DNA Repair and Ovarian Carcinogenesis: Impact on Risk, Prognosis and Therapy Outcome

. 2020 Jun 28 ; 12 (7) : . [epub] 20200628

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32605254

Grantová podpora
19-10543S Grantová Agentura České Republiky
NV-18/03/00199 Agentura Pro Zdravotnický Výzkum České Republiky
LTC19020 Ministerstvo Školství, Mládeže a Tělovýchovy
(NPU I) Nr. LO1503 Ministerstvo Školství, Mládeže a Tělovýchovy
PROGRES Q 28 Univerzita Karlova v Praze
UNCE/MED/006 Univerzita Karlova v Praze

There is ample evidence for the essential involvement of DNA repair and DNA damage response in the onset of solid malignancies, including ovarian cancer. Indeed, highpenetrance germline mutations in DNA repair genes are important players in familial cancers: BRCA1, BRCA2 mutations or mismatch repair, and polymerase deficiency in colorectal, breast, and ovarian cancers. Recently, some molecular hallmarks (e.g., TP53, KRAS, BRAF, RAD51C/D or PTEN mutations) of ovarian carcinomas were identified. The manuscript overviews the role of DNA repair machinery in ovarian cancer, its risk, prognosis, and therapy outcome. We have attempted to expose molecular hallmarks of ovarian cancer with a focus on DNA repair system and scrutinized genetic, epigenetic, functional, and protein alterations in individual DNA repair pathways (homologous recombination, non-homologous end-joining, DNA mismatch repair, base- and nucleotide-excision repair, and direct repair). We suggest that lack of knowledge particularly in non-homologous end joining repair pathway and the interplay between DNA repair pathways needs to be confronted. The most important genes of the DNA repair system are emphasized and their targeting in ovarian cancer will deserve further attention. The function of those genes, as well as the functional status of the entire DNA repair pathways, should be investigated in detail in the near future.

Zobrazit více v PubMed

Reilly N.M., Novara L., Di Nicolantonio F., Bardelli A. Exploiting DNA repair defects in colorectal cancer. Mol. Oncol. 2019;13:681–700. doi: 10.1002/1878-0261.12467. PubMed DOI PMC

Vodicka P., Vodenkova S., Buchler T., Vodickova L. DNA repair capacity and response to treatment of colon cancer. Pharmacogenomics. 2019;20:1225–1233. doi: 10.2217/pgs-2019-0070. PubMed DOI

Vodicka P., Vodenkova S., Opattova A., Vodickova L. DNA damage and repair measured by comet assay in cancer patients. Mutat. Res. 2019;843:95–110. doi: 10.1016/j.mrgentox.2019.05.009. PubMed DOI

Pearl L.H., Schierz A.C., Ward S.E., Al-Lazikani B., Pearl F.M. Therapeutic opportunities within the DNA damage response. Nat. Rev. Cancer. 2015;15:166–180. doi: 10.1038/nrc3891. PubMed DOI

Goyal G., Fan T., Silberstein P.T. Hereditary cancer syndromes: Utilizing DNA repair deficiency as therapeutic target. Fam. Cancer. 2016;15:359–366. doi: 10.1007/s10689-016-9883-7. PubMed DOI PMC

Grady W.M., Markowitz S.D. The molecular pathogenesis of colorectal cancer and its potential application to colorectal cancer screening. Dig. Dis. Sci. 2015;60:762–772. doi: 10.1007/s10620-014-3444-4. PubMed DOI PMC

Niskakoski A., Pasanen A., Porkka N., Eldfors S., Lassus H., Renkonen-Sinisalo L., Kaur S., Mecklin J.P., Butzow R., Peltomaki P. Converging endometrial and ovarian tumorigenesis in Lynch syndrome: Shared origin of synchronous carcinomas. Gynecol. Oncol. 2018;150:92–98. doi: 10.1016/j.ygyno.2018.04.566. PubMed DOI

Nielsen F.C., van Overeem Hansen T., Sorensen C.S. Hereditary breast and ovarian cancer: New genes in confined pathways. Nat. Rev. Cancer. 2016;16:599–612. doi: 10.1038/nrc.2016.72. PubMed DOI

Song H., Dicks E., Ramus S.J., Tyrer J.P., Intermaggio M.P., Hayward J., Edlund C.K., Conti D., Harrington P., Fraser L., et al. Contribution of Germline Mutations in the RAD51B, RAD51C, and RAD51D Genes to Ovarian Cancer in the Population. J. Clin. Oncol. 2015;33:2901–2907. doi: 10.1200/JCO.2015.61.2408. PubMed DOI PMC

Ferlay J., Colombet M., Soerjomataram I., Mathers C., Parkin D.M., Pineros M., Znaor A., Bray F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer. 2019;144:1941–1953. doi: 10.1002/ijc.31937. PubMed DOI

Matulonis U.A., Sood A.K., Fallowfield L., Howitt B.E., Sehouli J., Karlan B.Y. Ovarian cancer. Nat. Rev. Dis. Prim. 2016;2:16061. doi: 10.1038/nrdp.2016.61. PubMed DOI PMC

Rojas V., Hirshfield K.M., Ganesan S., Rodriguez-Rodriguez L. Molecular Characterization of Epithelial Ovarian Cancer: Implications for Diagnosis and Treatment. Int. J. Mol. Sci. 2016;17 doi: 10.3390/ijms17122113. PubMed DOI PMC

Bowtell D.D., Bohm S., Ahmed A.A., Aspuria P.J., Bast R.C., Jr., Beral V., Berek J.S., Birrer M.J., Blagden S., Bookman M.A., et al. Rethinking ovarian cancer II: Reducing mortality from high-grade serous ovarian cancer. Nat. Rev. Cancer. 2015;15:668–679. doi: 10.1038/nrc4019. PubMed DOI PMC

Kurman R.J., Shih Ie M. The Dualistic Model of Ovarian Carcinogenesis: Revisited, Revised, and Expanded. Am. J. Pathol. 2016;186:733–747. doi: 10.1016/j.ajpath.2015.11.011. PubMed DOI PMC

Testa U., Petrucci E., Pasquini L., Castelli G., Pelosi E. Ovarian Cancers: Genetic Abnormalities, Tumor Heterogeneity and Progression, Clonal Evolution and Cancer Stem Cells. Medcines. 2018;5:16. doi: 10.3390/medicines5010016. PubMed DOI PMC

Kurman R.J., Shih Ie M. Molecular pathogenesis and extraovarian origin of epithelial ovarian cancer--shifting the paradigm. Hum. Pathol. 2011;42:918–931. doi: 10.1016/j.humpath.2011.03.003. PubMed DOI PMC

Markman M. Optimizing primary chemotherapy in ovarian cancer. Hematol. Oncol. Clin. N. Am. 2003;17:957–968. doi: 10.1016/S0889-8588(03)00058-3. PubMed DOI

Davis A., Tinker A.V., Friedlander M. “Platinum resistant” ovarian cancer: What is it, who to treat and how to measure benefit? Gynecol. Oncol. 2014;133:624–631. doi: 10.1016/j.ygyno.2014.02.038. PubMed DOI

Cortez A.J., Tudrej P., Kujawa K.A., Lisowska K.M. Advances in ovarian cancer therapy. Cancer Chemother. Pharmacol. 2018;81:17–38. doi: 10.1007/s00280-017-3501-8. PubMed DOI PMC

Lisio M.A., Fu L., Goyeneche A., Gao Z.H., Telleria C. High-Grade Serous Ovarian Cancer: Basic Sciences, Clinical and Therapeutic Standpoints. Int. J. Mol. Sci. 2019;20:952. doi: 10.3390/ijms20040952. PubMed DOI PMC

Allemani C., Weir H.K., Carreira H., Harewood R., Spika D., Wang X.S., Bannon F., Ahn J.V., Johnson C.J., Bonaventure A., et al. Global surveillance of cancer survival 1995-2009: Analysis of individual data for 25,676,887 patients from 279 population-based registries in 67 countries (CONCORD-2) Lancet. 2015;385:977–1010. doi: 10.1016/S0140-6736(14)62038-9. PubMed DOI PMC

The World Ovarian Cancer Coalition Atlas, Global Trends in Incidence, Mortality and Survival. [(accessed on 18 March 2020)]; Available online: https://worldovariancancercoalition.org/wp-content/uploads/2018/10/THE-WORLD-OVARIAN-CANCER-COALITION-ATLAS-2018.pdf.

DNA Repair Genes Pertinent Cancer Susceptibility (Version 1.1) [(accessed on 27 May 2020)]; Available online: https://panelapp.genomicsengland.co.uk/panels/256/

Mirza-Aghazadeh-Attari M., Ostadian C., Saei A.A., Mihanfar A., Darband S.G., Sadighparvar S., Kaviani M., Samadi Kafil H., Yousefi B., Majidinia M. DNA damage response and repair in ovarian cancer: Potential targets for therapeutic strategies. DNA Repair. 2019;80:59–84. doi: 10.1016/j.dnarep.2019.06.005. PubMed DOI

Gee M.E., Faraahi Z., McCormick A., Edmondson R.J. DNA damage repair in ovarian cancer: Unlocking the heterogeneity. J. Ovarian Res. 2018;11:50. doi: 10.1186/s13048-018-0424-x. PubMed DOI PMC

Qiao B., Zhang Z., Li Y. Association of MGMT promoter methylation with tumorigenesis features in patients with ovarian cancer: A systematic meta-analysis. Mol. Genet. Genom. Med. 2018;6:69–76. doi: 10.1002/mgg3.349. PubMed DOI PMC

Chang H.H.Y., Pannunzio N.R., Adachi N., Lieber M.R. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat. Rev. Mol. Cell Biol. 2017;18:495–506. doi: 10.1038/nrm.2017.48. PubMed DOI PMC

Branzei D., Foiani M. Regulation of DNA repair throughout the cell cycle. Nat. Rev. Mol. Cell Biol. 2008;9:297–308. doi: 10.1038/nrm2351. PubMed DOI

Li G.M. Mechanisms and functions of DNA mismatch repair. Cell Res. 2008;18:85–98. doi: 10.1038/cr.2007.115. PubMed DOI

Brandsma I., Gent D.C. Pathway choice in DNA double strand break repair: Observations of a balancing act. Genome Integr. 2012;3:9. doi: 10.1186/2041-9414-3-9. PubMed DOI PMC

Silwal-Pandit L., Langerod A., Borresen-Dale A.L. TP53 Mutations in Breast and Ovarian Cancer. Cold Spring Harb. Perspect Med. 2017;7 doi: 10.1101/cshperspect.a026252. PubMed DOI PMC

Leroy B., Anderson M., Soussi T. TP53 mutations in human cancer: Database reassessment and prospects for the next decade. Hum. Mutat. 2014;35:672–688. doi: 10.1002/humu.22552. PubMed DOI

Hernandez G., Ramirez M.J., Minguillon J., Quiles P., Ruiz de Garibay G., Aza-Carmona M., Bogliolo M., Pujol R., Prados-Carvajal R., Fernandez J., et al. Decapping protein EDC4 regulates DNA repair and phenocopies BRCA1. Nat. Commun. 2018;9:967. doi: 10.1038/s41467-018-03433-3. PubMed DOI PMC

Knijnenburg T.A., Wang L., Zimmermann M.T., Chambwe N., Gao G.F., Cherniack A.D., Fan H., Shen H., Way G.P., Greene C.S., et al. Genomic and Molecular Landscape of DNA Damage Repair Deficiency across The Cancer Genome Atlas. Cell Rep. 2018;23:239–254. doi: 10.1016/j.celrep.2018.03.076. PubMed DOI PMC

O’Sullivan Coyne G., Chen A.P., Meehan R., Doroshow J.H. PARP Inhibitors in Reproductive System Cancers: Current Use and Developments. Drugs. 2017;77:113–130. doi: 10.1007/s40265-016-0688-7. PubMed DOI PMC

Rejhova A., Opattova A., Cumova A., Sliva D., Vodicka P. Natural compounds and combination therapy in colorectal cancer treatment. Eur. J. Med. Chem. 2018;144:582–594. doi: 10.1016/j.ejmech.2017.12.039. PubMed DOI

Jeggo P.A., Geuting V., Lobrich M. The role of homologous recombination in radiation-induced double-strand break repair. Radiother. Oncol. 2011;101:7–12. doi: 10.1016/j.radonc.2011.06.019. PubMed DOI

Covo S., Ma W., Westmoreland J.W., Gordenin D.A., Resnick M.A. Understanding the origins of UV-induced recombination through manipulation of sister chromatid cohesion. Cell Cycle. 2012;11:3937–3944. doi: 10.4161/cc.21945. PubMed DOI PMC

Reliene R., Bishop A.J., Schiestl R.H. Involvement of homologous recombination in carcinogenesis. Adv. Genet. 2007;58:67–87. doi: 10.1016/S0065-2660(06)58003-4. PubMed DOI

Pennington K.P., Walsh T., Harrell M.I., Lee M.K., Pennil C.C., Rendi M.H., Thornton A., Norquist B.M., Casadei S., Nord A.S., et al. Germline and somatic mutations in homologous recombination genes predict platinum response and survival in ovarian, fallopian tube, and peritoneal carcinomas. Clin. Cancer Res. 2014;20:764–775. doi: 10.1158/1078-0432.CCR-13-2287. PubMed DOI PMC

Moynahan M.E., Chiu J.W., Koller B.H., Jasin M. Brca1 controls homology-directed DNA repair. Mol. Cell. 1999;4:511–518. doi: 10.1016/S1097-2765(00)80202-6. PubMed DOI

Moynahan M.E., Pierce A.J., Jasin M. BRCA2 is required for homology-directed repair of chromosomal breaks. Mol. Cell. 2001;7:263–272. doi: 10.1016/S1097-2765(01)00174-5. PubMed DOI

Konstantinopoulos P.A., Ceccaldi R., Shapiro G.I., D’Andrea A.D. Homologous Recombination Deficiency: Exploiting the Fundamental Vulnerability of Ovarian Cancer. Cancer Discov. 2015;5:1137–1154. doi: 10.1158/2159-8290.CD-15-0714. PubMed DOI PMC

Yi C., He C. DNA repair by reversal of DNA damage. Cold Spring Harb. Perspect. Biol. 2013;5:a012575. doi: 10.1101/cshperspect.a012575. PubMed DOI PMC

Kuchenbaecker K.B., Hopper J.L., Barnes D.R., Phillips K.A., Mooij T.M., Roos-Blom M.J., Jervis S., van Leeuwen F.E., Milne R.L., Andrieu N., et al. Risks of Breast, Ovarian, and Contralateral Breast Cancer for BRCA1 and BRCA2 Mutation Carriers. JAMA. 2017;317:2402–2416. doi: 10.1001/jama.2017.7112. PubMed DOI

Kotsopoulos J., Gronwald J., Karlan B., Rosen B., Huzarski T., Moller P., Lynch H.T., Singer C.F., Senter L., Neuhausen S.L., et al. Age-specific ovarian cancer risks among women with a BRCA1 or BRCA2 mutation. Gynecol. Oncol. 2018;150:85–91. doi: 10.1016/j.ygyno.2018.05.011. PubMed DOI

Doufekas K., Olaitan A. Clinical epidemiology of epithelial ovarian cancer in the UK. Int. J. Womens Health. 2014;6:537–545. doi: 10.2147/IJWH.S40894. PubMed DOI PMC

SEER Cancer Statistics Review (CSR) 1975–2015. [(accessed on 18 March 2020)]; Available online: https://seer.cancer.gov/csr/1975_2017/

Rebbeck T.R., Mitra N., Wan F., Sinilnikova O.M., Healey S., McGuffog L., Mazoyer S., Chenevix-Trench G., Easton D.F., Antoniou A.C., et al. Association of type and location of BRCA1 and BRCA2 mutations with risk of breast and ovarian cancer. JAMA. 2015;313:1347–1361. doi: 10.1001/jama.2014.5985. PubMed DOI PMC

Bolton K.L., Chenevix-Trench G., Goh C., Sadetzki S., Ramus S.J., Karlan B.Y., Lambrechts D., Despierre E., Barrowdale D., McGuffog L., et al. Association between BRCA1 and BRCA2 mutations and survival in women with invasive epithelial ovarian cancer. JAMA. 2012;307:382–390. doi: 10.1001/jama.2012.20. PubMed DOI PMC

Ruscito I., Dimitrova D., Vasconcelos I., Gellhaus K., Schwachula T., Bellati F., Zeillinger R., Benedetti-Panici P., Vergote I., Mahner S., et al. BRCA1 gene promoter methylation status in high-grade serous ovarian cancer patients—A study of the tumour Bank ovarian cancer (TOC) and ovarian cancer diagnosis consortium (OVCAD) Eur. J. Cancer. 2014;50:2090–2098. doi: 10.1016/j.ejca.2014.05.001. PubMed DOI

Gourley C., Michie C.O., Roxburgh P., Yap T.A., Harden S., Paul J., Ragupathy K., Todd R., Petty R., Reed N., et al. Increased incidence of visceral metastases in scottish patients with BRCA1/2-defective ovarian cancer: An extension of the ovarian BRCAness phenotype. J. Clin. Oncol. 2010;28:2505–2511. doi: 10.1200/JCO.2009.25.1082. PubMed DOI

Yang D., Khan S., Sun Y., Hess K., Shmulevich I., Sood A.K., Zhang W. Association of BRCA1 and BRCA2 mutations with survival, chemotherapy sensitivity, and gene mutator phenotype in patients with ovarian cancer. JAMA. 2011;306:1557–1565. doi: 10.1001/jama.2011.1456. PubMed DOI PMC

Alsop K., Fereday S., Meldrum C., deFazio A., Emmanuel C., George J., Dobrovic A., Birrer M.J., Webb P.M., Stewart C., et al. BRCA mutation frequency and patterns of treatment response in BRCA mutation-positive women with ovarian cancer: A report from the Australian Ovarian Cancer Study Group. J. Clin. Oncol. 2012;30:2654–2663. doi: 10.1200/JCO.2011.39.8545. PubMed DOI PMC

Jiang X., Li X., Li W., Bai H., Zhang Z. PARP inhibitors in ovarian cancer: Sensitivity prediction and resistance mechanisms. J. Cell Mol. Med. 2019;23:2303–2313. doi: 10.1111/jcmm.14133. PubMed DOI PMC

D’Andrea A.D. Mechanisms of PARP inhibitor sensitivity and resistance. DNA Repair. 2018;71:172–176. doi: 10.1016/j.dnarep.2018.08.021. PubMed DOI

Vaz F., Hanenberg H., Schuster B., Barker K., Wiek C., Erven V., Neveling K., Endt D., Kesterton I., Autore F., et al. Mutation of the RAD51C gene in a Fanconi anemia-like disorder. Nat. Genet. 2010;42:406–409. doi: 10.1038/ng.570. PubMed DOI

Cunningham J.M., Cicek M.S., Larson N.B., Davila J., Wang C., Larson M.C., Song H., Dicks E.M., Harrington P., Wick M., et al. Clinical characteristics of ovarian cancer classified by BRCA1, BRCA2, and RAD51C status. Sci. Rep. 2014;4:4026. doi: 10.1038/srep04026. PubMed DOI PMC

Loveday C., Turnbull C., Ruark E., Xicola R.M., Ramsay E., Hughes D., Warren-Perry M., Snape K., Breast Cancer Susceptibility C., Eccles D., et al. Germline RAD51C mutations confer susceptibility to ovarian cancer. Nat. Genet. 2012;44:475–476. doi: 10.1038/ng.2224. PubMed DOI

Arvai K.J., Roberts M.E., Torene R.I., Susswein L.R., Marshall M.L., Zhang Z., Carter N.J., Yackowski L., Rinella E.S., Klein R.T., et al. Age-adjusted association of homologous recombination genes with ovarian cancer using clinical exomes as controls. Hered. Cancer Clin. Pract. 2019;17:19. doi: 10.1186/s13053-019-0119-3. PubMed DOI PMC

Thompson E.R., Rowley S.M., Sawyer S., Eccles D.M., Trainer A.H., Mitchell G., James P.A., Campbell I.G. Analysis of RAD51D in ovarian cancer patients and families with a history of ovarian or breast cancer. PLoS ONE. 2013;8:e54772. doi: 10.1371/journal.pone.0054772. PubMed DOI PMC

Norquist B.M., Harrell M.I., Brady M.F., Walsh T., Lee M.K., Gulsuner S., Bernards S.S., Casadei S., Yi Q., Burger R.A., et al. Inherited Mutations in Women With Ovarian Carcinoma. JAMA Oncol. 2016;2:482–490. doi: 10.1001/jamaoncol.2015.5495. PubMed DOI PMC

Loveday C., Turnbull C., Ramsay E., Hughes D., Ruark E., Frankum J.R., Bowden G., Kalmyrzaev B., Warren-Perry M., Snape K., et al. Germline mutations in RAD51D confer susceptibility to ovarian cancer. Nat. Genet. 2011;43:879–882. doi: 10.1038/ng.893. PubMed DOI PMC

AlHilli M.M., Becker M.A., Weroha S.J., Flatten K.S., Hurley R.M., Harrell M.I., Oberg A.L., Maurer M.J., Hawthorne K.M., Hou X., et al. In vivo anti-tumor activity of the PARP inhibitor niraparib in homologous recombination deficient and proficient ovarian carcinoma. Gynecol. Oncol. 2016;143:379–388. doi: 10.1016/j.ygyno.2016.08.328. PubMed DOI PMC

Kondrashova O., Nguyen M., Shield-Artin K., Tinker A.V., Teng N.N.H., Harrell M.I., Kuiper M.J., Ho G.Y., Barker H., Jasin M., et al. Secondary Somatic Mutations Restoring RAD51C and RAD51D Associated with Acquired Resistance to the PARP Inhibitor Rucaparib in High-Grade Ovarian Carcinoma. Cancer Discov. 2017;7:984–998. doi: 10.1158/2159-8290.CD-17-0419. PubMed DOI PMC

Heeke A.L., Pishvaian M.J., Lynce F., Xiu J., Brody J.R., Chen W.J., Baker T.M., Marshall J.L., Isaacs C. Prevalence of Homologous Recombination-Related Gene Mutations Across Multiple Cancer Types. JCO Precis Oncol. 2018;2018 doi: 10.1200/PO.17.00286. PubMed DOI PMC

Brandt S., Samartzis E.P., Zimmermann A.K., Fink D., Moch H., Noske A., Dedes K.J. Lack of MRE11-RAD50-NBS1 (MRN) complex detection occurs frequently in low-grade epithelial ovarian cancer. BMC Cancer. 2017;17:44. doi: 10.1186/s12885-016-3026-2. PubMed DOI PMC

Kessous R., Octeau D., Klein K., Tonin P.N., Greenwood C.M.T., Pelmus M., Laskov I., Kogan L., Salvador S., Lau S., et al. Distinct homologous recombination gene expression profiles after neoadjuvant chemotherapy associated with clinical outcome in patients with ovarian cancer. Gynecol. Oncol. 2018;148:553–558. doi: 10.1016/j.ygyno.2018.01.017. PubMed DOI

Zhang M., Liu G., Xue F., Edwards R., Sood A.K., Zhang W., Yang D. Copy number deletion of RAD50 as predictive marker of BRCAness and PARP inhibitor response in BRCA wild type ovarian cancer. Gynecol. Oncol. 2016;141:57–64. doi: 10.1016/j.ygyno.2016.01.004. PubMed DOI PMC

Nepomuceno T.C., De Gregoriis G., de Oliveira F.M.B., Suarez-Kurtz G., Monteiro A.N., Carvalho M.A. The Role of PALB2 in the DNA Damage Response and Cancer Predisposition. Int. J. Mol. Sci. 2017;18:1886. doi: 10.3390/ijms18091886. PubMed DOI PMC

Antoniou A.C., Casadei S., Heikkinen T., Barrowdale D., Pylkas K., Roberts J., Lee A., Subramanian D., De Leeneer K., Fostira F., et al. Breast-cancer risk in families with mutations in PALB2. N. Engl. J. Med. 2014;371:497–506. doi: 10.1056/NEJMoa1400382. PubMed DOI PMC

Kluska A., Balabas A., Piatkowska M., Czarny K., Paczkowska K., Nowakowska D., Mikula M., Ostrowski J. PALB2 mutations in BRCA1/2-mutation negative breast and ovarian cancer patients from Poland. BMC Med. Genom. 2017;10:14. doi: 10.1186/s12920-017-0251-8. PubMed DOI PMC

Yang X., Leslie G., Doroszuk A., Schneider S., Allen J., Decker B., Dunning A.M., Redman J., Scarth J., Plaskocinska I., et al. Cancer Risks Associated With Germline PALB2 Pathogenic Variants: An International Study of 524 Families. J. Clin. Oncol. 2020;38:674–685. doi: 10.1200/JCO.19.01907. PubMed DOI PMC

Poti A., Gyergyak H., Nemeth E., Rusz O., Toth S., Kovacshazi C., Chen D., Szikriszt B., Spisak S., Takeda S., et al. Correlation of homologous recombination deficiency induced mutational signatures with sensitivity to PARP inhibitors and cytotoxic agents. Genome Biol. 2019;20:240. doi: 10.1186/s13059-019-1867-0. PubMed DOI PMC

Smith M.A., Hampton O.A., Reynolds C.P., Kang M.H., Maris J.M., Gorlick R., Kolb E.A., Lock R., Carol H., Keir S.T., et al. Initial testing (stage 1) of the PARP inhibitor BMN 673 by the pediatric preclinical testing program: PALB2 mutation predicts exceptional in vivo response to BMN 673. Pediatr. Blood Cancer. 2015;62:91–98. doi: 10.1002/pbc.25201. PubMed DOI PMC

Buys S.S., Sandbach J.F., Gammon A., Patel G., Kidd J., Brown K.L., Sharma L., Saam J., Lancaster J., Daly M.B. A study of over 35,000 women with breast cancer tested with a 25-gene panel of hereditary cancer genes. Cancer. 2017;123:1721–1730. doi: 10.1002/cncr.30498. PubMed DOI

Seal S., Thompson D., Renwick A., Elliott A., Kelly P., Barfoot R., Chagtai T., Jayatilake H., Ahmed M., Spanova K., et al. Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles. Nat. Genet. 2006;38:1239–1241. doi: 10.1038/ng1902. PubMed DOI

Thompson E.R., Rowley S.M., Li N., McInerny S., Devereux L., Wong-Brown M.W., Trainer A.H., Mitchell G., Scott R.J., James P.A., et al. Panel Testing for Familial Breast Cancer: Calibrating the Tension Between Research and Clinical Care. J. Clin. Oncol. 2016;34:1455–1459. doi: 10.1200/JCO.2015.63.7454. PubMed DOI

Couch F.J., Shimelis H., Hu C., Hart S.N., Polley E.C., Na J., Hallberg E., Moore R., Thomas A., Lilyquist J., et al. Associations Between Cancer Predisposition Testing Panel Genes and Breast Cancer. JAMA Oncol. 2017;3:1190–1196. doi: 10.1001/jamaoncol.2017.0424. PubMed DOI PMC

Easton D.F., Lesueur F., Decker B., Michailidou K., Li J., Allen J., Luccarini C., Pooley K.A., Shah M., Bolla M.K., et al. No evidence that protein truncating variants in BRIP1 are associated with breast cancer risk: Implications for gene panel testing. J. Med. Genet. 2016;53:298–309. doi: 10.1136/jmedgenet-2015-103529. PubMed DOI PMC

Slavin T.P., Maxwell K.N., Lilyquist J., Vijai J., Neuhausen S.L., Hart S.N., Ravichandran V., Thomas T., Maria A., Villano D., et al. The contribution of pathogenic variants in breast cancer susceptibility genes to familial breast cancer risk. NPJ Breast Cancer. 2017;3:22. doi: 10.1038/s41523-017-0024-8. PubMed DOI PMC

Ramus S.J., Song H., Dicks E., Tyrer J.P., Rosenthal A.N., Intermaggio M.P., Fraser L., Gentry-Maharaj A., Hayward J., Philpott S., et al. Germline Mutations in the BRIP1, BARD1, PALB2, and NBN Genes in Women With Ovarian Cancer. J. Natl. Cancer Inst. 2015;107 doi: 10.1093/jnci/djv214. PubMed DOI PMC

Weber-Lassalle N., Hauke J., Ramser J., Richters L., Gross E., Blumcke B., Gehrig A., Kahlert A.K., Muller C.R., Hackmann K., et al. BRIP1 loss-of-function mutations confer high risk for familial ovarian cancer, but not familial breast cancer. Breast Cancer Res. 2018;20:7. doi: 10.1186/s13058-018-0935-9. PubMed DOI PMC

Moyer C.L., Ivanovich J., Gillespie J.L., Doberstein R., Radke M.R., Richardson M.E., Kaufmann S.H., Swisher E.M., Goodfellow P.J. Rare BRIP1 Missense Alleles Confer Risk for Ovarian and Breast Cancer. Cancer Res. 2020;80:857–867. doi: 10.1158/0008-5472.CAN-19-1991. PubMed DOI PMC

Zhang J., Willers H., Feng Z., Ghosh J.C., Kim S., Weaver D.T., Chung J.H., Powell S.N., Xia F. Chk2 phosphorylation of BRCA1 regulates DNA double-strand break repair. Mol. Cell Biol. 2004;24:708–718. doi: 10.1128/MCB.24.2.708-718.2004. PubMed DOI PMC

Buisson R., Masson J.Y. PALB2 self-interaction controls homologous recombination. Nucleic Acids Res. 2012;40:10312–10323. doi: 10.1093/nar/gks807. PubMed DOI PMC

Roy R., Chun J., Powell S.N. BRCA1 and BRCA2: Different roles in a common pathway of genome protection. Nat. Rev. Cancer. 2011;12:68–78. doi: 10.1038/nrc3181. PubMed DOI PMC

Lawrenson K., Iversen E.S., Tyrer J., Weber R.P., Concannon P., Hazelett D.J., Li Q., Marks J.R., Berchuck A., Lee J.M., et al. Common variants at the CHEK2 gene locus and risk of epithelial ovarian cancer. Carcinogenesis. 2015;36:1341–1353. doi: 10.1093/carcin/bgv138. PubMed DOI PMC

Phelan C.M., Kuchenbaecker K.B., Tyrer J.P., Kar S.P., Lawrenson K., Winham S.J., Dennis J., Pirie A., Riggan M.J., Chornokur G., et al. Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer. Nat. Genet. 2017;49:680–691. doi: 10.1038/ng.3826. PubMed DOI PMC

Michalska M.M., Samulak D., Romanowicz H., Bienkiewicz J., Sobkowski M., Ciesielski K., Smolarz B. Single nucleotide polymorphisms (SNPs) of hOGG1 and XRCC1 DNA repair genes and the risk of ovarian cancer in Polish women. Tumour Biol. 2015;36:9457–9463. doi: 10.1007/s13277-015-3707-5. PubMed DOI

Chen X., Liu X., Wang J., Guo W., Sun C., Cai Z., Wu Q., Xu X., Wang Y. Functional polymorphisms of the hOGG1 gene confer risk to type 2 epithelial ovarian cancer in Chinese. Int. J. Gynecol. Cancer. 2011;21:1407–1413. doi: 10.1097/IGC.0b013e31823122c6. PubMed DOI

Osorio A., Milne R.L., Kuchenbaecker K., Vaclova T., Pita G., Alonso R., Peterlongo P., Blanco I., de la Hoya M., Duran M., et al. DNA glycosylases involved in base excision repair may be associated with cancer risk in BRCA1 and BRCA2 mutation carriers. PLoS Genet. 2014;10:e1004256. doi: 10.1371/journal.pgen.1004256. PubMed DOI PMC

Zhang X., Xin X., Zhang J., Li J., Chen B., Zou W. Apurinic/apyrimidinic endonuclease 1 polymorphisms are associated with ovarian cancer susceptibility in a Chinese population. Int. J. Gynecol. Cancer. 2013;23:1393–1399. doi: 10.1097/IGC.0b013e3182a33f07. PubMed DOI

Malisic E.J., Krivokuca A.M., Boljevic I.Z., Jankovic R.N. Impact of RAD51 G135C and XRCC1 Arg399Gln polymorphisms on ovarian carcinoma risk in Serbian women. Cancer Biomark. 2015;15:685–691. doi: 10.3233/CBM-150509. PubMed DOI

Miao J., Zhang X., Tang Q.L., Wang X.Y., Kai L. Prediction value of XRCC 1 gene polymorphism on the survival of ovarian cancer treated by adjuvant chemotherapy. Asian Pac. J. Cancer Prev. 2012;13:5007–5010. doi: 10.7314/APJCP.2012.13.10.5007. PubMed DOI

Li K., Li W. Association between polymorphisms of XRCC1 and ADPRT genes and ovarian cancer survival with platinum-based chemotherapy in Chinese population. Mol. Cell Biochem. 2013;372:27–33. doi: 10.1007/s11010-012-1442-4. PubMed DOI

Pannunzio N.R., Watanabe G., Lieber M.R. Nonhomologous DNA end-joining for repair of DNA double-strand breaks. J. Biol. Chem. 2018;293:10512–10523. doi: 10.1074/jbc.TM117.000374. PubMed DOI PMC

O’Driscoll M., Gennery A.R., Seidel J., Concannon P., Jeggo P.A. An overview of three new disorders associated with genetic instability: LIG4 syndrome, RS-SCID and ATR-Seckel syndrome. DNA Repair. 2004;3:1227–1235. doi: 10.1016/j.dnarep.2004.03.025. PubMed DOI

Sekiguchi J.M., Ferguson D.O. DNA double-strand break repair: A relentless hunt uncovers new prey. Cell. 2006;124:260–262. doi: 10.1016/j.cell.2006.01.010. PubMed DOI

Bentley J., L’Hote C., Platt F., Hurst C.D., Lowery J., Taylor C., Sak S.C., Harnden P., Knowles M.A., Kiltie A.E. Papillary and muscle invasive bladder tumors with distinct genomic stability profiles have different DNA repair fidelity and KU DNA-binding activities. Genes Chromosomes Cancer. 2009;48:310–321. doi: 10.1002/gcc.20641. PubMed DOI

Windhofer F., Krause S., Hader C., Schulz W.A., Florl A.R. Distinctive differences in DNA double-strand break repair between normal urothelial and urothelial carcinoma cells. Mutat. Res. 2008;638:56–65. doi: 10.1016/j.mrfmmm.2007.08.016. PubMed DOI

Gaymes T.J., Mufti G.J., Rassool F.V. Myeloid leukemias have increased activity of the nonhomologous end-joining pathway and concomitant DNA misrepair that is dependent on the Ku70/86 heterodimer. Cancer Res. 2002;62:2791–2797. PubMed

Deriano L., Guipaud O., Merle-Beral H., Binet J.L., Ricoul M., Potocki-Veronese G., Favaudon V., Maciorowski Z., Muller C., Salles B., et al. Human chronic lymphocytic leukemia B cells can escape DNA damage-induced apoptosis through the nonhomologous end-joining DNA repair pathway. Blood. 2005;105:4776–4783. doi: 10.1182/blood-2004-07-2888. PubMed DOI

McCormick A., Donoghue P., Dixon M., O’Sullivan R., O’Donnell R.L., Murray J., Kaufmann A., Curtin N.J., Edmondson R.J. Ovarian Cancers Harbor Defects in Nonhomologous End Joining Resulting in Resistance to Rucaparib. Clin. Cancer Res. 2017;23:2050–2060. doi: 10.1158/1078-0432.CCR-16-0564. PubMed DOI PMC

Murray J.E., van der Burg M., IJspeert H., Carroll P., Wu Q., Ochi T., Leitch A., Miller E.S., Kysela B., Jawad A., et al. Mutations in the NHEJ component XRCC4 cause primordial dwarfism. Am. J. Hum. Genet. 2015;96:412–424. doi: 10.1016/j.ajhg.2015.01.013. PubMed DOI PMC

Willis S., Villalobos V.M., Gevaert O., Abramovitz M., Williams C., Sikic B.I., Leyland-Jones B. Single Gene Prognostic Biomarkers in Ovarian Cancer: A Meta-Analysis. PLoS ONE. 2016;11:e0149183. doi: 10.1371/journal.pone.0149183. PubMed DOI PMC

Assis J., Pereira D., Medeiros R. Ovarian cancer and DNA repair: DNA ligase IV as a potential key. World J. Clin. Oncol. 2013;4:14–24. doi: 10.5306/wjco.v4.i1.14. PubMed DOI PMC

Pearce C.L., Near A.M., Van Den Berg D.J., Ramus S.J., Gentry-Maharaj A., Menon U., Gayther S.A., Anderson A.R., Edlund C.K., Wu A.H., et al. Validating genetic risk associations for ovarian cancer through the international Ovarian Cancer Association Consortium. Br. J. Cancer. 2009;100:412–420. doi: 10.1038/sj.bjc.6604820. PubMed DOI PMC

Toss A., Tomasello C., Razzaboni E., Contu G., Grandi G., Cagnacci A., Schilder R.J., Cortesi L. Hereditary ovarian cancer: Not only BRCA 1 and 2 genes. Biomed. Res. Int. 2015;2015:341723. doi: 10.1155/2015/341723. PubMed DOI PMC

Gupta D., Lin B., Cowan A., Heinen C.D. ATR-Chk1 activation mitigates replication stress caused by mismatch repair-dependent processing of DNA damage. Proc. Natl. Acad. Sci. USA. 2018;115:1523–1528. doi: 10.1073/pnas.1720355115. PubMed DOI PMC

Cannavo E., Gerrits B., Marra G., Schlapbach R., Jiricny J. Characterization of the interactome of the human MutL homologues MLH1, PMS1, and PMS2. J. Biol. Chem. 2007;282:2976–2986. doi: 10.1074/jbc.M609989200. PubMed DOI

Guillotin D., Martin S.A. Exploiting DNA mismatch repair deficiency as a therapeutic strategy. Exp. Cell Res. 2014;329:110–115. doi: 10.1016/j.yexcr.2014.07.004. PubMed DOI

Jonsson J.M., Bartuma K., Dominguez-Valentin M., Harbst K., Ketabi Z., Malander S., Jonsson M., Carneiro A., Masback A., Jonsson G., et al. Distinct gene expression profiles in ovarian cancer linked to Lynch syndrome. Fam. Cancer. 2014;13:537–545. doi: 10.1007/s10689-014-9728-1. PubMed DOI PMC

Helder-Woolderink J.M., Blok E.A., Vasen H.F., Hollema H., Mourits M.J., De Bock G.H. Ovarian cancer in Lynch syndrome; a systematic review. Eur. J. Cancer. 2016;55:65–73. doi: 10.1016/j.ejca.2015.12.005. PubMed DOI

Geisler J.P., Goodheart M.J., Sood A.K., Holmes R.J., Hatterman-Zogg M.A., Buller R.E. Mismatch repair gene expression defects contribute to microsatellite instability in ovarian carcinoma. Cancer. 2003;98:2199–2206. doi: 10.1002/cncr.11770. PubMed DOI

Hause R.J., Pritchard C.C., Shendure J., Salipante S.J. Classification and characterization of microsatellite instability across 18 cancer types. Nat. Med. 2016;22:1342–1350. doi: 10.1038/nm.4191. PubMed DOI

Collura A., Lefevre J.H., Svrcek M., Tougeron D., Zaanan A., Duval A. Microsatellite instability and cancer: From genomic instability to personalized medicine. Med. Sci. (Paris) 2019;35:535–543. doi: 10.1051/medsci/2019093. PubMed DOI

Murphy M.A., Wentzensen N. Frequency of mismatch repair deficiency in ovarian cancer: A systematic review. This article is a US Government work and, as such, is in the public domain of the United States of America. Int. J. Cancer. 2011;129:1914–1922. doi: 10.1002/ijc.25835. PubMed DOI PMC

Yamashita H., Nakayama K., Ishikawa M., Ishibashi T., Nakamura K., Sawada K., Yoshimura Y., Tatsumi N., Kurose S., Minamoto T., et al. Relationship between Microsatellite Instability, Immune Cells Infiltration, and Expression of Immune Checkpoint Molecules in Ovarian Carcinoma: Immunotherapeutic Strategies for the Future. Int. J. Mol. Sci. 2019;20:5129. doi: 10.3390/ijms20205129. PubMed DOI PMC

Howitt B.E., Strickland K.C., Sholl L.M., Rodig S., Ritterhouse L.L., Chowdhury D., D’Andrea A.D., Matulonis U.A., Konstantinopoulos P.A. Clear cell ovarian cancers with microsatellite instability: A unique subset of ovarian cancers with increased tumor-infiltrating lymphocytes and PD-1/PD-L1 expression. Oncoimmunology. 2017;6:e1277308. doi: 10.1080/2162402X.2016.1277308. PubMed DOI PMC

Fraune C., Rosebrock J., Simon R., Hube-Magg C., Makrypidi-Fraune G., Kluth M., Buscheck F., Hoflmayer D., Schmalfeldt B., Muller V., et al. High homogeneity of MMR deficiency in ovarian cancer. Gynecol. Oncol. 2020;156:669–675. doi: 10.1016/j.ygyno.2019.12.031. PubMed DOI

Fink D., Nebel S., Aebi S., Zheng H., Cenni B., Nehme A., Christen R.D., Howell S.B. The role of DNA mismatch repair in platinum drug resistance. Cancer Res. 1996;56:4881–4886. PubMed

Martin L.P., Hamilton T.C., Schilder R.J. Platinum resistance: The role of DNA repair pathways. Clin. Cancer Res. 2008;14:1291–1295. doi: 10.1158/1078-0432.CCR-07-2238. PubMed DOI

Roos W.P., Kaina B. DNA damage-induced cell death: From specific DNA lesions to the DNA damage response and apoptosis. Cancer Lett. 2013;332:237–248. doi: 10.1016/j.canlet.2012.01.007. PubMed DOI

Tian H., Yan L., Xiao-Fei L., Hai-Yan S., Juan C., Shan K. Hypermethylation of mismatch repair gene hMSH2 associates with platinum-resistant disease in epithelial ovarian cancer. Clin. Epigenet. 2019;11:153. doi: 10.1186/s13148-019-0748-4. PubMed DOI PMC

Watanabe Y., Ueda H., Etoh T., Koike E., Fujinami N., Mitsuhashi A., Hoshiai H. A change in promoter methylation of hMLH1 is a cause of acquired resistance to platinum-based chemotherapy in epithelial ovarian cancer. Anticancer Res. 2007;27:1449–1452. PubMed

Zhao C., Li S., Zhao M., Zhu H., Zhu X. Prognostic values of DNA mismatch repair genes in ovarian cancer patients treated with platinum-based chemotherapy. Arch. Gynecol. Obstet. 2018;297:153–159. doi: 10.1007/s00404-017-4563-x. PubMed DOI PMC

Hegde M.L., Izumi T., Mitra S. Oxidized base damage and single-strand break repair in mammalian genomes: Role of disordered regions and posttranslational modifications in early enzymes. Prog. Mol. Biol. Transl. Sci. 2012;110:123–153. doi: 10.1016/B978-0-12-387665-2.00006-7. PubMed DOI PMC

D’Errico M., Parlanti E., Pascucci B., Fortini P., Baccarini S., Simonelli V., Dogliotti E. Single nucleotide polymorphisms in DNA glycosylases: From function to disease. Free Radic. Biol. Med. 2017;107:278–291. doi: 10.1016/j.freeradbiomed.2016.12.002. PubMed DOI

Vodicka P., Urbanova M., Makovicky P., Tomasova K., Kroupa M., Stetina R., Opattova A., Kostovcikova K., Siskova A., Schneiderova M., et al. Oxidative Damage in Sporadic Colorectal Cancer: Molecular Mapping of Base Excision Repair Glycosylases in Colorectal Cancer Patients. Int. J. Mol. Sci. 2020;21:2473. doi: 10.3390/ijms21072473. PubMed DOI PMC

Vodicka P., Stetina R., Polakova V., Tulupova E., Naccarati A., Vodickova L., Kumar R., Hanova M., Pardini B., Slyskova J., et al. Association of DNA repair polymorphisms with DNA repair functional outcomes in healthy human subjects. Carcinogenesis. 2007;28:657–664. doi: 10.1093/carcin/bgl187. PubMed DOI

Benitez-Buelga C., Vaclova T., Ferreira S., Urioste M., Inglada-Perez L., Soberon N., Blasco M.A., Osorio A., Benitez J. Molecular insights into the OGG1 gene, a cancer risk modifier in BRCA1 and BRCA2 mutations carriers. Oncotarget. 2016;7:25815–25825. doi: 10.18632/oncotarget.8272. PubMed DOI PMC

Tomasova K., Kroupa M., Forsti A., Vodicka P., Vodickova L. Telomere maintenance in interplay with DNA repair in pathogenesis and treatment of colorectal cancer. Mutagenesis. 2020 doi: 10.1093/mutage/geaa005. PubMed DOI

Poulsen M.L., Bisgaard M.L. MUTYH Associated Polyposis (MAP) Curr. Genom. 2008;9:420–435. doi: 10.2174/138920208785699562. PubMed DOI PMC

Win A.K., Reece J.C., Dowty J.G., Buchanan D.D., Clendenning M., Rosty C., Southey M.C., Young J.P., Cleary S.P., Kim H., et al. Risk of extracolonic cancers for people with biallelic and monoallelic mutations in MUTYH. Int. J. Cancer. 2016;139:1557–1563. doi: 10.1002/ijc.30197. PubMed DOI PMC

Lindahl T., Ljungquist S., Siegert W., Nyberg B., Sperens B. DNA N-glycosidases: Properties of uracil-DNA glycosidase from Escherichia coli. J. Biol. Chem. 1977;252:3286–3294. PubMed

Vodicka P., Hemminki K. Phosphodiester cleavage in apurinic dinucleotides. Chem. Biol. Interact. 1988;68:153–164. doi: 10.1016/0009-2797(88)90013-0. PubMed DOI

Krokan H.E., Bjoras M. Base excision repair. Cold Spring Harb. Perspect. Biol. 2013;5:a012583. doi: 10.1101/cshperspect.a012583. PubMed DOI PMC

Al-Attar A., Gossage L., Fareed K.R., Shehata M., Mohammed M., Zaitoun A.M., Soomro I., Lobo D.N., Abbotts R., Chan S., et al. Human apurinic/apyrimidinic endonuclease (APE1) is a prognostic factor in ovarian, gastro-oesophageal and pancreatico-biliary cancers. Br. J. Cancer. 2010;102:704–709. doi: 10.1038/sj.bjc.6605541. PubMed DOI PMC

Sheng Q., Zhang Y., Wang R., Zhang J., Chen B., Wang J., Zhang W., Xin X. Prognostic significance of APE1 cytoplasmic localization in human epithelial ovarian cancer. Med. Oncol. 2012;29:1265–1271. doi: 10.1007/s12032-011-9931-y. PubMed DOI

Fan X., Wen L., Li Y., Lou L., Liu W., Zhang J. The expression profile and prognostic value of APE/Ref-1 and NPM1 in high-grade serous ovarian adenocarcinoma. APMIS. 2017;125:857–862. doi: 10.1111/apm.12733. PubMed DOI

Abdel-Fatah T., Sultana R., Abbotts R., Hawkes C., Seedhouse C., Chan S., Madhusudan S. Clinicopathological and functional significance of XRCC1 expression in ovarian cancer. Int. J. Cancer. 2013;132:2778–2786. doi: 10.1002/ijc.27980. PubMed DOI

Lord C.J., Ashworth A. The DNA damage response and cancer therapy. Nature. 2012;481:287–294. doi: 10.1038/nature10760. PubMed DOI

Lightfoot M., Montemorano L., Bixel K. PARP Inhibitors in Gynecologic Cancers: What Is the Next Big Development? Curr. Oncol. Rep. 2020;22:29. doi: 10.1007/s11912-020-0873-4. PubMed DOI

Sachdev E., Tabatabai R., Roy V., Rimel B.J., Mita M.M. PARP Inhibition in Cancer: An Update on Clinical Development. Target. Oncol. 2019;14:657–679. doi: 10.1007/s11523-019-00680-2. PubMed DOI

Przybycinski J., Nalewajska M., Marchelek-Mysliwiec M., Dziedziejko V., Pawlik A. Poly-ADP-ribose polymerases (PARPs) as a therapeutic target in the treatment of selected cancers. Expert Opin. Ther. Targets. 2019;23:773–785. doi: 10.1080/14728222.2019.1654458. PubMed DOI

Boussios S., Karihtala P., Moschetta M., Karathanasi A., Sadauskaite A., Rassy E., Pavlidis N. Combined Strategies with Poly (ADP-Ribose) Polymerase (PARP) Inhibitors for the Treatment of Ovarian Cancer: A Literature Review. Diagnostics. 2019;9:87. doi: 10.3390/diagnostics9030087. PubMed DOI PMC

Franzese E., Centonze S., Diana A., Carlino F., Guerrera L.P., Di Napoli M., De Vita F., Pignata S., Ciardiello F., Orditura M. PARP inhibitors in ovarian cancer. Cancer Treat. Rev. 2019;73:1–9. doi: 10.1016/j.ctrv.2018.12.002. PubMed DOI

Pettitt S.J., Krastev D.B., Brandsma I., Drean A., Song F., Aleksandrov R., Harrell M.I., Menon M., Brough R., Campbell J., et al. Genome-wide and high-density CRISPR-Cas9 screens identify point mutations in PARP1 causing PARP inhibitor resistance. Nat. Commun. 2018;9:1849. doi: 10.1038/s41467-018-03917-2. PubMed DOI PMC

Marteijn J.A., Lans H., Vermeulen W., Hoeijmakers J.H. Understanding nucleotide excision repair and its roles in cancer and ageing. Nat. Rev. Mol. Cell Biol. 2014;15:465–481. doi: 10.1038/nrm3822. PubMed DOI

Tufegdzic Vidakovic A., Mitter R., Kelly G.P., Neumann M., Harreman M., Rodriguez-Martinez M., Herlihy A., Weems J.C., Boeing S., Encheva V., et al. Regulation of the RNAPII Pool Is Integral to the DNA Damage Response. Cell. 2020;180:1245–1261. doi: 10.1016/j.cell.2020.02.009. PubMed DOI PMC

Black J.O. Xeroderma Pigmentosum. Head Neck Pathol. 2016;10:139–144. doi: 10.1007/s12105-016-0707-8. PubMed DOI PMC

Hashimoto S., Egly J.M. Trichothiodystrophy view from the molecular basis of DNA repair/transcription factor TFIIH. Hum. Mol. Genet. 2009;18:224–230. doi: 10.1093/hmg/ddp390. PubMed DOI

Zhao Z., Zhang A., Zhao Y., Xiang J., Yu D., Liang Z., Xu C., Zhang Q., Li J., Duan P. The association of polymorphisms in nucleotide excision repair genes with ovarian cancer susceptibility. Biosci. Rep. 2018;38 doi: 10.1042/BSR20180114. PubMed DOI PMC

Sun H., Cao D., Ma X., Yang J., Peng P., Yu M., Zhou H., Zhang Y., Li L., Huo X., et al. Identification of a Prognostic Signature Associated With DNA Repair Genes in Ovarian Cancer. Front. Genet. 2019;10:839. doi: 10.3389/fgene.2019.00839. PubMed DOI PMC

Dasari S., Tchounwou P.B. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol. 2014;740:364–378. doi: 10.1016/j.ejphar.2014.07.025. PubMed DOI PMC

Selvakumaran M., Pisarcik D.A., Bao R., Yeung A.T., Hamilton T.C. Enhanced cisplatin cytotoxicity by disturbing the nucleotide excision repair pathway in ovarian cancer cell lines. Cancer Res. 2003;63:1311–1316. PubMed

Ishibashi M., Toyoshima M., Zhang X., Hasegawa-Minato J., Shigeta S., Usui T., Kemp C.J., Grandori C., Kitatani K., Yaegashi N. Tyrosine kinase receptor TIE-1 mediates platinum resistance by promoting nucleotide excision repair in ovarian cancer. Sci. Rep. 2018;8:13207. doi: 10.1038/s41598-018-31069-2. PubMed DOI PMC

Bao Y., Yang B., Zhao J., Shen S., Gao J. Role of common ERCC1 polymorphisms in cisplatin-resistant epithelial ovarian cancer patients: A study in Chinese cohort. Int. J. Immunogenet. 2020 doi: 10.1111/iji.12484. PubMed DOI

King B.S., Cooper K.L., Liu K.J., Hudson L.G. Poly(ADP-ribose) contributes to an association between poly(ADP-ribose) polymerase-1 and xeroderma pigmentosum complementation group A in nucleotide excision repair. J. Biol. Chem. 2012;287:39824–39833. doi: 10.1074/jbc.M112.393504. PubMed DOI PMC

Ji P., Wang X., Xie N., Li Y. N6-Methyladenosine in RNA and DNA: An Epitranscriptomic and Epigenetic Player Implicated in Determination of Stem Cell Fate. Stem Cells Int. 2018;2018:3256524. doi: 10.1155/2018/3256524. PubMed DOI PMC

Soll J.M., Sobol R.W., Mosammaparast N. Regulation of DNA Alkylation Damage Repair: Lessons and Therapeutic Opportunities. Trends Biochem. Sci. 2017;42:206–218. doi: 10.1016/j.tibs.2016.10.001. PubMed DOI PMC

Zhang M., Wang L., Zhong D. Photolyase: Dynamics and Mechanisms of Repair of Sun-Induced DNA Damage. Photochem. Photobiol. 2017;93:78–92. doi: 10.1111/php.12695. PubMed DOI PMC

Steurer B., Turkyilmaz Y., van Toorn M., van Leeuwen W., Escudero-Ferruz P., Marteijn J.A. Fluorescently-labelled CPD and 6-4PP photolyases: New tools for live-cell DNA damage quantification and laser-assisted repair. Nucleic Acids Res. 2019;47:3536–3549. doi: 10.1093/nar/gkz035. PubMed DOI PMC

Soll J.M., Brickner J.R., Mudge M.C., Mosammaparast N. RNA ligase-like domain in activating signal cointegrator 1 complex subunit 1 (ASCC1) regulates ASCC complex function during alkylation damage. J. Biol. Chem. 2018;293:13524–13533. doi: 10.1074/jbc.RA117.000114. PubMed DOI PMC

Roh H.J., Suh D.S., Choi K.U., Yoo H.J., Joo W.D., Yoon M.S. Inactivation of O(6)-methyguanine-DNA methyltransferase by promoter hypermethylation: Association of epithelial ovarian carcinogenesis in specific histological types. J. Obstet. Gynaecol. Res. 2011;37:851–860. doi: 10.1111/j.1447-0756.2010.01452.x. PubMed DOI

Huang J., Luo J.Y., Tan H.Z. Associations of MGMT promoter hypermethylation with squamous intraepithelial lesion and cervical carcinoma: A meta-analysis. PLoS ONE. 2019;14:e0222772. doi: 10.1371/journal.pone.0222772. PubMed DOI PMC

Chen L., Wang Y., Liu F., Xu L., Peng F., Zhao N., Fu B., Zhu Z., Shi Y., Liu J., et al. A systematic review and meta-analysis: Association between MGMT hypermethylation and the clinicopathological characteristics of non-small-cell lung carcinoma. Sci. Rep. 2018;8:1439. doi: 10.1038/s41598-018-19949-z. PubMed DOI PMC

Binabaj M.M., Bahrami A., ShahidSales S., Joodi M., Joudi Mashhad M., Hassanian S.M., Anvari K., Avan A. The prognostic value of MGMT promoter methylation in glioblastoma: A meta-analysis of clinical trials. J. Cell Physiol. 2018;233:378–386. doi: 10.1002/jcp.25896. PubMed DOI

Wu X., Luo Q., Zhao P., Chang W., Wang Y., Shu T., Ding F., Li B., Liu Z. MGMT-activated DUB3 stabilizes MCL1 and drives chemoresistance in ovarian cancer. Proc. Natl. Acad. Sci. USA. 2019;116:2961–2966. doi: 10.1073/pnas.1814742116. PubMed DOI PMC

Mongan N.P., Emes R.D., Archer N. Detection and analysis of RNA methylation. F1000Research. 2019;8 doi: 10.12688/f1000research.17956.1. PubMed DOI PMC

Woo H.H., Chambers S.K. Human ALKBH3-induced m (1)A demethylation increases the CSF-1 mRNA stability in breast and ovarian cancer cells. Biochim. Biophys. Acta Gene Regul. Mech. 2019;1862:35–46. doi: 10.1016/j.bbagrm.2018.10.008. PubMed DOI

Woo H.H., Laszlo C.F., Greco S., Chambers S.K. Regulation of colony stimulating factor-1 expression and ovarian cancer cell behavior in vitro by miR-128 and miR-152. Mol. Cancer. 2012;11:58. doi: 10.1186/1476-4598-11-58. PubMed DOI PMC

Zhu H., Gan X., Jiang X., Diao S., Wu H., Hu J. ALKBH5 inhibited autophagy of epithelial ovarian cancer through miR-7 and BCL-2. J. Exp. Clin. Cancer Res. 2019;38:163. doi: 10.1186/s13046-019-1159-2. PubMed DOI PMC

Hoeijmakers J.H. Genome maintenance mechanisms for preventing cancer. Nature. 2001;411:366–374. doi: 10.1038/35077232. PubMed DOI

Nagel Z.D., Chaim I.A., Samson L.D. Inter-individual variation in DNA repair capacity: A need for multi-pathway functional assays to promote translational DNA repair research. DNA Repair. 2014;19:199–213. doi: 10.1016/j.dnarep.2014.03.009. PubMed DOI PMC

Melis J.P., Luijten M., Mullenders L.H., van Steeg H. The role of XPC: Implications in cancer and oxidative DNA damage. Mutat. Res. 2011;728:107–117. doi: 10.1016/j.mrrev.2011.07.001. PubMed DOI PMC

Vodicka P., Musak L., Frank C., Kazimirova A., Vymetalkova V., Barancokova M., Smolkova B., Dzupinkova Z., Jiraskova K., Vodenkova S., et al. Interactions of DNA repair gene variants modulate chromosomal aberrations in healthy subjects. Carcinogenesis. 2015;36:1299–1306. doi: 10.1093/carcin/bgv127. PubMed DOI

Fischer J.M., Popp O., Gebhard D., Veith S., Fischbach A., Beneke S., Leitenstorfer A., Bergemann J., Scheffner M., Ferrando-May E., et al. Poly(ADP-ribose)-mediated interplay of XPA and PARP1 leads to reciprocal regulation of protein function. FEBS J. 2014;281:3625–3641. doi: 10.1111/febs.12885. PubMed DOI PMC

Nagel Z.D., Margulies C.M., Chaim I.A., McRee S.K., Mazzucato P., Ahmad A., Abo R.P., Butty V.L., Forget A.L., Samson L.D. Multiplexed DNA repair assays for multiple lesions and multiple doses via transcription inhibition and transcriptional mutagenesis. Proc. Natl. Acad. Sci. USA. 2014;111:1823–1832. doi: 10.1073/pnas.1401182111. PubMed DOI PMC

Krieger K.L., Hu W.F., Ripperger T., Woods N.T. Functional Impacts of the BRCA1-mTORC2 Interaction in Breast Cancer. Int. J. Mol. Sci. 2019;20:5876. doi: 10.3390/ijms20235876. PubMed DOI PMC

Fece de la Cruz F., Gapp B.V., Nijman S.M. Synthetic lethal vulnerabilities of cancer. Annu. Rev. Pharmacol. Toxicol. 2015;55:513–531. doi: 10.1146/annurev-pharmtox-010814-124511. PubMed DOI

Nijman S.M. Synthetic lethality: General principles, utility and detection using genetic screens in human cells. FEBS Lett. 2011;585:1–6. doi: 10.1016/j.febslet.2010.11.024. PubMed DOI PMC

Farolfi A., Gurioli G., Fugazzola P., Burgio S.L., Casanova C., Ravaglia G., Altavilla A., Costantini M., Amadori A., Framarini M., et al. Immune System and DNA Repair Defects in Ovarian Cancer: Implications for Locoregional Approaches. Int. J. Mol. Sci. 2019;20:2569. doi: 10.3390/ijms20102569. PubMed DOI PMC

Brown J.S., O’Carrigan B., Jackson S.P., Yap T.A. Targeting DNA Repair in Cancer: Beyond PARP Inhibitors. Cancer Discov. 2017;7:20–37. doi: 10.1158/2159-8290.CD-16-0860. PubMed DOI PMC

Lee J.M., Minasian L., Kohn E.C. New strategies in ovarian cancer treatment. Cancer. 2019;125:4623–4629. doi: 10.1002/cncr.32544. PubMed DOI PMC

Lowery C.D., VanWye A.B., Dowless M., Blosser W., Falcon B.L., Stewart J., Stephens J., Beckmann R.P., Bence Lin A., Stancato L.F. The Checkpoint Kinase 1 Inhibitor Prexasertib Induces Regression of Preclinical Models of Human Neuroblastoma. Clin. Cancer Res. 2017;23:4354–4363. doi: 10.1158/1078-0432.CCR-16-2876. PubMed DOI

Sultana R., Abdel-Fatah T., Abbotts R., Hawkes C., Albarakati N., Seedhouse C., Ball G., Chan S., Rakha E.A., Ellis I.O., et al. Targeting XRCC1 deficiency in breast cancer for personalized therapy. Cancer Res. 2013;73:1621–1634. doi: 10.1158/0008-5472.CAN-12-2929. PubMed DOI

Sultana R., McNeill D.R., Abbotts R., Mohammed M.Z., Zdzienicka M.Z., Qutob H., Seedhouse C., Laughton C.A., Fischer P.M., Patel P.M., et al. Synthetic lethal targeting of DNA double-strand break repair deficient cells by human apurinic/apyrimidinic endonuclease inhibitors. Int. J. Cancer. 2012;131:2433–2444. doi: 10.1002/ijc.27512. PubMed DOI PMC

Fang Y.Y., Bi F.F., Zhou Y.M., Sun W.P., Li C.Y., Liu Q., Zhao Y., Li D. Nicotinamide adenine dinucleotide (NAD) may affect DNA methyltransferase 1 through regulation of BRCA1 in ovarian cancer. Am. J. Cancer Res. 2015;5:1199–1206. PubMed PMC

Jiang Z., Lai Y., Beaver J.M., Tsegay P.S., Zhao M.L., Horton J.K., Zamora M., Rein H.L., Miralles F., Shaver M., et al. Oxidative DNA Damage Modulates DNA Methylation Pattern in Human Breast Cancer 1 (BRCA1) Gene via the Crosstalk between DNA Polymerase beta and a de novo DNA Methyltransferase. Cells. 2020;9:255. doi: 10.3390/cells9010225. PubMed DOI PMC

Chuang Y.T., Chang C.L. Extending platinum-free interval in partially platinum-sensitive recurrent ovarian cancer by a non-platinum regimen: Its possible clinical significance. Taiwan J. Obstet. Gynecol. 2012;51:336–341. doi: 10.1016/j.tjog.2012.07.003. PubMed DOI

Ghisoni E., Giannone G., Tuninetti V., Genta S., Scotto G., Aglietta M., Sangiolo D., Mittica G., Valabrega G. Veliparib: A new therapeutic option in ovarian cancer? Future Oncol. 2019;15:1975–1987. doi: 10.2217/fon-2018-0883. PubMed DOI

Coleman R.L., Fleming G.F., Brady M.F., Swisher E.M., Steffensen K.D., Friedlander M., Okamoto A., Moore K.N., Efrat Ben-Baruch N., Werner T.L., et al. Veliparib with First-Line Chemotherapy and as Maintenance Therapy in Ovarian Cancer. N. Engl. J. Med. 2019;381:2403–2415. doi: 10.1056/NEJMoa1909707. PubMed DOI PMC

Boussios S., Abson C., Moschetta M., Rassy E., Karathanasi A., Bhat T., Ghumman F., Sheriff M., Pavlidis N. Poly (ADP-Ribose) Polymerase Inhibitors: Talazoparib in Ovarian Cancer and Beyond. Drugs R D. 2020 doi: 10.1007/s40268-020-00301-8. PubMed DOI PMC

Pilie P.G., Tang C., Mills G.B., Yap T.A. State-of-the-art strategies for targeting the DNA damage response in cancer. Nat. Rev. Clin. Oncol. 2019;16:81–104. doi: 10.1038/s41571-018-0114-z. PubMed DOI PMC

Huang R.X., Zhou P.K. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduct. Target. Ther. 2020;5:60. doi: 10.1038/s41392-020-0150-x. PubMed DOI PMC

Fields E.C., McGuire W.P., Lin L., Temkin S.M. Radiation Treatment in Women with Ovarian Cancer: Past, Present, and Future. Front. Oncol. 2017;7:177. doi: 10.3389/fonc.2017.00177. PubMed DOI PMC

Cole A.J., Dwight T., Gill A.J., Dickson K.A., Zhu Y., Clarkson A., Gard G.B., Maidens J., Valmadre S., Clifton-Bligh R., et al. Assessing mutant p53 in primary high-grade serous ovarian cancer using immunohistochemistry and massively parallel sequencing. Sci. Rep. 2016;6:26191. doi: 10.1038/srep26191. PubMed DOI PMC

Zhang Y., Hunter T. Roles of Chk1 in cell biology and cancer therapy. Int. J. Cancer. 2014;134:1013–1023. doi: 10.1002/ijc.28226. PubMed DOI PMC

Lee J.M., Nair J., Zimmer A., Lipkowitz S., Annunziata C.M., Merino M.J., Swisher E.M., Harrell M.I., Trepel J.B., Lee M.J., et al. Prexasertib, a cell cycle checkpoint kinase 1 and 2 inhibitor, in BRCA wild-type recurrent high-grade serous ovarian cancer: A first-in-class proof-of-concept phase 2 study. Lancet Oncol. 2018;19:207–215. doi: 10.1016/S1470-2045(18)30009-3. PubMed DOI PMC

Bryant C., Rawlinson R., Massey A.J. Chk1 inhibition as a novel therapeutic strategy for treating triple-negative breast and ovarian cancers. BMC Cancer. 2014;14:570. doi: 10.1186/1471-2407-14-570. PubMed DOI PMC

Itamochi H., Nishimura M., Oumi N., Kato M., Oishi T., Shimada M., Sato S., Naniwa J., Sato S., Kudoh A., et al. Checkpoint kinase inhibitor AZD7762 overcomes cisplatin resistance in clear cell carcinoma of the ovary. Int. J. Gynecol. Cancer. 2014;24:61–69. doi: 10.1097/IGC.0000000000000014. PubMed DOI

Parmar K., Kochupurakkal B.S., Lazaro J.B., Wang Z.C., Palakurthi S., Kirschmeier P.T., Yang C., Sambel L.A., Farkkila A., Reznichenko E., et al. The CHK1 Inhibitor Prexasertib Exhibits Monotherapy Activity in High-Grade Serous Ovarian Cancer Models and Sensitizes to PARP Inhibition. Clin. Cancer Res. 2019;25:6127–6140. doi: 10.1158/1078-0432.CCR-19-0448. PubMed DOI PMC

Zheng F., Zhang Y., Chen S., Weng X., Rao Y., Fang H. Mechanism and current progress of Poly ADP-ribose polymerase (PARP) inhibitors in the treatment of ovarian cancer. Biomed. Pharmacother. 2020;123:109661. doi: 10.1016/j.biopha.2019.109661. PubMed DOI

Brill E., Yokoyama T., Nair J., Yu M., Ahn Y.R., Lee J.M. Prexasertib, a cell cycle checkpoint kinases 1 and 2 inhibitor, increases in vitro toxicity of PARP inhibition by preventing Rad51 foci formation in BRCA wild type high-grade serous ovarian cancer. Oncotarget. 2017;8:111026–111040. doi: 10.18632/oncotarget.22195. PubMed DOI PMC

Yazinski S.A., Comaills V., Buisson R., Genois M.M., Nguyen H.D., Ho C.K., Todorova Kwan T., Morris R., Lauffer S., Nussenzweig A., et al. ATR inhibition disrupts rewired homologous recombination and fork protection pathways in PARP inhibitor-resistant BRCA-deficient cancer cells. Genes Dev. 2017;31:318–332. doi: 10.1101/gad.290957.116. PubMed DOI PMC

Lloyd R.L., Wijnhoven P.W.G., Ramos-Montoya A., Wilson Z., Illuzzi G., Falenta K., Jones G.N., James N., Chabbert C.D., Stott J., et al. Combined PARP and ATR inhibition potentiates genome instability and cell death in ATM-deficient cancer cells. Oncogene. 2020 doi: 10.1038/s41388-020-1328-y. PubMed DOI PMC

Kim H., George E., Ragland R., Rafail S., Zhang R., Krepler C., Morgan M., Herlyn M., Brown E., Simpkins F. Targeting the ATR/CHK1 Axis with PARP Inhibition Results in Tumor Regression in BRCA-Mutant Ovarian Cancer Models. Clin. Cancer Res. 2017;23:3097–3108. doi: 10.1158/1078-0432.CCR-16-2273. PubMed DOI PMC

ClinicalTrials.gov Search NCT IDs: NCT04267939, NCT02627443, NCT04149145, NCT02595892, NCT02487095, NCT04065269, and NCT03462342. [(accessed on 18 March 2020)]; Available online: https://clinicaltrials.gov.

Teng P.N., Bateman N.W., Darcy K.M., Hamilton C.A., Maxwell G.L., Bakkenist C.J., Conrads T.P. Pharmacologic inhibition of ATR and ATM offers clinically important distinctions to enhancing platinum or radiation response in ovarian, endometrial, and cervical cancer cells. Gynecol. Oncol. 2015;136:554–561. doi: 10.1016/j.ygyno.2014.12.035. PubMed DOI PMC

Zhang M., Dominguez D., Chen S., Fan J., Qin L., Long A., Li X., Zhang Y., Shi H., Zhang B. WEE1 inhibition by MK1775 as a single-agent therapy inhibits ovarian cancer viability. Oncol. Lett. 2017;14:3580–3586. doi: 10.3892/ol.2017.6584. PubMed DOI PMC

Do K., Wilsker D., Ji J., Zlott J., Freshwater T., Kinders R.J., Collins J., Chen A.P., Doroshow J.H., Kummar S. Phase I Study of Single-Agent AZD1775 (MK-1775), a Wee1 Kinase Inhibitor, in Patients with Refractory Solid Tumors. J. Clin. Oncol. 2015;33:3409–3415. doi: 10.1200/JCO.2014.60.4009. PubMed DOI PMC

Leijen S., van Geel R.M., Sonke G.S., de Jong D., Rosenberg E.H., Marchetti S., Pluim D., van Werkhoven E., Rose S., Lee M.A., et al. Phase II Study of WEE1 Inhibitor AZD1775 Plus Carboplatin in Patients With TP53-Mutated Ovarian Cancer Refractory or Resistant to First-Line Therapy Within 3 Months. J. Clin. Oncol. 2016;34:4354–4361. doi: 10.1200/JCO.2016.67.5942. PubMed DOI

Brandsma I., Fleuren E.D.G., Williamson C.T., Lord C.J. Directing the use of DDR kinase inhibitors in cancer treatment. Expert Opin. Investig. Drugs. 2017;26:1341–1355. doi: 10.1080/13543784.2017.1389895. PubMed DOI PMC

Burgess B.T., Anderson A.M., McCorkle J.R., Wu J., Ueland F.R., Kolesar J.M. Olaparib Combined with an ATR or Chk1 Inhibitor as a Treatment Strategy for Acquired Olaparib-Resistant BRCA1 Mutant Ovarian Cells. Diagnostics. 2020;10:121. doi: 10.3390/diagnostics10020121. PubMed DOI PMC

Choi M., Kipps T., Kurzrock R. ATM Mutations in Cancer: Therapeutic Implications. Mol. Cancer Ther. 2016;15:1781–1791. doi: 10.1158/1535-7163.MCT-15-0945. PubMed DOI

Durant S.T., Zheng L., Wang Y., Chen K., Zhang L., Zhang T., Yang Z., Riches L., Trinidad A.G., Fok J.H.L., et al. The brain-penetrant clinical ATM inhibitor AZD1390 radiosensitizes and improves survival of preclinical brain tumor models. Sci. Adv. 2018;4:eaat1719. doi: 10.1126/sciadv.aat1719. PubMed DOI PMC

Karlin J., Allen J., Ahmad S.F., Hughes G., Sheridan V., Odedra R., Farrington P., Cadogan E.B., Riches L.C., Garcia-Trinidad A., et al. Orally Bioavailable and Blood-Brain Barrier-Penetrating ATM Inhibitor (AZ32) Radiosensitizes Intracranial Gliomas in Mice. Mol. Cancer Ther. 2018;17:1637–1647. doi: 10.1158/1535-7163.MCT-17-0975. PubMed DOI PMC

Biddlestone-Thorpe L., Sajjad M., Rosenberg E., Beckta J.M., Valerie N.C., Tokarz M., Adams B.R., Wagner A.F., Khalil A., Gilfor D., et al. ATM kinase inhibition preferentially sensitizes p53-mutant glioma to ionizing radiation. Clin. Cancer Res. 2013;19:3189–3200. doi: 10.1158/1078-0432.CCR-12-3408. PubMed DOI PMC

Riches L.C., Trinidad A.G., Hughes G., Jones G.N., Hughes A.M., Thomason A.G., Gavine P., Cui A., Ling S., Stott J., et al. Pharmacology of the ATM Inhibitor AZD0156: Potentiation of Irradiation and Olaparib Responses Preclinically. Mol. Cancer Ther. 2020;19:13–25. doi: 10.1158/1535-7163.MCT-18-1394. PubMed DOI

Slipicevic A., Holth A., Hellesylt E., Trope C.G., Davidson B., Florenes V.A. Wee1 is a novel independent prognostic marker of poor survival in post-chemotherapy ovarian carcinoma effusions. Gynecol. Oncol. 2014;135:118–124. doi: 10.1016/j.ygyno.2014.07.102. PubMed DOI

Saini P., Li Y., Dobbelstein M. Wee1 is required to sustain ATR/Chk1 signaling upon replicative stress. Oncotarget. 2015;6:13072–13087. doi: 10.18632/oncotarget.3865. PubMed DOI PMC

Zheng H., Shao F., Martin S., Xu X., Deng C.X. WEE1 inhibition targets cell cycle checkpoints for triple negative breast cancers to overcome cisplatin resistance. Sci. Rep. 2017;7:43517. doi: 10.1038/srep43517. PubMed DOI PMC

Parsels L.A., Karnak D., Parsels J.D., Zhang Q., Velez-Padilla J., Reichert Z.R., Wahl D.R., Maybaum J., O’Connor M.J., Lawrence T.S., et al. PARP1 Trapping and DNA Replication Stress Enhance Radiosensitization with Combined WEE1 and PARP Inhibitors. Mol. Cancer Res. 2018;16:222–232. doi: 10.1158/1541-7786.MCR-17-0455. PubMed DOI PMC

Slyskova J., Cordero F., Pardini B., Korenkova V., Vymetalkova V., Bielik L., Vodickova L., Pitule P., Liska V., Matejka V.M., et al. Post-treatment recovery of suboptimal DNA repair capacity and gene expression levels in colorectal cancer patients. Mol. Carcinog. 2015;54:769–778. doi: 10.1002/mc.22141. PubMed DOI

Slyskova J., Korenkova V., Collins A.R., Prochazka P., Vodickova L., Svec J., Lipska L., Levy M., Schneiderova M., Liska V., et al. Functional, genetic, and epigenetic aspects of base and nucleotide excision repair in colorectal carcinomas. Clin. Cancer Res. 2012;18:5878–5887. doi: 10.1158/1078-0432.CCR-12-1380. PubMed DOI

Vodenkova S., Jiraskova K., Urbanova M., Kroupa M., Slyskova J., Schneiderova M., Levy M., Buchler T., Liska V., Vodickova L., et al. Base excision repair capacity as a determinant of prognosis and therapy response in colon cancer patients. DNA Repair. 2018;72:77–85. doi: 10.1016/j.dnarep.2018.09.006. PubMed DOI

Faraoni I., Graziani G. Role of BRCA Mutations in Cancer Treatment with Poly (ADP-ribose) Polymerase (PARP) Inhibitors. Cancers. 2018;10:487. doi: 10.3390/cancers10120487. PubMed DOI PMC

Zhu J., Ke G., Bi R., Wu X. Clinicopathological and survival characteristic of mismatch repair status in ovarian clear cell carcinoma. J. Surg. Oncol. 2020 doi: 10.1002/jso.25965. PubMed DOI

Bonadona V., Bonaiti B., Olschwang S., Grandjouan S., Huiart L., Longy M., Guimbaud R., Buecher B., Bignon Y.J., Caron O., et al. Cancer risks associated with germline mutations in MLH1, MSH2, and MSH6 genes in Lynch syndrome. JAMA. 2011;305:2304–2310. doi: 10.1001/jama.2011.743. PubMed DOI

Kawashima N., Yoshida H., Miwa M., Fujiwara K. MLH1 Is a Prognostic Biomarker for Serous Ovarian Cancer Treated With Platinum- and Taxane-based Chemotherapy. Anticancer Res. 2019;39:5505–5513. doi: 10.21873/anticanres.13743. PubMed DOI

Guo X., Wu W., Gao H., Li X., He Q., Zhu Y., Liu N. PMS2 germline mutation c.943C>T (p.Arg315*)-induced Lynch syndrome-associated ovarian cancer. Mol. Genet. Genom. Med. 2019;7:e721. doi: 10.1002/mgg3.721. PubMed DOI PMC

Zhang Z., Xiang Q., Mu G., Xie Q., Chen S., Zhou S., Hu K., Cui Y.M. XRCC1 polymorphism and overall survival in ovarian cancer patients treated with platinum-based chemotherapy: A systematic review and MOOSE-compliant meta-analysis. Medicine (Baltimore) 2018;97:e12996. doi: 10.1097/MD.0000000000012996. PubMed DOI PMC

Cheng C.X., Xue M., Li K., Li W.S. Predictive value of XRCC1 and XRCC3 gene polymorphisms for risk of ovarian cancer death after chemotherapy. Asian Pac. J. Cancer Prev. 2012;13:2541–2545. doi: 10.7314/APJCP.2012.13.6.2541. PubMed DOI

Fleming N.D., Agadjanian H., Nassanian H., Miller C.W., Orsulic S., Karlan B.Y., Walsh C.S. Xeroderma pigmentosum complementation group C single-nucleotide polymorphisms in the nucleotide excision repair pathway correlate with prolonged progression-free survival in advanced ovarian cancer. Cancer. 2012;118:689–697. doi: 10.1002/cncr.26329. PubMed DOI

Michalska M.M., Samulak D., Romanowicz H., Sobkowski M., Smolarz B. An Association between Single Nucleotide Polymorphisms of Lys751Gln ERCC2 Gene and Ovarian Cancer in Polish Women. Adv. Med. 2015;2015:109593. doi: 10.1155/2015/109593. PubMed DOI PMC

Peethambaram P., Fridley B.L., Vierkant R.A., Larson M.C., Kalli K.R., Elliott E.A., Oberg A.L., White K.L., Rider D.N., Keeney G.L., et al. Polymorphisms in ABCB1 and ERCC2 associated with ovarian cancer outcome. Int. J. Mol. Epidemiol. Genet. 2011;2:185–195. PubMed PMC

Khrunin A.V., Moisseev A., Gorbunova V., Limborska S. Genetic polymorphisms and the efficacy and toxicity of cisplatin-based chemotherapy in ovarian cancer patients. Pharmacogenom. J. 2010;10:54–61. doi: 10.1038/tpj.2009.45. PubMed DOI

Krivak T.C., Darcy K.M., Tian C., Bookman M., Gallion H., Ambrosone C.B., Deloia J.A. Single nucleotide polypmorphisms in ERCC1 are associated with disease progression, and survival in patients with advanced stage ovarian and primary peritoneal carcinoma; a Gynecologic Oncology Group study. Gynecol. Oncol. 2011;122:121–126. doi: 10.1016/j.ygyno.2011.03.027. PubMed DOI

Fukumoto T., Zhu H., Nacarelli T., Karakashev S., Fatkhutdinov N., Wu S., Liu P., Kossenkov A.V., Showe L.C., Jean S., et al. N(6)-Methylation of Adenosine of FZD10 mRNA Contributes to PARP Inhibitor Resistance. Cancer Res. 2019;79:2812–2820. doi: 10.1158/0008-5472.CAN-18-3592. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...