang J., Willers H., Feng Z., Ghosh J.C., Kim S., Weaver D.T., Chung J.H., Powell S.N., Xia F. Chk2 phosphorylation of BRCA1 regulates DNA double-strand break repair. Mol. Cell Biol. 2004;24:708–718. doi: 10.1128/MCB.24.2.708-718.2004. PubMed DOI PMC
Buisson R., Masson J.Y. PALB2 self-interaction controls homologous recombination. Nucleic Acids Res. 2012;40:10312–10323. doi: 10.1093/nar/gks807. PubMed DOI PMC
Roy R., Chun J., Powell S.N. BRCA1 and BRCA2: Different roles in a common pathway of genome protection. Nat. Rev. Cancer. 2011;12:68–78. doi: 10.1038/nrc3181. PubMed DOI PMC
Lawrenson K., Iversen E.S., Tyrer J., Weber R.P., Concannon P., Hazelett D.J., Li Q., Marks J.R., Berchuck A., Lee J.M., et al. Common variants at the CHEK2 gene locus and risk of epithelial ovarian cancer. Carcinogenesis. 2015;36:1341–1353. doi: 10.1093/carcin/bgv138. PubMed DOI PMC
Phelan C.M., Kuchenbaecker K.B., Tyrer J.P., Kar S.P., Lawrenson K., Winham S.J., Dennis J., Pirie A., Riggan M.J., Chornokur G., et al. Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer. Nat. Genet. 2017;49:680–691. doi: 10.1038/ng.3826. PubMed DOI PMC
Michalska M.M., Samulak D., Romanowicz H., Bienkiewicz J., Sobkowski M., Ciesielski K., Smolarz B. Single nucleotide polymorphisms (SNPs) of hOGG1 and XRCC1 DNA repair genes and the risk of ovarian cancer in Polish women. Tumour Biol. 2015;36:9457–9463. doi: 10.1007/s13277-015-3707-5. PubMed DOI
Chen X., Liu X., Wang J., Guo W., Sun C., Cai Z., Wu Q., Xu X., Wang Y. Functional polymorphisms of the hOGG1 gene confer risk to type 2 epithelial ovarian cancer in Chinese. Int. J. Gynecol. Cancer. 2011;21:1407–1413. doi: 10.1097/IGC.0b013e31823122c6. PubMed DOI
Osorio A., Milne R.L., Kuchenbaecker K., Vaclova T., Pita G., Alonso R., Peterlongo P., Blanco I., de la Hoya M., Duran M., et al. DNA glycosylases involved in base excision repair may be associated with cancer risk in BRCA1 and BRCA2 mutation carriers. PLoS Genet. 2014;10:e1004256. doi: 10.1371/journal.pgen.1004256. PubMed DOI PMC
Zhang X., Xin X., Zhang J., Li J., Chen B., Zou W. Apurinic/apyrimidinic endonuclease 1 polymorphisms are associated with ovarian cancer susceptibility in a Chinese population. Int. J. Gynecol. Cancer. 2013;23:1393–1399. doi: 10.1097/IGC.0b013e3182a33f07. PubMed DOI
Malisic E.J., Krivokuca A.M., Boljevic I.Z., Jankovic R.N. Impact of RAD51 G135C and XRCC1 Arg399Gln polymorphisms on ovarian carcinoma risk in Serbian women. Cancer Biomark. 2015;15:685–691. doi: 10.3233/CBM-150509. PubMed DOI
Miao J., Zhang X., Tang Q.L., Wang X.Y., Kai L. Prediction value of XRCC 1 gene polymorphism on the survival of ovarian cancer treated by adjuvant chemotherapy. Asian Pac. J. Cancer Prev. 2012;13:5007–5010. doi: 10.7314/APJCP.2012.13.10.5007. PubMed DOI
Li K., Li W. Association between polymorphisms of XRCC1 and ADPRT genes and ovarian cancer survival with platinum-based chemotherapy in Chinese population. Mol. Cell Biochem. 2013;372:27–33. doi: 10.1007/s11010-012-1442-4. PubMed DOI
Pannunzio N.R., Watanabe G., Lieber M.R. Nonhomologous DNA end-joining for repair of DNA double-strand breaks. J. Biol. Chem. 2018;293:10512–10523. doi: 10.1074/jbc.TM117.000374. PubMed DOI PMC
O’Driscoll M., Gennery A.R., Seidel J., Concannon P., Jeggo P.A. An overview of three new disorders associated with genetic instability: LIG4 syndrome, RS-SCID and ATR-Seckel syndrome. DNA Repair. 2004;3:1227–1235. doi: 10.1016/j.dnarep.2004.03.025. PubMed DOI
Sekiguchi J.M., Ferguson D.O. DNA double-strand break repair: A relentless hunt uncovers new prey. Cell. 2006;124:260–262. doi: 10.1016/j.cell.2006.01.010. PubMed DOI
Bentley J., L’Hote C., Platt F., Hurst C.D., Lowery J., Taylor C., Sak S.C., Harnden P., Knowles M.A., Kiltie A.E. Papillary and muscle invasive bladder tumors with distinct genomic stability profiles have different DNA repair fidelity and KU DNA-binding activities. Genes Chromosomes Cancer. 2009;48:310–321. doi: 10.1002/gcc.20641. PubMed DOI
Windhofer F., Krause S., Hader C., Schulz W.A., Florl A.R. Distinctive differences in DNA double-strand break repair between normal urothelial and urothelial carcinoma cells. Mutat. Res. 2008;638:56–65. doi: 10.1016/j.mrfmmm.2007.08.016. PubMed DOI
Gaymes T.J., Mufti G.J., Rassool F.V. Myeloid leukemias have increased activity of the nonhomologous end-joining pathway and concomitant DNA misrepair that is dependent on the Ku70/86 heterodimer. Cancer Res. 2002;62:2791–2797. PubMed
Deriano L., Guipaud O., Merle-Beral H., Binet J.L., Ricoul M., Potocki-Veronese G., Favaudon V., Maciorowski Z., Muller C., Salles B., et al. Human chronic lymphocytic leukemia B cells can escape DNA damage-induced apoptosis through the nonhomologous end-joining DNA repair pathway. Blood. 2005;105:4776–4783. doi: 10.1182/blood-2004-07-2888. PubMed DOI
McCormick A., Donoghue P., Dixon M., O’Sullivan R., O’Donnell R.L., Murray J., Kaufmann A., Curtin N.J., Edmondson R.J. Ovarian Cancers Harbor Defects in Nonhomologous End Joining Resulting in Resistance to Rucaparib. Clin. Cancer Res. 2017;23:2050–2060. doi: 10.1158/1078-0432.CCR-16-0564. PubMed DOI PMC
Murray J.E., van der Burg M., IJspeert H., Carroll P., Wu Q., Ochi T., Leitch A., Miller E.S., Kysela B., Jawad A., et al. Mutations in the NHEJ component XRCC4 cause primordial dwarfism. Am. J. Hum. Genet. 2015;96:412–424. doi: 10.1016/j.ajhg.2015.01.013. PubMed DOI PMC
Willis S., Villalobos V.M., Gevaert O., Abramovitz M., Williams C., Sikic B.I., Leyland-Jones B. Single Gene Prognostic Biomarkers in Ovarian Cancer: A Meta-Analysis. PLoS ONE. 2016;11:e0149183. doi: 10.1371/journal.pone.0149183. PubMed DOI PMC
Assis J., Pereira D., Medeiros R. Ovarian cancer and DNA repair: DNA ligase IV as a potential key. World J. Clin. Oncol. 2013;4:14–24. doi: 10.5306/wjco.v4.i1.14. PubMed DOI PMC
Pearce C.L., Near A.M., Van Den Berg D.J., Ramus S.J., Gentry-Maharaj A., Menon U., Gayther S.A., Anderson A.R., Edlund C.K., Wu A.H., et al. Validating genetic risk associations for ovarian cancer through the international Ovarian Cancer Association Consortium. Br. J. Cancer. 2009;100:412–420. doi: 10.1038/sj.bjc.6604820. PubMed DOI PMC
Toss A., Tomasello C., Razzaboni E., Contu G., Grandi G., Cagnacci A., Schilder R.J., Cortesi L. Hereditary ovarian cancer: Not only BRCA 1 and 2 genes. Biomed. Res. Int. 2015;2015:341723. doi: 10.1155/2015/341723. PubMed DOI PMC
Gupta D., Lin B., Cowan A., Heinen C.D. ATR-Chk1 activation mitigates replication stress caused by mismatch repair-dependent processing of DNA damage. Proc. Natl. Acad. Sci. USA. 2018;115:1523–1528. doi: 10.1073/pnas.1720355115. PubMed DOI PMC
Cannavo E., Gerrits B., Marra G., Schlapbach R., Jiricny J. Characterization of the interactome of the human MutL homologues MLH1, PMS1, and PMS2. J. Biol. Chem. 2007;282:2976–2986. doi: 10.1074/jbc.M609989200. PubMed DOI
Guillotin D., Martin S.A. Exploiting DNA mismatch repair deficiency as a therapeutic strategy. Exp. Cell Res. 2014;329:110–115. doi: 10.1016/j.yexcr.2014.07.004. PubMed DOI
Jonsson J.M., Bartuma K., Dominguez-Valentin M., Harbst K., Ketabi Z., Malander S., Jonsson M., Carneiro A., Masback A., Jonsson G., et al. Distinct gene expression profiles in ovarian cancer linked to Lynch syndrome. Fam. Cancer. 2014;13:537–545. doi: 10.1007/s10689-014-9728-1. PubMed DOI PMC
Helder-Woolderink J.M., Blok E.A., Vasen H.F., Hollema H., Mourits M.J., De Bock G.H. Ovarian cancer in Lynch syndrome; a systematic review. Eur. J. Cancer. 2016;55:65–73. doi: 10.1016/j.ejca.2015.12.005. PubMed DOI
Geisler J.P., Goodheart M.J., Sood A.K., Holmes R.J., Hatterman-Zogg M.A., Buller R.E. Mismatch repair gene expression defects contribute to microsatellite instability in ovarian carcinoma. Cancer. 2003;98:2199–2206. doi: 10.1002/cncr.11770. PubMed DOI
Hause R.J., Pritchard C.C., Shendure J., Salipante S.J. Classification and characterization of microsatellite instability across 18 cancer types. Nat. Med. 2016;22:1342–1350. doi: 10.1038/nm.4191. PubMed DOI
Collura A., Lefevre J.H., Svrcek M., Tougeron D., Zaanan A., Duval A. Microsatellite instability and cancer: From genomic instability to personalized medicine. Med. Sci. (Paris) 2019;35:535–543. doi: 10.1051/medsci/2019093. PubMed DOI
Murphy M.A., Wentzensen N. Frequency of mismatch repair deficiency in ovarian cancer: A systematic review. This article is a US Government work and, as such, is in the public domain of the United States of America. Int. J. Cancer. 2011;129:1914–1922. doi: 10.1002/ijc.25835. PubMed DOI PMC
Yamashita H., Nakayama K., Ishikawa M., Ishibashi T., Nakamura K., Sawada K., Yoshimura Y., Tatsumi N., Kurose S., Minamoto T., et al. Relationship between Microsatellite Instability, Immune Cells Infiltration, and Expression of Immune Checkpoint Molecules in Ovarian Carcinoma: Immunotherapeutic Strategies for the Future. Int. J. Mol. Sci. 2019;20:5129. doi: 10.3390/ijms20205129. PubMed DOI PMC
Howitt B.E., Strickland K.C., Sholl L.M., Rodig S., Ritterhouse L.L., Chowdhury D., D’Andrea A.D., Matulonis U.A., Konstantinopoulos P.A. Clear cell ovarian cancers with microsatellite instability: A unique subset of ovarian cancers with increased tumor-infiltrating lymphocytes and PD-1/PD-L1 expression. Oncoimmunology. 2017;6:e1277308. doi: 10.1080/2162402X.2016.1277308. PubMed DOI PMC
Fraune C., Rosebrock J., Simon R., Hube-Magg C., Makrypidi-Fraune G., Kluth M., Buscheck F., Hoflmayer D., Schmalfeldt B., Muller V., et al. High homogeneity of MMR deficiency in ovarian cancer. Gynecol. Oncol. 2020;156:669–675. doi: 10.1016/j.ygyno.2019.12.031. PubMed DOI
Fink D., Nebel S., Aebi S., Zheng H., Cenni B., Nehme A., Christen R.D., Howell S.B. The role of DNA mismatch repair in platinum drug resistance. Cancer Res. 1996;56:4881–4886. PubMed
Martin L.P., Hamilton T.C., Schilder R.J. Platinum resistance: The role of DNA repair pathways. Clin. Cancer Res. 2008;14:1291–1295. doi: 10.1158/1078-0432.CCR-07-2238. PubMed DOI
Roos W.P., Kaina B. DNA damage-induced cell death: From specific DNA lesions to the DNA damage response and apoptosis. Cancer Lett. 2013;332:237–248. doi: 10.1016/j.canlet.2012.01.007. PubMed DOI
Tian H., Yan L., Xiao-Fei L., Hai-Yan S., Juan C., Shan K. Hypermethylation of mismatch repair gene hMSH2 associates with platinum-resistant disease in epithelial ovarian cancer. Clin. Epigenet. 2019;11:153. doi: 10.1186/s13148-019-0748-4. PubMed DOI PMC
Watanabe Y., Ueda H., Etoh T., Koike E., Fujinami N., Mitsuhashi A., Hoshiai H. A change in promoter methylation of hMLH1 is a cause of acquired resistance to platinum-based chemotherapy in epithelial ovarian cancer. Anticancer Res. 2007;27:1449–1452. PubMed
Zhao C., Li S., Zhao M., Zhu H., Zhu X. Prognostic values of DNA mismatch repair genes in ovarian cancer patients treated with platinum-based chemotherapy. Arch. Gynecol. Obstet. 2018;297:153–159. doi: 10.1007/s00404-017-4563-x. PubMed DOI PMC
Hegde M.L., Izumi T., Mitra S. Oxidized base damage and single-strand break repair in mammalian genomes: Role of disordered regions and posttranslational modifications in early enzymes. Prog. Mol. Biol. Transl. Sci. 2012;110:123–153. doi: 10.1016/B978-0-12-387665-2.00006-7. PubMed DOI PMC
D’Errico M., Parlanti E., Pascucci B., Fortini P., Baccarini S., Simonelli V., Dogliotti E. Single nucleotide polymorphisms in DNA glycosylases: From function to disease. Free Radic. Biol. Med. 2017;107:278–291. doi: 10.1016/j.freeradbiomed.2016.12.002. PubMed DOI
Vodicka P., Urbanova M., Makovicky P., Tomasova K., Kroupa M., Stetina R., Opattova A., Kostovcikova K., Siskova A., Schneiderova M., et al. Oxidative Damage in Sporadic Colorectal Cancer: Molecular Mapping of Base Excision Repair Glycosylases in Colorectal Cancer Patients. Int. J. Mol. Sci. 2020;21:2473. doi: 10.3390/ijms21072473. PubMed DOI PMC
Vodicka P., Stetina R., Polakova V., Tulupova E., Naccarati A., Vodickova L., Kumar R., Hanova M., Pardini B., Slyskova J., et al. Association of DNA repair polymorphisms with DNA repair functional outcomes in healthy human subjects. Carcinogenesis. 2007;28:657–664. doi: 10.1093/carcin/bgl187. PubMed DOI
Benitez-Buelga C., Vaclova T., Ferreira S., Urioste M., Inglada-Perez L., Soberon N., Blasco M.A., Osorio A., Benitez J. Molecular insights into the OGG1 gene, a cancer risk modifier in BRCA1 and BRCA2 mutations carriers. Oncotarget. 2016;7:25815–25825. doi: 10.18632/oncotarget.8272. PubMed DOI PMC
Tomasova K., Kroupa M., Forsti A., Vodicka P., Vodickova L. Telomere maintenance in interplay with DNA repair in pathogenesis and treatment of colorectal cancer. Mutagenesis. 2020 doi: 10.1093/mutage/geaa005. PubMed DOI
Poulsen M.L., Bisgaard M.L. MUTYH Associated Polyposis (MAP) Curr. Genom. 2008;9:420–435. doi: 10.2174/138920208785699562. PubMed DOI PMC
Win A.K., Reece J.C., Dowty J.G., Buchanan D.D., Clendenning M., Rosty C., Southey M.C., Young J.P., Cleary S.P., Kim H., et al. Risk of extracolonic cancers for people with biallelic and monoallelic mutations in MUTYH. Int. J. Cancer. 2016;139:1557–1563. doi: 10.1002/ijc.30197. PubMed DOI PMC
Lindahl T., Ljungquist S., Siegert W., Nyberg B., Sperens B. DNA N-glycosidases: Properties of uracil-DNA glycosidase from Escherichia coli. J. Biol. Chem. 1977;252:3286–3294. PubMed
Vodicka P., Hemminki K. Phosphodiester cleavage in apurinic dinucleotides. Chem. Biol. Interact. 1988;68:153–164. doi: 10.1016/0009-2797(88)90013-0. PubMed DOI
Krokan H.E., Bjoras M. Base excision repair. Cold Spring Harb. Perspect. Biol. 2013;5:a012583. doi: 10.1101/cshperspect.a012583. PubMed DOI PMC
Al-Attar A., Gossage L., Fareed K.R., Shehata M., Mohammed M., Zaitoun A.M., Soomro I., Lobo D.N., Abbotts R., Chan S., et al. Human apurinic/apyrimidinic endonuclease (APE1) is a prognostic factor in ovarian, gastro-oesophageal and pancreatico-biliary cancers. Br. J. Cancer. 2010;102:704–709. doi: 10.1038/sj.bjc.6605541. PubMed DOI PMC
Sheng Q., Zhang Y., Wang R., Zhang J., Chen B., Wang J., Zhang W., Xin X. Prognostic significance of APE1 cytoplasmic localization in human epithelial ovarian cancer. Med. Oncol. 2012;29:1265–1271. doi: 10.1007/s12032-011-9931-y. PubMed DOI
Fan X., Wen L., Li Y., Lou L., Liu W., Zhang J. The expression profile and prognostic value of APE/Ref-1 and NPM1 in high-grade serous ovarian adenocarcinoma. APMIS. 2017;125:857–862. doi: 10.1111/apm.12733. PubMed DOI
Abdel-Fatah T., Sultana R., Abbotts R., Hawkes C., Seedhouse C., Chan S., Madhusudan S. Clinicopathological and functional significance of XRCC1 expression in ovarian cancer. Int. J. Cancer. 2013;132:2778–2786. doi: 10.1002/ijc.27980. PubMed DOI
Lord C.J., Ashworth A. The DNA damage response and cancer therapy. Nature. 2012;481:287–294. doi: 10.1038/nature10760. PubMed DOI
Lightfoot M., Montemorano L., Bixel K. PARP Inhibitors in Gynecologic Cancers: What Is the Next Big Development? Curr. Oncol. Rep. 2020;22:29. doi: 10.1007/s11912-020-0873-4. PubMed DOI
Sachdev E., Tabatabai R., Roy V., Rimel B.J., Mita M.M. PARP Inhibition in Cancer: An Update on Clinical Development. Target. Oncol. 2019;14:657–679. doi: 10.1007/s11523-019-00680-2. PubMed DOI
Przybycinski J., Nalewajska M., Marchelek-Mysliwiec M., Dziedziejko V., Pawlik A. Poly-ADP-ribose polymerases (PARPs) as a therapeutic target in the treatment of selected cancers. Expert Opin. Ther. Targets. 2019;23:773–785. doi: 10.1080/14728222.2019.1654458. PubMed DOI
Boussios S., Karihtala P., Moschetta M., Karathanasi A., Sadauskaite A., Rassy E., Pavlidis N. Combined Strategies with Poly (ADP-Ribose) Polymerase (PARP) Inhibitors for the Treatment of Ovarian Cancer: A Literature Review. Diagnostics. 2019;9:87. doi: 10.3390/diagnostics9030087. PubMed DOI PMC
Franzese E., Centonze S., Diana A., Carlino F., Guerrera L.P., Di Napoli M., De Vita F., Pignata S., Ciardiello F., Orditura M. PARP inhibitors in ovarian cancer. Cancer Treat. Rev. 2019;73:1–9. doi: 10.1016/j.ctrv.2018.12.002. PubMed DOI
Pettitt S.J., Krastev D.B., Brandsma I., Drean A., Song F., Aleksandrov R., Harrell M.I., Menon M., Brough R., Campbell J., et al. Genome-wide and high-density CRISPR-Cas9 screens identify point mutations in PARP1 causing PARP inhibitor resistance. Nat. Commun. 2018;9:1849. doi: 10.1038/s41467-018-03917-2. PubMed DOI PMC
Marteijn J.A., Lans H., Vermeulen W., Hoeijmakers J.H. Understanding nucleotide excision repair and its roles in cancer and ageing. Nat. Rev. Mol. Cell Biol. 2014;15:465–481. doi: 10.1038/nrm3822. PubMed DOI
Tufegdzic Vidakovic A., Mitter R., Kelly G.P., Neumann M., Harreman M., Rodriguez-Martinez M., Herlihy A., Weems J.C., Boeing S., Encheva V., et al. Regulation of the RNAPII Pool Is Integral to the DNA Damage Response. Cell. 2020;180:1245–1261. doi: 10.1016/j.cell.2020.02.009. PubMed DOI PMC
Black J.O. Xeroderma Pigmentosum. Head Neck Pathol. 2016;10:139–144. doi: 10.1007/s12105-016-0707-8. PubMed DOI PMC
Hashimoto S., Egly J.M. Trichothiodystrophy view from the molecular basis of DNA repair/transcription factor TFIIH. Hum. Mol. Genet. 2009;18:224–230. doi: 10.1093/hmg/ddp390. PubMed DOI
Zhao Z., Zhang A., Zhao Y., Xiang J., Yu D., Liang Z., Xu C., Zhang Q., Li J., Duan P. The association of polymorphisms in nucleotide excision repair genes with ovarian cancer susceptibility. Biosci. Rep. 2018;38 doi: 10.1042/BSR20180114. PubMed DOI PMC
Sun H., Cao D., Ma X., Yang J., Peng P., Yu M., Zhou H., Zhang Y., Li L., Huo X., et al. Identification of a Prognostic Signature Associated With DNA Repair Genes in Ovarian Cancer. Front. Genet. 2019;10:839. doi: 10.3389/fgene.2019.00839. PubMed DOI PMC
Dasari S., Tchounwou P.B. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol. 2014;740:364–378. doi: 10.1016/j.ejphar.2014.07.025. PubMed DOI PMC
Selvakumaran M., Pisarcik D.A., Bao R., Yeung A.T., Hamilton T.C. Enhanced cisplatin cytotoxicity by disturbing the nucleotide excision repair pathway in ovarian cancer cell lines. Cancer Res. 2003;63:1311–1316. PubMed
Ishibashi M., Toyoshima M., Zhang X., Hasegawa-Minato J., Shigeta S., Usui T., Kemp C.J., Grandori C., Kitatani K., Yaegashi N. Tyrosine kinase receptor TIE-1 mediates platinum resistance by promoting nucleotide excision repair in ovarian cancer. Sci. Rep. 2018;8:13207. doi: 10.1038/s41598-018-31069-2. PubMed DOI PMC
Bao Y., Yang B., Zhao J., Shen S., Gao J. Role of common ERCC1 polymorphisms in cisplatin-resistant epithelial ovarian cancer patients: A study in Chinese cohort. Int. J. Immunogenet. 2020 doi: 10.1111/iji.12484. PubMed DOI
King B.S., Cooper K.L., Liu K.J., Hudson L.G. Poly(ADP-ribose) contributes to an association between poly(ADP-ribose) polymerase-1 and xeroderma pigmentosum complementation group A in nucleotide excision repair. J. Biol. Chem. 2012;287:39824–39833. doi: 10.1074/jbc.M112.393504. PubMed DOI PMC
Ji P., Wang X., Xie N., Li Y. N6-Methyladenosine in RNA and DNA: An Epitranscriptomic and Epigenetic Player Implicated in Determination of Stem Cell Fate. Stem Cells Int. 2018;2018:3256524. doi: 10.1155/2018/3256524. PubMed DOI PMC
Soll J.M., Sobol R.W., Mosammaparast N. Regulation of DNA Alkylation Damage Repair: Lessons and Therapeutic Opportunities. Trends Biochem. Sci. 2017;42:206–218. doi: 10.1016/j.tibs.2016.10.001. PubMed DOI PMC
Zhang M., Wang L., Zhong D. Photolyase: Dynamics and Mechanisms of Repair of Sun-Induced DNA Damage. Photochem. Photobiol. 2017;93:78–92. doi: 10.1111/php.12695. PubMed DOI PMC
Steurer B., Turkyilmaz Y., van Toorn M., van Leeuwen W., Escudero-Ferruz P., Marteijn J.A. Fluorescently-labelled CPD and 6-4PP photolyases: New tools for live-cell DNA damage quantification and laser-assisted repair. Nucleic Acids Res. 2019;47:3536–3549. doi: 10.1093/nar/gkz035. PubMed DOI PMC
Soll J.M., Brickner J.R., Mudge M.C., Mosammaparast N. RNA ligase-like domain in activating signal cointegrator 1 complex subunit 1 (ASCC1) regulates ASCC complex function during alkylation damage. J. Biol. Chem. 2018;293:13524–13533. doi: 10.1074/jbc.RA117.000114. PubMed DOI PMC
Roh H.J., Suh D.S., Choi K.U., Yoo H.J., Joo W.D., Yoon M.S. Inactivation of O(6)-methyguanine-DNA methyltransferase by promoter hypermethylation: Association of epithelial ovarian carcinogenesis in specific histological types. J. Obstet. Gynaecol. Res. 2011;37:851–860. doi: 10.1111/j.1447-0756.2010.01452.x. PubMed DOI
Huang J., Luo J.Y., Tan H.Z. Associations of MGMT promoter hypermethylation with squamous intraepithelial lesion and cervical carcinoma: A meta-analysis. PLoS ONE. 2019;14:e0222772. doi: 10.1371/journal.pone.0222772. PubMed DOI PMC
Chen L., Wang Y., Liu F., Xu L., Peng F., Zhao N., Fu B., Zhu Z., Shi Y., Liu J., et al. A systematic review and meta-analysis: Association between MGMT hypermethylation and the clinicopathological characteristics of non-small-cell lung carcinoma. Sci. Rep. 2018;8:1439. doi: 10.1038/s41598-018-19949-z. PubMed DOI PMC
Binabaj M.M., Bahrami A., ShahidSales S., Joodi M., Joudi Mashhad M., Hassanian S.M., Anvari K., Avan A. The prognostic value of MGMT promoter methylation in glioblastoma: A meta-analysis of clinical trials. J. Cell Physiol. 2018;233:378–386. doi: 10.1002/jcp.25896. PubMed DOI
Wu X., Luo Q., Zhao P., Chang W., Wang Y., Shu T., Ding F., Li B., Liu Z. MGMT-activated DUB3 stabilizes MCL1 and drives chemoresistance in ovarian cancer. Proc. Natl. Acad. Sci. USA. 2019;116:2961–2966. doi: 10.1073/pnas.1814742116. PubMed DOI PMC
Mongan N.P., Emes R.D., Archer N. Detection and analysis of RNA methylation. F1000Research. 2019;8 doi: 10.12688/f1000research.17956.1. PubMed DOI PMC
Woo H.H., Chambers S.K. Human ALKBH3-induced m (1)A demethylation increases the CSF-1 mRNA stability in breast and ovarian cancer cells. Biochim. Biophys. Acta Gene Regul. Mech. 2019;1862:35–46. doi: 10.1016/j.bbagrm.2018.10.008. PubMed DOI
Woo H.H., Laszlo C.F., Greco S., Chambers S.K. Regulation of colony stimulating factor-1 expression and ovarian cancer cell behavior in vitro by miR-128 and miR-152. Mol. Cancer. 2012;11:58. doi: 10.1186/1476-4598-11-58. PubMed DOI PMC
Zhu H., Gan X., Jiang X., Diao S., Wu H., Hu J. ALKBH5 inhibited autophagy of epithelial ovarian cancer through miR-7 and BCL-2. J. Exp. Clin. Cancer Res. 2019;38:163. doi: 10.1186/s13046-019-1159-2. PubMed DOI PMC
Hoeijmakers J.H. Genome maintenance mechanisms for preventing cancer. Nature. 2001;411:366–374. doi: 10.1038/35077232. PubMed DOI
Nagel Z.D., Chaim I.A., Samson L.D. Inter-individual variation in DNA repair capacity: A need for multi-pathway functional assays to promote translational DNA repair research. DNA Repair. 2014;19:199–213. doi: 10.1016/j.dnarep.2014.03.009. PubMed DOI PMC
Melis J.P., Luijten M., Mullenders L.H., van Steeg H. The role of XPC: Implications in cancer and oxidative DNA damage. Mutat. Res. 2011;728:107–117. doi: 10.1016/j.mrrev.2011.07.001. PubMed DOI PMC
Vodicka P., Musak L., Frank C., Kazimirova A., Vymetalkova V., Barancokova M., Smolkova B., Dzupinkova Z., Jiraskova K., Vodenkova S., et al. Interactions of DNA repair gene variants modulate chromosomal aberrations in healthy subjects. Carcinogenesis. 2015;36:1299–1306. doi: 10.1093/carcin/bgv127. PubMed DOI
Fischer J.M., Popp O., Gebhard D., Veith S., Fischbach A., Beneke S., Leitenstorfer A., Bergemann J., Scheffner M., Ferrando-May E., et al. Poly(ADP-ribose)-mediated interplay of XPA and PARP1 leads to reciprocal regulation of protein function. FEBS J. 2014;281:3625–3641. doi: 10.1111/febs.12885. PubMed DOI PMC
Nagel Z.D., Margulies C.M., Chaim I.A., McRee S.K., Mazzucato P., Ahmad A., Abo R.P., Butty V.L., Forget A.L., Samson L.D. Multiplexed DNA repair assays for multiple lesions and multiple doses via transcription inhibition and transcriptional mutagenesis. Proc. Natl. Acad. Sci. USA. 2014;111:1823–1832. doi: 10.1073/pnas.1401182111. PubMed DOI PMC
Krieger K.L., Hu W.F., Ripperger T., Woods N.T. Functional Impacts of the BRCA1-mTORC2 Interaction in Breast Cancer. Int. J. Mol. Sci. 2019;20:5876. doi: 10.3390/ijms20235876. PubMed DOI PMC
Fece de la Cruz F., Gapp B.V., Nijman S.M. Synthetic lethal vulnerabilities of cancer. Annu. Rev. Pharmacol. Toxicol. 2015;55:513–531. doi: 10.1146/annurev-pharmtox-010814-124511. PubMed DOI
Nijman S.M. Synthetic lethality: General principles, utility and detection using genetic screens in human cells. FEBS Lett. 2011;585:1–6. doi: 10.1016/j.febslet.2010.11.024. PubMed DOI PMC
Farolfi A., Gurioli G., Fugazzola P., Burgio S.L., Casanova C., Ravaglia G., Altavilla A., Costantini M., Amadori A., Framarini M., et al. Immune System and DNA Repair Defects in Ovarian Cancer: Implications for Locoregional Approaches. Int. J. Mol. Sci. 2019;20:2569. doi: 10.3390/ijms20102569. PubMed DOI PMC
Brown J.S., O’Carrigan B., Jackson S.P., Yap T.A. Targeting DNA Repair in Cancer: Beyond PARP Inhibitors. Cancer Discov. 2017;7:20–37. doi: 10.1158/2159-8290.CD-16-0860. PubMed DOI PMC
Lee J.M., Minasian L., Kohn E.C. New strategies in ovarian cancer treatment. Cancer. 2019;125:4623–4629. doi: 10.1002/cncr.32544. PubMed DOI PMC
Lowery C.D., VanWye A.B., Dowless M., Blosser W., Falcon B.L., Stewart J., Stephens J., Beckmann R.P., Bence Lin A., Stancato L.F. The Checkpoint Kinase 1 Inhibitor Prexasertib Induces Regression of Preclinical Models of Human Neuroblastoma. Clin. Cancer Res. 2017;23:4354–4363. doi: 10.1158/1078-0432.CCR-16-2876. PubMed DOI
Sultana R., Abdel-Fatah T., Abbotts R., Hawkes C., Albarakati N., Seedhouse C., Ball G., Chan S., Rakha E.A., Ellis I.O., et al. Targeting XRCC1 deficiency in breast cancer for personalized therapy. Cancer Res. 2013;73:1621–1634. doi: 10.1158/0008-5472.CAN-12-2929. PubMed DOI
Sultana R., McNeill D.R., Abbotts R., Mohammed M.Z., Zdzienicka M.Z., Qutob H., Seedhouse C., Laughton C.A., Fischer P.M., Patel P.M., et al. Synthetic lethal targeting of DNA double-strand break repair deficient cells by human apurinic/apyrimidinic endonuclease inhibitors. Int. J. Cancer. 2012;131:2433–2444. doi: 10.1002/ijc.27512. PubMed DOI PMC
Fang Y.Y., Bi F.F., Zhou Y.M., Sun W.P., Li C.Y., Liu Q., Zhao Y., Li D. Nicotinamide adenine dinucleotide (NAD) may affect DNA methyltransferase 1 through regulation of BRCA1 in ovarian cancer. Am. J. Cancer Res. 2015;5:1199–1206. PubMed PMC
Jiang Z., Lai Y., Beaver J.M., Tsegay P.S., Zhao M.L., Horton J.K., Zamora M., Rein H.L., Miralles F., Shaver M., et al. Oxidative DNA Damage Modulates DNA Methylation Pattern in Human Breast Cancer 1 (BRCA1) Gene via the Crosstalk between DNA Polymerase beta and a de novo DNA Methyltransferase. Cells. 2020;9:255. doi: 10.3390/cells9010225. PubMed DOI PMC
Chuang Y.T., Chang C.L. Extending platinum-free interval in partially platinum-sensitive recurrent ovarian cancer by a non-platinum regimen: Its possible clinical significance. Taiwan J. Obstet. Gynecol. 2012;51:336–341. doi: 10.1016/j.tjog.2012.07.003. PubMed DOI
Ghisoni E., Giannone G., Tuninetti V., Genta S., Scotto G., Aglietta M., Sangiolo D., Mittica G., Valabrega G. Veliparib: A new therapeutic option in ovarian cancer? Future Oncol. 2019;15:1975–1987. doi: 10.2217/fon-2018-0883. PubMed DOI
Coleman R.L., Fleming G.F., Brady M.F., Swisher E.M., Steffensen K.D., Friedlander M., Okamoto A., Moore K.N., Efrat Ben-Baruch N., Werner T.L., et al. Veliparib with First-Line Chemotherapy and as Maintenance Therapy in Ovarian Cancer. N. Engl. J. Med. 2019;381:2403–2415. doi: 10.1056/NEJMoa1909707. PubMed DOI PMC
Boussios S., Abson C., Moschetta M., Rassy E., Karathanasi A., Bhat T., Ghumman F., Sheriff M., Pavlidis N. Poly (ADP-Ribose) Polymerase Inhibitors: Talazoparib in Ovarian Cancer and Beyond. Drugs R D. 2020 doi: 10.1007/s40268-020-00301-8. PubMed DOI PMC
Pilie P.G., Tang C., Mills G.B., Yap T.A. State-of-the-art strategies for targeting the DNA damage response in cancer. Nat. Rev. Clin. Oncol. 2019;16:81–104. doi: 10.1038/s41571-018-0114-z. PubMed DOI PMC
Huang R.X., Zhou P.K. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduct. Target. Ther. 2020;5:60. doi: 10.1038/s41392-020-0150-x. PubMed DOI PMC
Fields E.C., McGuire W.P., Lin L., Temkin S.M. Radiation Treatment in Women with Ovarian Cancer: Past, Present, and Future. Front. Oncol. 2017;7:177. doi: 10.3389/fonc.2017.00177. PubMed DOI PMC
Cole A.J., Dwight T., Gill A.J., Dickson K.A., Zhu Y., Clarkson A., Gard G.B., Maidens J., Valmadre S., Clifton-Bligh R., et al. Assessing mutant p53 in primary high-grade serous ovarian cancer using immunohistochemistry and massively parallel sequencing. Sci. Rep. 2016;6:26191. doi: 10.1038/srep26191. PubMed DOI PMC
Zhang Y., Hunter T. Roles of Chk1 in cell biology and cancer therapy. Int. J. Cancer. 2014;134:1013–1023. doi: 10.1002/ijc.28226. PubMed DOI PMC
Lee J.M., Nair J., Zimmer A., Lipkowitz S., Annunziata C.M., Merino M.J., Swisher E.M., Harrell M.I., Trepel J.B., Lee M.J., et al. Prexasertib, a cell cycle checkpoint kinase 1 and 2 inhibitor, in BRCA wild-type recurrent high-grade serous ovarian cancer: A first-in-class proof-of-concept phase 2 study. Lancet Oncol. 2018;19:207–215. doi: 10.1016/S1470-2045(18)30009-3. PubMed DOI PMC
Bryant C., Rawlinson R., Massey A.J. Chk1 inhibition as a novel therapeutic strategy for treating triple-negative breast and ovarian cancers. BMC Cancer. 2014;14:570. doi: 10.1186/1471-2407-14-570. PubMed DOI PMC
Itamochi H., Nishimura M., Oumi N., Kato M., Oishi T., Shimada M., Sato S., Naniwa J., Sato S., Kudoh A., et al. Checkpoint kinase inhibitor AZD7762 overcomes cisplatin resistance in clear cell carcinoma of the ovary. Int. J. Gynecol. Cancer. 2014;24:61–69. doi: 10.1097/IGC.0000000000000014. PubMed DOI
Parmar K., Kochupurakkal B.S., Lazaro J.B., Wang Z.C., Palakurthi S., Kirschmeier P.T., Yang C., Sambel L.A., Farkkila A., Reznichenko E., et al. The CHK1 Inhibitor Prexasertib Exhibits Monotherapy Activity in High-Grade Serous Ovarian Cancer Models and Sensitizes to PARP Inhibition. Clin. Cancer Res. 2019;25:6127–6140. doi: 10.1158/1078-0432.CCR-19-0448. PubMed DOI PMC
Zheng F., Zhang Y., Chen S., Weng X., Rao Y., Fang H. Mechanism and current progress of Poly ADP-ribose polymerase (PARP) inhibitors in the treatment of ovarian cancer. Biomed. Pharmacother. 2020;123:109661. doi: 10.1016/j.biopha.2019.109661. PubMed DOI
Brill E., Yokoyama T., Nair J., Yu M., Ahn Y.R., Lee J.M. Prexasertib, a cell cycle checkpoint kinases 1 and 2 inhibitor, increases in vitro toxicity of PARP inhibition by preventing Rad51 foci formation in BRCA wild type high-grade serous ovarian cancer. Oncotarget. 2017;8:111026–111040. doi: 10.18632/oncotarget.22195. PubMed DOI PMC
Yazinski S.A., Comaills V., Buisson R., Genois M.M., Nguyen H.D., Ho C.K., Todorova Kwan T., Morris R., Lauffer S., Nussenzweig A., et al. ATR inhibition disrupts rewired homologous recombination and fork protection pathways in PARP inhibitor-resistant BRCA-deficient cancer cells. Genes Dev. 2017;31:318–332. doi: 10.1101/gad.290957.116. PubMed DOI PMC
Lloyd R.L., Wijnhoven P.W.G., Ramos-Montoya A., Wilson Z., Illuzzi G., Falenta K., Jones G.N., James N., Chabbert C.D., Stott J., et al. Combined PARP and ATR inhibition potentiates genome instability and cell death in ATM-deficient cancer cells. Oncogene. 2020 doi: 10.1038/s41388-020-1328-y. PubMed DOI PMC
Kim H., George E., Ragland R., Rafail S., Zhang R., Krepler C., Morgan M., Herlyn M., Brown E., Simpkins F. Targeting the ATR/CHK1 Axis with PARP Inhibition Results in Tumor Regression in BRCA-Mutant Ovarian Cancer Models. Clin. Cancer Res. 2017;23:3097–3108. doi: 10.1158/1078-0432.CCR-16-2273. PubMed DOI PMC
ClinicalTrials.gov Search NCT IDs: NCT04267939, NCT02627443, NCT04149145, NCT02595892, NCT02487095, NCT04065269, and NCT03462342. [(accessed on 18 March 2020)]; Available online: https://clinicaltrials.gov.
Teng P.N., Bateman N.W., Darcy K.M., Hamilton C.A., Maxwell G.L., Bakkenist C.J., Conrads T.P. Pharmacologic inhibition of ATR and ATM offers clinically important distinctions to enhancing platinum or radiation response in ovarian, endometrial, and cervical cancer cells. Gynecol. Oncol. 2015;136:554–561. doi: 10.1016/j.ygyno.2014.12.035. PubMed DOI PMC
Zhang M., Dominguez D., Chen S., Fan J., Qin L., Long A., Li X., Zhang Y., Shi H., Zhang B. WEE1 inhibition by MK1775 as a single-agent therapy inhibits ovarian cancer viability. Oncol. Lett. 2017;14:3580–3586. doi: 10.3892/ol.2017.6584. PubMed DOI PMC
Do K., Wilsker D., Ji J., Zlott J., Freshwater T., Kinders R.J., Collins J., Chen A.P., Doroshow J.H., Kummar S. Phase I Study of Single-Agent AZD1775 (MK-1775), a Wee1 Kinase Inhibitor, in Patients with Refractory Solid Tumors. J. Clin. Oncol. 2015;33:3409–3415. doi: 10.1200/JCO.2014.60.4009. PubMed DOI PMC
Leijen S., van Geel R.M., Sonke G.S., de Jong D., Rosenberg E.H., Marchetti S., Pluim D., van Werkhoven E., Rose S., Lee M.A., et al. Phase II Study of WEE1 Inhibitor AZD1775 Plus Carboplatin in Patients With TP53-Mutated Ovarian Cancer Refractory or Resistant to First-Line Therapy Within 3 Months. J. Clin. Oncol. 2016;34:4354–4361. doi: 10.1200/JCO.2016.67.5942. PubMed DOI
Brandsma I., Fleuren E.D.G., Williamson C.T., Lord C.J. Directing the use of DDR kinase inhibitors in cancer treatment. Expert Opin. Investig. Drugs. 2017;26:1341–1355. doi: 10.1080/13543784.2017.1389895. PubMed DOI PMC
Burgess B.T., Anderson A.M., McCorkle J.R., Wu J., Ueland F.R., Kolesar J.M. Olaparib Combined with an ATR or Chk1 Inhibitor as a Treatment Strategy for Acquired Olaparib-Resistant BRCA1 Mutant Ovarian Cells. Diagnostics. 2020;10:121. doi: 10.3390/diagnostics10020121. PubMed DOI PMC
Choi M., Kipps T., Kurzrock R. ATM Mutations in Cancer: Therapeutic Implications. Mol. Cancer Ther. 2016;15:1781–1791. doi: 10.1158/1535-7163.MCT-15-0945. PubMed DOI
Durant S.T., Zheng L., Wang Y., Chen K., Zhang L., Zhang T., Yang Z., Riches L., Trinidad A.G., Fok J.H.L., et al. The brain-penetrant clinical ATM inhibitor AZD1390 radiosensitizes and improves survival of preclinical brain tumor models. Sci. Adv. 2018;4:eaat1719. doi: 10.1126/sciadv.aat1719. PubMed DOI PMC
Karlin J., Allen J., Ahmad S.F., Hughes G., Sheridan V., Odedra R., Farrington P., Cadogan E.B., Riches L.C., Garcia-Trinidad A., et al. Orally Bioavailable and Blood-Brain Barrier-Penetrating ATM Inhibitor (AZ32) Radiosensitizes Intracranial Gliomas in Mice. Mol. Cancer Ther. 2018;17:1637–1647. doi: 10.1158/1535-7163.MCT-17-0975. PubMed DOI PMC
Biddlestone-Thorpe L., Sajjad M., Rosenberg E., Beckta J.M., Valerie N.C., Tokarz M., Adams B.R., Wagner A.F., Khalil A., Gilfor D., et al. ATM kinase inhibition preferentially sensitizes p53-mutant glioma to ionizing radiation. Clin. Cancer Res. 2013;19:3189–3200. doi: 10.1158/1078-0432.CCR-12-3408. PubMed DOI PMC
Riches L.C., Trinidad A.G., Hughes G., Jones G.N., Hughes A.M., Thomason A.G., Gavine P., Cui A., Ling S., Stott J., et al. Pharmacology of the ATM Inhibitor AZD0156: Potentiation of Irradiation and Olaparib Responses Preclinically. Mol. Cancer Ther. 2020;19:13–25. doi: 10.1158/1535-7163.MCT-18-1394. PubMed DOI
Slipicevic A., Holth A., Hellesylt E., Trope C.G., Davidson B., Florenes V.A. Wee1 is a novel independent prognostic marker of poor survival in post-chemotherapy ovarian carcinoma effusions. Gynecol. Oncol. 2014;135:118–124. doi: 10.1016/j.ygyno.2014.07.102. PubMed DOI
Saini P., Li Y., Dobbelstein M. Wee1 is required to sustain ATR/Chk1 signaling upon replicative stress. Oncotarget. 2015;6:13072–13087. doi: 10.18632/oncotarget.3865. PubMed DOI PMC
Zheng H., Shao F., Martin S., Xu X., Deng C.X. WEE1 inhibition targets cell cycle checkpoints for triple negative breast cancers to overcome cisplatin resistance. Sci. Rep. 2017;7:43517. doi: 10.1038/srep43517. PubMed DOI PMC
Parsels L.A., Karnak D., Parsels J.D., Zhang Q., Velez-Padilla J., Reichert Z.R., Wahl D.R., Maybaum J., O’Connor M.J., Lawrence T.S., et al. PARP1 Trapping and DNA Replication Stress Enhance Radiosensitization with Combined WEE1 and PARP Inhibitors. Mol. Cancer Res. 2018;16:222–232. doi: 10.1158/1541-7786.MCR-17-0455. PubMed DOI PMC
Slyskova J., Cordero F., Pardini B., Korenkova V., Vymetalkova V., Bielik L., Vodickova L., Pitule P., Liska V., Matejka V.M., et al. Post-treatment recovery of suboptimal DNA repair capacity and gene expression levels in colorectal cancer patients. Mol. Carcinog. 2015;54:769–778. doi: 10.1002/mc.22141. PubMed DOI
Slyskova J., Korenkova V., Collins A.R., Prochazka P., Vodickova L., Svec J., Lipska L., Levy M., Schneiderova M., Liska V., et al. Functional, genetic, and epigenetic aspects of base and nucleotide excision repair in colorectal carcinomas. Clin. Cancer Res. 2012;18:5878–5887. doi: 10.1158/1078-0432.CCR-12-1380. PubMed DOI
Vodenkova S., Jiraskova K., Urbanova M., Kroupa M., Slyskova J., Schneiderova M., Levy M., Buchler T., Liska V., Vodickova L., et al. Base excision repair capacity as a determinant of prognosis and therapy response in colon cancer patients. DNA Repair. 2018;72:77–85. doi: 10.1016/j.dnarep.2018.09.006. PubMed DOI
Faraoni I., Graziani G. Role of BRCA Mutations in Cancer Treatment with Poly (ADP-ribose) Polymerase (PARP) Inhibitors. Cancers. 2018;10:487. doi: 10.3390/cancers10120487. PubMed DOI PMC
Zhu J., Ke G., Bi R., Wu X. Clinicopathological and survival characteristic of mismatch repair status in ovarian clear cell carcinoma. J. Surg. Oncol. 2020 doi: 10.1002/jso.25965. PubMed DOI
Bonadona V., Bonaiti B., Olschwang S., Grandjouan S., Huiart L., Longy M., Guimbaud R., Buecher B., Bignon Y.J., Caron O., et al. Cancer risks associated with germline mutations in MLH1, MSH2, and MSH6 genes in Lynch syndrome. JAMA. 2011;305:2304–2310. doi: 10.1001/jama.2011.743. PubMed DOI
Kawashima N., Yoshida H., Miwa M., Fujiwara K. MLH1 Is a Prognostic Biomarker for Serous Ovarian Cancer Treated With Platinum- and Taxane-based Chemotherapy. Anticancer Res. 2019;39:5505–5513. doi: 10.21873/anticanres.13743. PubMed DOI
Guo X., Wu W., Gao H., Li X., He Q., Zhu Y., Liu N. PMS2 germline mutation c.943C>T (p.Arg315*)-induced Lynch syndrome-associated ovarian cancer. Mol. Genet. Genom. Med. 2019;7:e721. doi: 10.1002/mgg3.721. PubMed DOI PMC
Zhang Z., Xiang Q., Mu G., Xie Q., Chen S., Zhou S., Hu K., Cui Y.M. XRCC1 polymorphism and overall survival in ovarian cancer patients treated with platinum-based chemotherapy: A systematic review and MOOSE-compliant meta-analysis. Medicine (Baltimore) 2018;97:e12996. doi: 10.1097/MD.0000000000012996. PubMed DOI PMC
Cheng C.X., Xue M., Li K., Li W.S. Predictive value of XRCC1 and XRCC3 gene polymorphisms for risk of ovarian cancer death after chemotherapy. Asian Pac. J. Cancer Prev. 2012;13:2541–2545. doi: 10.7314/APJCP.2012.13.6.2541. PubMed DOI
Fleming N.D., Agadjanian H., Nassanian H., Miller C.W., Orsulic S., Karlan B.Y., Walsh C.S. Xeroderma pigmentosum complementation group C single-nucleotide polymorphisms in the nucleotide excision repair pathway correlate with prolonged progression-free survival in advanced ovarian cancer. Cancer. 2012;118:689–697. doi: 10.1002/cncr.26329. PubMed DOI
Michalska M.M., Samulak D., Romanowicz H., Sobkowski M., Smolarz B. An Association between Single Nucleotide Polymorphisms of Lys751Gln ERCC2 Gene and Ovarian Cancer in Polish Women. Adv. Med. 2015;2015:109593. doi: 10.1155/2015/109593. PubMed DOI PMC
Peethambaram P., Fridley B.L., Vierkant R.A., Larson M.C., Kalli K.R., Elliott E.A., Oberg A.L., White K.L., Rider D.N., Keeney G.L., et al. Polymorphisms in ABCB1 and ERCC2 associated with ovarian cancer outcome. Int. J. Mol. Epidemiol. Genet. 2011;2:185–195. PubMed PMC
Khrunin A.V., Moisseev A., Gorbunova V., Limborska S. Genetic polymorphisms and the efficacy and toxicity of cisplatin-based chemotherapy in ovarian cancer patients. Pharmacogenom. J. 2010;10:54–61. doi: 10.1038/tpj.2009.45. PubMed DOI
Krivak T.C., Darcy K.M., Tian C., Bookman M., Gallion H., Ambrosone C.B., Deloia J.A. Single nucleotide polypmorphisms in ERCC1 are associated with disease progression, and survival in patients with advanced stage ovarian and primary peritoneal carcinoma; a Gynecologic Oncology Group study. Gynecol. Oncol. 2011;122:121–126. doi: 10.1016/j.ygyno.2011.03.027. PubMed DOI
Fukumoto T., Zhu H., Nacarelli T., Karakashev S., Fatkhutdinov N., Wu S., Liu P., Kossenkov A.V., Showe L.C., Jean S., et al. N(6)-Methylation of Adenosine of FZD10 mRNA Contributes to PARP Inhibitor Resistance. Cancer Res. 2019;79:2812–2820. doi: 10.1158/0008-5472.CAN-18-3592. PubMed DOI PMC
Whole-exome sequencing of epithelial ovarian carcinomas differing in resistance to platinum therapy
DNA Mismatch Repair Gene Variants in Sporadic Solid Cancers