DNA Mismatch Repair Gene Variants in Sporadic Solid Cancers

. 2020 Aug 03 ; 21 (15) : . [epub] 20200803

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32756484

Grantová podpora
18-09709S and 19-10543S Grantová Agentura České Republiky
NV18-00199 Agentura Pro Zdravotnický Výzkum České Republiky
61388971 (CZ) Institutional Grant RVO
UNCE/MED/006; Univerzita Karlova v Praze
Progres Q28 Univerzita Karlova v Praze
(NPU I) Nr. LO1503 Ministerstvo Školství, Mládeže a Tělovýchovy

The phenotypic effects of single nucleotide polymorphisms (SNPs) in the development of sporadic solid cancers are still scarce. The aim of this review was to summarise and analyse published data on the associations between SNPs in mismatch repair genes and various cancers. The mismatch repair system plays a unique role in the control of the genetic integrity and it is often inactivated (germline and somatic mutations and hypermethylation) in cancer patients. Here, we focused on germline variants in mismatch repair genes and found the outcomes rather controversial: some SNPs are sometimes ascribed as protective, while other studies reported their pathological effects. Regarding the complexity of cancer as one disease, we attempted to ascertain if particular polymorphisms exert the effect in the same direction in the development and treatment of different malignancies, although it is still not straightforward to conclude whether polymorphisms always play a clear positive role or a negative one. Most recent and robust genome-wide studies suggest that risk of cancer is modulated by variants in mismatch repair genes, for example in colorectal cancer. Our study shows that rs1800734 in MLH1 or rs2303428 in MSH2 may influence the development of different malignancies. The lack of functional studies on many DNA mismatch repair SNPs as well as their interactions are not explored yet. Notably, the concerted action of more variants in one individual may be protective or harmful. Further, complex interactions of DNA mismatch repair variations with both the environment and microenvironment in the cancer pathogenesis will deserve further attention.

Zobrazit více v PubMed

Baretti M., Le D.T. DNA mismatch repair in cancer. Pharmacol. Ther. 2018;189:45–62. doi: 10.1016/j.pharmthera.2018.04.004. PubMed DOI

Peters U., Bien S., Zubair N. Genetic architecture of colorectal cancer. Gut. 2015;64:1623–1636. doi: 10.1136/gutjnl-2013-306705. PubMed DOI PMC

Li Z., Pearlman A.H., Hsieh P. DNA mismatch repair and the DNA damage response. DNA Repair. 2016;38:94–101. doi: 10.1016/j.dnarep.2015.11.019. PubMed DOI PMC

Pearl L.H., Schierz A.C., Ward S.E., Al-Lazikani B., Pearl F. Therapeutic opportunities within the DNA damage response. Nat. Rev. Cancer. 2015;15:166–180. doi: 10.1038/nrc3891. PubMed DOI

Carethers J.M., Jung B.H. Genetics and Genetic Biomarkers in Sporadic Colorectal Cancer. Gastroenterology. 2015;149:1177–1190.e3. doi: 10.1053/j.gastro.2015.06.047. PubMed DOI PMC

Grady W.M., Markowitz S.D. The molecular pathogenesis of colorectal cancer and its potential application to colorectal cancer screening. Dig. Dis. Sci. 2014;60:762–772. doi: 10.1007/s10620-014-3444-4. PubMed DOI PMC

Nielsen F.C., Hansen T.V.O., Sørensen C.S. Hereditary breast and ovarian cancer: New genes in confined pathways. Nat. Rev. Cancer. 2016;16:599–612. doi: 10.1038/nrc.2016.72. PubMed DOI

Niskakoski A., Pasanen A., Lassus H., Renkonen-Sinisalo L., Kaur S., Mecklin J.-P., Bützow R., Peltomäki P. Molecular changes preceding endometrial and ovarian cancer: A study of consecutive endometrial specimens from Lynch syndrome surveillance. Mod. Pathol. 2018;31:1291–1301. doi: 10.1038/s41379-018-0044-4. PubMed DOI

Ramus S.J., Song H., Dicks E., Tyrer J.P., Rosenthal A.N., Intermaggio M.P., Fraser L., Gentry-Maharaj A., Hayward J., Philpott S., et al. Germline Mutations in the BRIP1, BARD1, PALB2, and NBN Genes in Women With Ovarian Cancer. J. Natl. Cancer Inst. 2015;107 doi: 10.1093/jnci/djv214. PubMed DOI PMC

Chubb D., Broderick P., Frampton M., Kinnersley B., Sherborne A., Penegar S., Lloyd A., Ma Y.P., Dobbins S.E., Houlston R. Genetic Diagnosis of High-Penetrance Susceptibility for Colorectal Cancer (CRC) Is Achievable for a High Proportion of Familial CRC by Exome Sequencing. J. Clin. Oncol. 2015;33:426–432. doi: 10.1200/JCO.2014.56.5689. PubMed DOI

Peltomäki P. Role of DNA Mismatch Repair Defects in the Pathogenesis of Human Cancer. J. Clin. Oncol. 2003;21:1174–1179. doi: 10.1200/JCO.2003.04.060. PubMed DOI

Valle L., De Voer R.M., Goldberg Y., Sjursen W., Försti A., Ruiz-Ponte C., Caldés T., Garré P., Olsen M.F., Nordling M., et al. Update on genetic predisposition to colorectal cancer and polyposis. Mol. Asp. Med. 2019;69:10–26. doi: 10.1016/j.mam.2019.03.001. PubMed DOI

Lavebratt C., Şengül S. Single nucleotide polymorphism (SNP) allele frequency estimation in DNA pools using Pyrosequencing™. Nat. Protoc. 2006;1:2573–2582. doi: 10.1038/nprot.2006.442. PubMed DOI

Mohrenweiser H.W., Xi T., Vázquez-Matías J., Jones I.M. Identification of 127 amino acid substitution variants in screening 37 DNA repair genes in humans. Cancer Epidemiol. Biomark. Prev. 2002;11:1054–1064. PubMed

Vymetalkova V., Pardini B., Rosa F., Di Gaetano C., Novotny J., Levy M., Büchler T., Slyskova J., Vodickova L., Naccarati A., et al. Variations in mismatch repair genes and colorectal cancer risk and clinical outcome. Mutagenesis. 2014;29:259–265. doi: 10.1093/mutage/geu014. PubMed DOI

Han W., Kim K.-Y., Yang S.-J., Noh D.-Y., Kang D., Kwack K. SNP-SNP interactions between DNA repair genes were associated with breast cancer risk in a Korean population. Cancer. 2011;118:594–602. doi: 10.1002/cncr.26220. PubMed DOI

Schwender H.R., Selinski S., Blaszkewicz M., Marchan R., Ickstadt K., Golka K., Hengstler J.G. Distinct SNP Combinations Confer Susceptibility to Urinary Bladder Cancer in Smokers and Non-Smokers. PLoS ONE. 2012;7:e51880. doi: 10.1371/journal.pone.0051880. PubMed DOI PMC

Ito H., Sueta A., Iwata H., Hosono S., Oze I., Watanabe M., Iwase H., Tanaka H., Matsuo K. Abstract 06: A genetic risk predictor for breast cancer using a combination of low-penetrance polymorphisms in a Japanese population. Cancer Epidemiol. Biomark. Prev. 2012;21:6. doi: 10.1158/1055-9965.GWAS-06. PubMed DOI

Bhushan S., McLeod H., Walko C.M. Role of Pharmacogenetics as Predictive Biomarkers of Response and/or Toxicity in the Treatment of Colorectal Cancer. Clin. Color. Cancer. 2009;8:15–21. doi: 10.3816/CCC.2009.n.003. PubMed DOI

Kunkel T.A., Erie D.A. Eukaryotic Mismatch Repair in Relation to DNA Replication. Annu. Rev. Genet. 2015;49:291–313. doi: 10.1146/annurev-genet-112414-054722. PubMed DOI PMC

Lahue R.S., Au K.G., Modrich P. DNA mismatch correction in a defined system. Science. 1989;245:160–164. doi: 10.1126/science.2665076. PubMed DOI

Modrich P., Lahue R. Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu. Rev. Biochem. 1996;65:101–133. doi: 10.1146/annurev.bi.65.070196.000533. PubMed DOI

Nevers P., Spatz H.C. Escherichia coli mutants uvr D and uvr E deficient in gene conversion of lambda-heteroduplexes. Mol. Gen. Genet. 1975;139:233–243. doi: 10.1007/BF00268974. PubMed DOI

Ban C., Junop M., Yang W. Transformation of MutL by ATP binding and hydrolysis: A switch in DNA mismatch repair. Cell. 1999;97:85–97. doi: 10.1016/S0092-8674(00)80717-5. PubMed DOI

Längle-Rouault F., Maenhaut-Michel G., Radman M. GATC sequences, DNA nicks and the MutH function in Escherichia coli mismatch repair. EMBO J. 1987;6:1121–1127. doi: 10.1002/j.1460-2075.1987.tb04867.x. PubMed DOI PMC

Kadyrov F.A., Dzantiev L., Constantin N., Modrich P. Endonucleolytic Function of MutLα in Human Mismatch Repair. Cell. 2006;126:297–308. doi: 10.1016/j.cell.2006.05.039. PubMed DOI

Genschel J., Littman S.J., Drummond J.T., Modrich P. Isolation of MutSbeta from human cells and comparison of the mismatch repair specificities of MutSbeta and MutSalpha. J. Biol. Chem. 1998;273:19895–19901. doi: 10.1074/jbc.273.31.19895. PubMed DOI

Sharma M., Predeus A.V., Kovacs N., Feig M. Differential Mismatch Recognition Specificities of Eukaryotic MutS Homologs, MutSα and MutSβ. Biophys. J. 2014;106:2483–2492. doi: 10.1016/j.bpj.2014.04.026. PubMed DOI PMC

Marsischky G.T., Filosi N., Kane M.F., Kolodner R. Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair. Genes Dev. 1996;10:407–420. doi: 10.1101/gad.10.4.407. PubMed DOI

Gupta S., Gellert M., Yang W. Mechanism of mismatch recognition revealed by human MutSbeta bound to unpaired DNA loops. Nat. Struct. Mol. Biol. 2011;19:8–72. PubMed PMC

Kondo E. The interacting domains of three MutL heterodimers in man: hMLH1 interacts with 36 homologous amino acid residues within hMLH3, hPMS1 and hPMS. Nucleic Acids Res. 2001;29:1695–1702. doi: 10.1093/nar/29.8.1695. PubMed DOI PMC

Banasik M., Sachadyn P. Conserved motifs of MutL proteins. Mutat. Res. Mol. Mech. Mutagenesis. 2014;769:69–79. doi: 10.1016/j.mrfmmm.2014.07.006. PubMed DOI

Vodicka P., Musak L., Frank C., Kazimirova A., Vymetalkova V., Barancokova M., Smolkova B., Dzupinkova Z., Jiraskova K., Vodenkova S., et al. Interactions of DNA repair gene variants modulate chromosomal aberrations in healthy subjects. Carcinogenesis. 2015;36:1299–1306. doi: 10.1093/carcin/bgv127. PubMed DOI

Guillotin D., Martin S.A. Exploiting DNA mismatch repair deficiency as a therapeutic strategy. Exp. Cell Res. 2014;329:110–115. doi: 10.1016/j.yexcr.2014.07.004. PubMed DOI

Larrea A.A., Lujan S.A., Kunkel T.A. SnapShot: DNA Mismatch Repair. Cell. 2010;141:730–730.e1. doi: 10.1016/j.cell.2010.05.002. PubMed DOI

Peltomäki P., Vasen H. Mutations predisposing to hereditary nonpolyposis colorectal cancer: Database and results of a collaborative study. The International Collaborative Group on Hereditary Nonpolyposis Colorectal Cancer. Gastroenterology. 1997;113:1146–1158. doi: 10.1053/gast.1997.v113.pm9322509. PubMed DOI

Mrkonjic M., Roslin N.M., Greenwood C.M.T., Raptis S., Pollett A., Laird P.W., Pethe V.V., Chiang T., Daftary D., Dicks E., et al. Specific Variants in the MLH1 Gene Region May Drive DNA Methylation, Loss of Protein Expression, and MSI-H Colorectal Cancer. PLoS ONE. 2010;5:e13314. doi: 10.1371/journal.pone.0013314. PubMed DOI PMC

Nizam Z.M., Aziz A.A.A., Kaur G., Abu Hassan M.R., Sidek A.S.M., Lee Y.Y., Mazuwin M., Ankathil R. Contribution of the MLH1 −93G>A Promoter Polymorphism in Modulating Susceptibility Risk in Malaysian Colorectal Cancer Patients. Asian Pac. J. Cancer Prev. 2013;14:619–624. doi: 10.7314/APJCP.2013.14.2.619. PubMed DOI

Beiner M.E., Rosen B., Harley I., Siminovitch K., Zhang S., Fyles A., Pal T., Sun P., Narod S.A. Endometrial Cancer Risk Is Associated with Variants of the Mismatch Repair Genes MLH1 and MSH. Cancer Epidemiol. Biomark. Prev. 2006;15:1636–1640. doi: 10.1158/1055-9965.EPI-06-0257. PubMed DOI

Whiffin N., Broderick P., Lubbe S.J., Pittman A., Penegar S., Chandler I., Houlston R.S. MLH1-93G > A is a risk factor for MSI colorectal cancer. Carcinogenesis. 2011;32:1157–1161. doi: 10.1093/carcin/bgr089. PubMed DOI

Koref M.F.S., Wilson V., Cartwright N., Cunnington M.S., Mathers J.C., Bishop D., Curtis A., Dunlop M.G., Burn J. MLH1 Differential Allelic Expression in Mutation Carriers and Controls. Ann. Hum. Genet. 2010;74:479–488. doi: 10.1111/j.1469-1809.2010.00603.x. PubMed DOI

Tomlinson I., Houlston R.S., Montgomery G.W., Sieber O., Dunlop M.G. Investigation of the effects of DNA repair gene polymorphisms on the risk of colorectal cancer. Mutagenesis. 2012;27:219–223. doi: 10.1093/mutage/ger070. PubMed DOI PMC

Allan J.M., Shorto J., Adlard J., Bury J., Coggins R., George R., Katory M., Quirke P., Richman S., Scott D., et al. MLH1 −93G>A promoter polymorphism and risk of mismatch repair deficient colorectal cancer. Int. J. Cancer. 2008;123:2456–2459. doi: 10.1002/ijc.23770. PubMed DOI

Rodriguez-Hernandez I., Perdomo S., Santos-Briz A., Hernández J.L.G., Gómez-Moreta J.A., Cruz J.J., González-Sarmiento R. Analysis of DNA repair gene polymorphisms in glioblastoma. Gene. 2014;536:79–83. doi: 10.1016/j.gene.2013.11.077. PubMed DOI

Lo Y.-L., Hsiao C.-F., Jou Y.-S., Chang G.-C., Tsai Y.-H., Su W.-C., Chen K.-Y., Chen Y.-M., Huang M.-S., Hsieh W.-S., et al. Polymorphisms of MLH1 and MSH2 genes and the risk of lung cancer among never smokers. Lung Cancer. 2011;72:280–286. doi: 10.1016/j.lungcan.2010.10.009. PubMed DOI

Shih C.-M., Chen C.-Y., Lee I.-H., Kao W.-T., Wang Y.-C. A polymorphism in the hMLH1 gene (−93G-->A) associated with lung cancer susceptibility and prognosis. Int. J. Mol. Med. 2010;25:165–170. PubMed

Park S.H., Lee G.Y., Jeon H.-S., Lee S.J., Kim K.M., Jang S.S., Kim C.H., Lee W.K., Kam S., Park R.W., et al. −93G→A polymorphism ofhMLH1 and risk of primary lung cancer. Int. J. Cancer. 2004;112:678–682. doi: 10.1002/ijc.20359. PubMed DOI

Halasova E., Matáková T., Skerenova M., Krutakova M., Slovakova P., Dzian A., Javorkova S., Pec M., Kypusova K., Hamzik J. Polymorphisms of Selected DNA Repair Genes and Lung Cancer in Chromium Exposure. Retin. Degener. Dis. 2016;911:17–22. doi: 10.1007/5584_2016_218. PubMed DOI

Wang J., Liu Q., Yuan S., Xie W., Liu Y., Xiang Y., Wu N., Wu L., Ma X., Cai T., et al. Genetic predisposition to lung cancer: Comprehensive literature integration, meta-analysis, and multiple evidence assessment of candidate-gene association studies. Sci. Rep. 2017;7:1–13. doi: 10.1038/s41598-017-07737-0. PubMed DOI PMC

Raptis S., Mrkonjic M., Green R.C., Pethe V.V., Monga N., Chan Y.M., Daftary D., Dicks E., Younghusband B.H., Parfrey P.S., et al. MLH1 −93G>A Promoter Polymorphism and the Risk of Microsatellite-Unstable Colorectal Cancer. J. Natl. Cancer Inst. 2007;99:463–474. doi: 10.1093/jnci/djk095. PubMed DOI

Liu N.Q., Ter Huurne M., Nguyen L.N., Peng T., Wang S.-Y., Studd J.B., Joshi O., Ongen H., Bramsen J.B., Yan J., et al. The non-coding variant rs1800734 enhances DCLK3 expression through long-range interaction and promotes colorectal cancer progression. Nat. Commun. 2017;8:14418. doi: 10.1038/ncomms14418. PubMed DOI PMC

Perera S., Mrkonjic M., Rawson J.R., Bapatet B. Functional effects of the MLH1-93G>A polymorphism on MLH1/EPM2AIP1 promoter activity. Oncol. Rep. 2011;25:809–815. PubMed

Pan X.-M., Yang W.-Z., Xu G.-H., Bai P., Qin H.-J., Zhang L.-S., Zhai X.-D., Tang M., Deng W., Gao L.-B. The association between MLH1 −93 G>A polymorphism of DNA mismatch repair and cancer susceptibility: A meta-analysis. Mutagenesis. 2011;26:667–673. doi: 10.1093/mutage/ger032. PubMed DOI

Tulupova E., Kumar R., Hanova M., Slyskova J., Pardini B., Polakova V., Naccarati A., Vodickova L., Novotny J., Halamkova J., et al. Do polymorphisms and haplotypes of mismatch repair genes modulate risk of sporadic colorectal cancer. Mutat. Res. Mol. Mech. Mutagen. 2008;648:40–45. doi: 10.1016/j.mrfmmm.2008.09.005. PubMed DOI

Pardini B., Corrado A., Paolicchi E., Cugliari G., Berndt S.I., Bezieau S., Bien S.A., Brenner H., Caan B.J., Campbell P.T., et al. DNA repair and cancer in colon and rectum: Novel players in genetic susceptibility. Int. J. Cancer. 2019;146:363–372. doi: 10.1002/ijc.32516. PubMed DOI PMC

Cervena K., Siskova A., Buchler T., Vodicka P., Vymetalkova V. Methylation-Based Therapies for Colorectal Cancer. Cells. 2020;9:1540. doi: 10.3390/cells9061540. PubMed DOI PMC

Savio A.J., Lemire M., Mrkonjic M., Gallinger S., Zanke B.W., Hudson T.J., Bapat B. MLH1 Region Polymorphisms Show a Significant Association with CpG Island Shore Methylation in a Large Cohort of Healthy Individuals. PLoS ONE. 2012;7:e51531. doi: 10.1371/journal.pone.0051531. PubMed DOI PMC

Liu B., Nicolaides N.C., Markowitz S., Willson J.K.V., Parsons R., Jen J., Papadopolous N., Peltomäki P., De La Chapelle A., Hamilton S.R., et al. Mismatch repair gene defects in sporadic colorectal cancers with microsatellite instability. Nat. Genet. 1995;9:48–55. doi: 10.1038/ng0195-48. PubMed DOI

Nejda N., Iglesias D., Azcoita M.M., Arana V.M., González-Aguilera J.J., Fernández-Peralta A.M. A MLH1 polymorphism that increases cancer risk is associated with better outcome in sporadic colorectal cancer. Cancer Genet. Cytogenet. 2009;193:71–77. doi: 10.1016/j.cancergencyto.2009.04.011. PubMed DOI

Smith T.R., Levine E.A., Freimanis R.I., Akman S.A., Allen G.O., Hoang K.N., Liu-Mares W., Hu J.J. Polygenic model of DNA repair genetic polymorphisms in human breast cancer risk. Carcinogenesis. 2008;29:2132–2138. doi: 10.1093/carcin/bgn193. PubMed DOI PMC

An Y., Jin G., Wang H., Liu H., Li R., Wang H., Qian J., Sun W., Wang Y., Ma H., et al. Polymorphisms in hMLH1 and risk of early-onset lung cancer in a southeast Chinese population. Lung Cancer. 2008;59:164–170. doi: 10.1016/j.lungcan.2007.08.003. PubMed DOI

Langeberg W.J., Kwon E.M., Koopmeiners J.S., Ostrander E.A., Stanford J.L. Population-based study of the association of variants in mismatch repair genes with prostate cancer risk and outcomes. Cancer Epidemiol. Biomark. Prev. 2010;19:258–264. doi: 10.1158/1055-9965.EPI-09-0800. PubMed DOI PMC

Rossi D., Rasi S., Di Rocco A., Fabbri A., Forconi F., Gloghini A., Bruscaggin A., Franceschetti S., Fangazio M., De Paoli L., et al. The host genetic background of DNA repair mechanisms is an independent predictor of survival in diffuse large B-cell lymphoma. Blood. 2011;117:2405–2413. doi: 10.1182/blood-2010-07-296244. PubMed DOI

Picelli S., Zajac P., Zhou X.-L., Edler D., Lenander C., Dalén J., Hjern F., Lundqvist N., Lindforss U., Påhlman L., et al. Common variants in human CRC genes as low-risk alleles. Eur. J. Cancer. 2010;46:1041–1048. doi: 10.1016/j.ejca.2010.01.013. PubMed DOI

Landi S., Gemignani F., Canzian F., Gaborieau V., Barale R., Landi D., Szeszenia-Dabrowska N., Zaridze D.G., Lissowska J., Rudnai P., et al. DNA Repair and Cell Cycle Control Genes and the Risk of Young-Onset Lung Cancer. Cancer Res. 2006;66:11062–11069. doi: 10.1158/0008-5472.CAN-06-1039. PubMed DOI

Campbell P.T., Curtin K., Ulrich C.M., Samowitz W.S., Bigler J., Velicer C.M., Caan B., Potter J.D., Slattery M.L. Mismatch repair polymorphisms and risk of colon cancer, tumour microsatellite instability and interactions with lifestyle factors. Gut. 2008;58:661–667. doi: 10.1136/gut.2007.144220. PubMed DOI PMC

Picelli S., Bermejo J.L., Chang-Claude J., Hoffmeister M., Fernandez-Rozadilla C., Carracedo A., Castells A., Castellvi-Bel S., Naccarati A., Pardini B., et al. Meta-Analysis of Mismatch Repair Polymorphisms within the Cogent Consortium for Colorectal Cancer Susceptibility. PLoS ONE. 2013;8:e72091. doi: 10.1371/journal.pone.0072091. PubMed DOI PMC

Dreussi E., Cecchin E., Polesel J., Canzonieri V., Agostini M., Boso C., Belluco C., Buonadonna A., Lonardi S., Bergamo F., et al. Pharmacogenetics Biomarkers and Their Specific Role in Neoadjuvant Chemoradiotherapy Treatments: An Exploratory Study on Rectal Cancer Patients. Int. J. Mol. Sci. 2016;17:1482. doi: 10.3390/ijms17091482. PubMed DOI PMC

Wang Y., Li G., Hu F., Bi H., Wu Z., Zhao X., Li Y., Li S., Li D., Cui B., et al. The prognostic significance of polymorphisms in hMLH1/hMSH2 for colorectal cancer. Med. Oncol. 2014;31:975. doi: 10.1007/s12032-014-0975-7. PubMed DOI

Shinozuka K., Tang H., Jones R.B., Li D., Nieto Y. Impact of Polymorphic Variations of Gemcitabine Metabolism, DNA Damage Repair, and Drug-Resistance Genes on the Effect of High-Dose Chemotherapy for Relapsed or Refractory Lymphoid Malignancies. Biol. Blood Marrow Transplant. 2016;22:843–849. doi: 10.1016/j.bbmt.2015.12.022. PubMed DOI PMC

Sapkota Y., Mackey J.R., Lai R., Franco-Villalobos C., Lupichuk S., Robson P., Kopciuk K., Cass C.E., Yasui Y., Damaraju S. Assessing SNP-SNP Interactions among DNA Repair, Modification and Metabolism Related Pathway Genes in Breast Cancer Susceptibility. PLoS ONE. 2013;8:e64896. doi: 10.1371/journal.pone.0064896. PubMed DOI PMC

Kan R., Sun X., Kolas N.K., Avdievich E., Kneitz B., Edelmann W., Cohen P.E. Comparative Analysis of Meiotic Progression in Female Mice Bearing Mutations in Genes of the DNA Mismatch Repair Pathway. Biol. Reprod. 2008;78:462–471. doi: 10.1095/biolreprod.107.065771. PubMed DOI

Conde J., Silva S.N., Azevedo A.P., Teixeira V., Pina J.E., Rueff J., Gaspar J. Association of common variants in mismatch repair genes and breast cancer susceptibility: A multigene study. BMC Cancer. 2009;9:344. doi: 10.1186/1471-2407-9-344. PubMed DOI PMC

Santucci-Darmanin S., Neyton S., Lespinasse F., Saunières A., Gaudray P., Paquis-Flucklinger V. The DNA mismatch-repair MLH3 protein interacts with MSH4 in meiotic cells, supporting a role for this MutL homolog in mammalian meiotic recombination. Hum. Mol. Genet. 2002;11:1697–1706. doi: 10.1093/hmg/11.15.1697. PubMed DOI

Michiels S., Danoy P., Dessen P., Bera A., Boulet T., Bouchardy C., Lathrop M., Sarasin A., Benhamou S. Polymorphism discovery in 62 DNA repair genes and haplotype associations with risks for lung and head and neck cancers. Carcinogenesis. 2007;28:1731–1739. doi: 10.1093/carcin/bgm111. PubMed DOI

Liu Y., Zhang X., Jia J., Tang L., Gao X., Yan L., Wang L., Yu F., Ma N., Liu W., et al. Correlation between polymorphisms in DNA mismatch repair genes and the risk of primary hepatocellular carcinoma for the Han population in northern China. Scand. J. Gastroenterol. 2015;50:1–7. doi: 10.3109/00365521.2015.1045429. PubMed DOI

Ye F., Cheng Q., Shen J., Zhou C., Chen H. Mismatch Repair Gene MLH3 Pro844Leu and Thr942Ile Polymorphisms and the Susceptibility to Cervical Carcinoma and HPV Infection: A Case-Control Study in a Chinese Population. PLoS ONE. 2014;9:e96224. doi: 10.1371/journal.pone.0096224. PubMed DOI PMC

Li N., Duell E.J., Yu K., Risch H.A., Olson S.H., Kooperberg C., Wolpin B.M., Jiao L., Dong X., Wheeler B., et al. Pathway analysis of genome-wide association study data highlights pancreatic development genes as susceptibility factors for pancreatic cancer. Carcinogenesis. 2012;33:1384–1390. doi: 10.1093/carcin/bgs151. PubMed DOI PMC

Lin X., Chen Z., Gao P., Gao Z., Chen H., Qi J., Liu F., Ye D., Jiang H., Na R., et al. TEX15: A DNA repair gene associated with prostate cancer risk in Han Chinese. Prostate. 2017;77:1271–1278. doi: 10.1002/pros.23387. PubMed DOI

Yang Q., Zhang R., Wang X.W., Linke S.P., Sengupta S., Hickson I.D., Pedrazzi G., Perrera C., Stagljar I., Littman S.J., et al. The mismatch DNA repair heterodimer, hMSH2/6, regulates BLM helicase. Oncogene. 2004;23:3749–3756. doi: 10.1038/sj.onc.1207462. PubMed DOI

Seifert M., Scherer S.J., Edelmann W., Böhm M., Meineke V., Löbrich M., Tilgen W., Reichrath J. The DNA-Mismatch Repair Enzyme hMSH2 Modulates UV-B-Induced Cell Cycle Arrest and Apoptosis in Melanoma Cells. J. Investig. Dermatol. 2008;128:203–213. doi: 10.1038/sj.jid.5700941. PubMed DOI

Slováková P., Majerová L., Matakova T., Skerenova M., Kavcová E., Halasova E. Mismatch Repair Gene Polymorphisms and Association with Lung Cancer Development. Retin. Degener. Dis. 2014;833:15–22. doi: 10.1007/5584_2014_83. PubMed DOI

Hsieh Y.-C., Cho E.-C., Tu S.-H., Wu C.-H., Hung C.-S., Hsieh M.-C., Su C.-T., Liu Y.-R., Lee C.-H., Ho Y.-S., et al. MSH2 rs2303425 Polymorphism is Associated with Early-Onset Breast Cancer in Taiwan. Ann. Surg. Oncol. 2016;24:603–610. doi: 10.1245/s10434-016-5168-5. PubMed DOI

Mrkonjic M., Raptis S., Green R.C., Monga N., Daftary D., Dicks E., Younghusband H., Parfrey P.S., Gallinger S.S., McLaughlin J.R., et al. MSH2 −118T>C and MSH6 −159C>T promoter polymorphisms and the risk of colorectal cancer. Carcinogenesis. 2007;28:2575–2580. doi: 10.1093/carcin/bgm229. PubMed DOI

Srivastava K., Srivastava A., Kumar A., Mittal B. Gallbladder Cancer Predisposition: A Multigenic Approach to DNA-Repair, Apoptotic and Inflammatory Pathway Genes. PLoS ONE. 2011;6:e16449. doi: 10.1371/journal.pone.0016449. PubMed DOI PMC

Nogueira G.A.S., Lourenço G.J., Oliveira C.B.M., Marson F.A.L., Lopes-Aguiar L., Costa E.F.D., Lima T.R.P., Liutti V., Leal F., Santos V.C.A., et al. Association between genetic polymorphisms in DNA mismatch repair-related genes with risk and prognosis of head and neck squamous cell carcinoma. Int. J. Cancer. 2015;137:810–818. doi: 10.1002/ijc.29435. PubMed DOI

Sanguansin S., Petmitr S., Punyarit P., Vorasubin V., Weerapradist W., Surarit R. HMSH2 gene alterations associated with recurrence of oral squamous cell carcinoma. J. Exp. Clin. Cancer Res. 2006;25:251–257. PubMed

Wang D., Zhou J., Wang T., Li X., Li S., Chen S., Ma G., Li J., Zhang X. Polymorphisms in MSH2 gene and risk of gastric cancer, and interactions with lifestyle factors in a Chinese population. Cancer Epidemiol. 2012;36:e171–e176. doi: 10.1016/j.canep.2012.02.003. PubMed DOI

Park J.M., Huang S., Tougeron D., Sinicrope F.A. MSH3 Mismatch Repair Protein Regulates Sensitivity to Cytotoxic Drugs and a Histone Deacetylase Inhibitor in Human Colon Carcinoma Cells. PLoS ONE. 2013;8:e65369. doi: 10.1371/journal.pone.0065369. PubMed DOI PMC

Kleczkowska H.E., Marra G., Lettieri T., Jiricny J. hMSH3 and hMSH6 interact with PCNA and colocalize with it to replication foci. Genes Dev. 2001;15:724–736. doi: 10.1101/gad.191201. PubMed DOI PMC

Marra G., Iaccarino I., Lettieri T., Roscilli G., Delmastro P., Jiricny J. Mismatch repair deficiency associated with overexpression of the MSH3 gene. Proc. Natl. Acad. Sci. USA. 1998;95:8568–8573. doi: 10.1073/pnas.95.15.8568. PubMed DOI PMC

Berndt S.I., Platz E.A., Fallin M.D., Thuita L.W., Hoffman S.C., Helzlsouer K.J. Mismatch repair polymorphisms and the risk of colorectal cancer. Int. J. Cancer. 2007;120:1548–1554. doi: 10.1002/ijc.22510. PubMed DOI

Koessler T., Oestergaard M.Z., Tyrer J., Perkins B., Dunning A.M., Pharoah P.D.P., Song H., Easton D.F. Common variants in mismatch repair genes and risk of colorectal cancer. Gut. 2008;57:1097–1101. doi: 10.1136/gut.2007.137265. PubMed DOI

Miao H.-K., Chen L.-P., Cai D.-P., Kong W.-J., Xiao L., Lin J. MSH3 rs26279 polymorphism increases cancer risk: A meta-analysis. Int. J. Clin. Exp. Pathol. 2015;8:11060–11067. PubMed PMC

Koessler T., Azzato E.M., Perkins B., Maclnnis R., Greenberg D., Easton U.F., Pharoah P.D. Common germline variation in mismatch repair genes and survival after a diagnosis of colorectal cancer. Int. J. Cancer. 2009;124:1887–1891. doi: 10.1002/ijc.24120. PubMed DOI

Milne R.L., Herranz J., Michailidou K., Dennis J., Tyrer J.P., Zamora M.P., Perez J.I.A., González-Neira A., Pita G., Alonso M.R., et al. A large-scale assessment of two-way SNP interactions in breast cancer susceptibility using 46 450 cases and 42 461 controls from the breast cancer association consortium. Hum. Mol. Genet. 2013;23:1934–1946. doi: 10.1093/hmg/ddt581. PubMed DOI PMC

Xu X.-L., Yao Y.-L., Xu W.-Z., Feng J.-G., Mao W.-M. Correlation of MSH3 polymorphisms with response and survival in advanced non-small cell lung cancer patients treated with first-line platinum-based chemotherapy. Genet. Mol. Res. 2015;14:3525–3533. doi: 10.4238/2015.April.15.16. PubMed DOI

Schuetz J.M., Daley D., Leach S., Conde L., Berry B.R., Gallagher R.P., Connors J.M., Gascoyne R.D., Bracci P.M., Skibola C.F., et al. Non-Hodgkin Lymphoma Risk and Variants in Genes Controlling Lymphocyte Development. PLoS ONE. 2013;8:e75170. doi: 10.1371/journal.pone.0075170. PubMed DOI PMC

Skibola C.F., Bracci P.M., Halperin E., Nieters A., Hubbard A., Paynter R.A., Skibola D.R., Agana L., Becker N., Tressler P., et al. Polymorphisms in the Estrogen Receptor 1 and Vitamin C and Matrix Metalloproteinase Gene Families Are Associated with Susceptibility to Lymphoma. PLoS ONE. 2008;3:e2816. doi: 10.1371/journal.pone.0002816. PubMed DOI PMC

Paquis-Flucklinger V., Santucci-Darmanin S., Paul R., Saunières A., Turc-Carel C., Desnuelle C. Cloning and Expression Analysis of a Meiosis-Specific MutS Homolog: The HumanMSH4Gene. Genomics. 1997;44:188–194. doi: 10.1006/geno.1997.4857. PubMed DOI

Pochart P., Woltering D., Hollingsworth N.M. Conserved Properties between Functionally Distinct MutS Homologs in Yeast. J. Biol. Chem. 1997;272:30345–30349. doi: 10.1074/jbc.272.48.30345. PubMed DOI

Zalevsky J., MacQueen A.J., Duffy J.B., Kemphues K.J., Villeneuve A.M. Crossing over during Caenorhabditis elegans meiosis requires a conserved MutS-based pathway that is partially dispensable in budding yeast. Genetics. 1999;153:1271–1283. PubMed PMC

Bocker T., Barusevicius A., Snowden T., Rasio D., Guerrette S., Robbins D., Schmidt C., Burczak J., Croce C.M., Copeland T., et al. hMSH5: A human MutS homologue that forms a novel heterodimer with hMSH4 and is expressed during spermatogenesis. Cancer Res. 1999;59:816–822. PubMed

Santucci-Darmanin S., Walpita D., Lespinasse F., Desnuelle C., Ashley T., Paquis-Flucklingeret V. MSH4 acts in conjunction with MLH1 during mammalian meiosis. FASEB J. 2000;14:1539–1547. doi: 10.1096/fj.99-0851com. PubMed DOI

Kolas N., Cohen P. Novel and diverse functions of the DNA mismatch repair family in mammalian meiosis and recombination. Cytogenet. Genome Res. 2004;107:216–231. doi: 10.1159/000080600. PubMed DOI

Her C. MutS Homologues hMSH4 and hMSH5: Diverse Functional Implications in Humans. Front. Biosci. 2007;12:905. doi: 10.2741/2112. PubMed DOI

Clark N., Wu X., Her C. MutS Homologues hMSH4 and hMSH5: Genetic Variations, Functions, and Implications in Human Diseases. Curr. Genom. 2013;14:81–90. doi: 10.2174/1389202911314020002. PubMed DOI PMC

Chu Y.-L., Wu X., Xu Y., Her C. MutS homologue hMSH4: Interaction with eIF3f and a role in NHEJ-mediated DSB repair. Mol. Cancer. 2013;12:51. doi: 10.1186/1476-4598-12-51. PubMed DOI PMC

Edelmann W., Cohen P.E., Kneitz B., Winand N., Lia M., Heyer J., Kolodner R., Pollard J.W., Kucherlapati R. Mammalian MutS homologue 5 is required for chromosome pairing in meiosis. Nat. Genet. 1999;21:123–127. doi: 10.1038/5075. PubMed DOI

Kelly K.O., Dernburg A.F., Stanfield G.M., Villeneuve A.M. Caenorhabditis elegans msh-5 is required for both normal and radiation-induced meiotic crossing over but not for completion of meiosis. Genetics. 2000;156:617–630. PubMed PMC

Xu Y., Wu X., Her C. hMSH5 Facilitates the Repair of Camptothecin-induced Double-strand Breaks through an Interaction with FANCJ*. J. Biol. Chem. 2015;290:18545–18558. doi: 10.1074/jbc.M115.642884. PubMed DOI PMC

Bannwarth S., Figueroa A., Fragaki K., Destroismaisons L., Lacas-Gervais S., Lespinasse F., Vandenbos F., Pradelli L.A., Ricci J.-E., Rötig A., et al. The human MSH5 (MutS Homolog 5) protein localizes to mitochondria and protects the mitochondrial genome from oxidative damage. Mitochondrion. 2012;12:654–665. doi: 10.1016/j.mito.2012.07.111. PubMed DOI

Doherty J.A., Sakoda L.C., Loomis M.M., Barnett M.J., Julianto L., Thornquist M.D., Neuhouser M.L., Weiss N.S., Goodman G.E., Chen C. DNA repair genotype and lung cancer risk in the beta-carotene and retinol efficacy trial. Int. J. Mol. Epidemiol. Genet. 2013;4:11–34. PubMed PMC

Timofeeva M.N., Hung R.J., Rafnar T., Christiani D.C., Field J.K., Bickeböller H., Risch A., McKay J.D., Wang Y., Dai J., et al. Influence of common genetic variation on lung cancer risk: Meta-analysis of 14 900 cases and 29 485 controls. Hum. Mol. Genet. 2012;21:4980–4995. doi: 10.1093/hmg/dds334. PubMed DOI PMC

Yi W., Wu X., Lee T.-H., Doggett N.A., Her C. Two variants of MutS homolog hMSH5: Prevalence in humans and effects on protein interaction. Biochem. Biophys. Res. Commun. 2005;332:524–532. doi: 10.1016/j.bbrc.2005.04.154. PubMed DOI

Liu J.-Y., Qian C.-Y., Gao Y.-F., Chen J., Zhou H., Yin J.-Y. Association between DNA mismatch repair gene polymorphisms and platinum-based chemotherapy toxicity in non-small cell lung cancer patients. Chin. J. Cancer. 2017;36:12. doi: 10.1186/s40880-016-0175-2. PubMed DOI PMC

Kazma R., Babron M.-C., Gaborieau V., Génin E., Brennan P., Hung R.J., McLaughlin J.R., Krokan H.E., Elvestad M.B., Skorpen F., et al. Lung cancer and DNA repair genes: Multilevel association analysis from the International Lung Cancer Consortium. Carcinogenesis. 2012;33:1059–1064. doi: 10.1093/carcin/bgs116. PubMed DOI PMC

Gao X., Zhang Y., Breitling L.P., Brenner H. Tobacco smoking and methylation of genes related to lung cancer development. Oncotarget. 2016;7:59017–59028. doi: 10.18632/oncotarget.10007. PubMed DOI PMC

Wang Y., Broderick P., Webb E.L., Wu X., Vijayakrishnan J., Matakidou A., Qureshi M., Dong Q., Gu X., Chen W.V., et al. Common 5p15.33 and 6p21.33 variants influence lung cancer risk. Nat. Genet. 2008;40:1407–1409. doi: 10.1038/ng.273. PubMed DOI PMC

Scarbrough P.M., Weber R.P., Iversen E.S., Brhane Y., Amos C.I., Kraft P., Hung R.J., Sellers T.A., Witte J.S., Pharoah P., et al. A Cross-Cancer Genetic Association Analysis of the DNA Repair and DNA Damage Signaling Pathways for Lung, Ovary, Prostate, Breast, and Colorectal Cancer. Cancer Epidemiol. Biomark. Prev. 2015;25:193–200. doi: 10.1158/1055-9965.EPI-15-0649. PubMed DOI PMC

Blackwell L.J., Martik D., Bjornson K.P., Bjornson E.S., Modrich P. Nucleotide-promoted Release of hMutSα from Heteroduplex DNA Is Consistent with an ATP-dependent Translocation Mechanism. J. Biol. Chem. 1998;273:32055–32062. doi: 10.1074/jbc.273.48.32055. PubMed DOI

Kansikas M., Kariola R., Nystrom-Lahti M. Verification of the three-step model in assessing the pathogenicity of mismatch repair gene variants. Hum. Mutat. 2010;32:107–115. doi: 10.1002/humu.21409. PubMed DOI PMC

Lee E., Levine E.A., Franco V.I., Allen G.O., Gong F., Zhang Y., Hu J.J. Combined Genetic and Nutritional Risk Models of Triple Negative Breast Cancer. Nutr. Cancer. 2014;66:955–963. doi: 10.1080/01635581.2014.932397. PubMed DOI

Zelga P., Przybyłowska-Sygut K., Zelga M., Dziki A., Majsterek I. The 116G > A MSH6 and IVS1-1121C > T PMS2 Genes Polymorphisms Modulate the Risk of the Sporadic Colorectal Cancer Development in Polish Population. Pathol. Oncol. Res. 2017;24:231–235. doi: 10.1007/s12253-017-0231-5. PubMed DOI PMC

Zelga P., Przybylowska-Sygut K., Zelga M., Dziki A., Majsterek I. Polymorphism of Gly39Glu (c.116G>A) hMSH6 is associated with sporadic colorectal cancer development in the Polish population: Preliminary results. Adv. Clin. Exp. Med. 2017;26:1425–1429. doi: 10.17219/acem/64877. PubMed DOI

Santos L.S., Silva S.N., Gil O.M., Ferreira T.C., Limbert E., Rueff J. Mismatch repair single nucleotide polymorphisms and thyroid cancer susceptibility. Oncol. Lett. 2018;15:6715–6726. doi: 10.3892/ol.2018.8103. PubMed DOI PMC

Vogelsang M., Wang Y., Veber N., Mwapagha L.M., Parker M.I. The Cumulative Effects of Polymorphisms in the DNA Mismatch Repair Genes and Tobacco Smoking in Oesophageal Cancer Risk. PLoS ONE. 2012;7:e36962. doi: 10.1371/journal.pone.0036962. PubMed DOI PMC

Curtin K., Samowitz W.S., Wolff R.K., Caan B.J., Ulrich C.M., Potter J.D., Slattery M.L. MSH6 G39E polymorphism and CpG island methylator phenotype in colon cancer. Mol. Carcinog. 2009;48:989–994. doi: 10.1002/mc.20566. PubMed DOI PMC

Dong X., Li Y., Chang P., Hess K.R., Abbruzzese J.L., Li D. DNA mismatch repair network gene polymorphism as a susceptibility factor for pancreatic cancer. Mol. Carcinog. 2011;51:491–499. doi: 10.1002/mc.20817. PubMed DOI PMC

Zanusso C., Bortolus R., Dreussi E., Polesel J., Montico M., Cecchin E., Gagno S., Rizzolio F., Arcicasa M., Novara G., et al. Impact of DNA repair gene polymorphisms on the risk of biochemical recurrence after radiotherapy and overall survival in prostate cancer. Oncotarget. 2017;8:22863–22875. doi: 10.18632/oncotarget.15282. PubMed DOI PMC

Cecchin E., D’Andrea M., Lonardi S., Zanusso C., Pella N., Errante D., De Mattia E., Polesel J., Innocenti F., Toffoli G. A prospective validation pharmacogenomic study in the adjuvant setting of colorectal cancer patients treated with the 5-fluorouracil/leucovorin/oxaliplatin (FOLFOX4) regimen. Pharm. J. 2012;13:403–409. doi: 10.1038/tpj.2012.31. PubMed DOI PMC

Doss C.G.P., Rao S. Investigation on the role of nsSNPs in HNPCC genes—A bioinformatics approach. J. Biomed. Sci. 2009;16:42. doi: 10.1186/1423-0127-16-42. PubMed DOI PMC

Dong J., Hu Z., Shu Y., Pan S., Chen W., Wang Y., Hu L., Jiang Y., Dai J., Ma H., et al. Potentially functional polymorphisms in DNA repair genes and non-small-cell lung cancer survival: A pathway-based analysis. Mol. Carcinog. 2011;51:546–552. doi: 10.1002/mc.20819. PubMed DOI

Nakagawa H., Lockman J.C., Frankel W.L., Hampel H., Steenblock K., Burgart L.J., Thibodeau S.N., De La Chapelle A. Mismatch Repair GenePMS. Cancer Res. 2004;64:4721–4727. doi: 10.1158/0008-5472.CAN-03-2879. PubMed DOI

Mann A., Høgdall E., Ramus S.J., DiCioccio R.A., Høgdall C., Quaye L., McGuire V., Whittemore A.S., Shah M., Greenberg D., et al. Mismatch repair gene polymorphisms and survival in invasive ovarian cancer patients. Eur. J. Cancer. 2008;44:2259–2265. doi: 10.1016/j.ejca.2008.07.010. PubMed DOI PMC

Song H., Ramus S.J., Quaye L., DiCioccio R.A., Tyrer J., Lomas E., Shadforth D., Høgdall E.V.S., Høgdall C.K., McGuire V., et al. Common variants in mismatch repair genes and risk of invasive ovarian cancer. Carcinogenesis. 2006;27:2235–2242. doi: 10.1093/carcin/bgl089. PubMed DOI

Horii A., Han H., Sasaki S., Shimada M., Nakamura Y. Cloning, Characterization and Chromosomal Assignment of the Human Genes Homologous to Yeast PMS1, a Member of Mismatch Repair Genes. Biochem. Biophys. Res. Commun. 1994;204:1257–1264. doi: 10.1006/bbrc.1994.2598. PubMed DOI

Nicolaides N.C., Carter K.C., Shell B.K., Papadopoulos N., Vogelstein B., Kinzler K.W. Genomic Organization of the HumanPMS2Gene Family. Genomics. 1995;30:195–206. doi: 10.1006/geno.1995.9885. PubMed DOI

Kondo E., Horii A., Fukushige S. The human PMS2L proteins do not interact with hMLH1, a major DNA mismatch repair protein. J. Biochem. 1999;125:818–825. PubMed

De Vos M., Hayward B.E., Picton S., Sheridan E., Bonthron D.T. Novel PMS2 Pseudogenes Can Conceal Recessive Mutations Causing a Distinctive Childhood Cancer Syndrome. Am. J. Hum. Genet. 2004;74:954–964. doi: 10.1086/420796. PubMed DOI PMC

Mitchell R.J., Farrington S.M., Dunlop M.G., Campbell H. Mismatch Repair Genes hMLH1 and hMSH2 and Colorectal Cancer: A HuGE Review. Am. J. Epidemiol. 2002;156:885–902. doi: 10.1093/aje/kwf139. PubMed DOI

Kamory E., Kolacsek O., Ottó S., Csuka O. hMLH1 and hMSH2 somatic inactivation mechanisms in sporadic colorectal cancer patients. Pathol. Oncol. Res. 2003;9:236–241. doi: 10.1007/BF02893384. PubMed DOI

Kane M.F., Loda M., Gaida G.M., Lipman J., Mishra R., Goldman H., Jessup J.M., Kolodner R. Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res. 1997;57:808–811. PubMed

Geisler J.P., Goodheart M.J., Sood A.K., Holmes R.J., Hatterman-Zogg M.A., Buller R.E. Mismatch repair gene expression defects contribute to microsatellite instability in ovarian carcinoma. Cancer. 2003;98:2199–2206. doi: 10.1002/cncr.11770. PubMed DOI

Pierini S., Jordanov S.H., Mitkova A.V., Chalakov I.J., Melnicharov M.B., Kunev K.V., Mitev V.I., Kaneva R.P., Goranova T.E. Promoter hypermethylation of CDKN2A, MGMT, MLH1, and DAPK genes in laryngeal squamous cell carcinoma and their associations with clinical profiles of the patients. Head Neck. 2013;36:1103–1108. doi: 10.1002/hed.23413. PubMed DOI

Gomes A., Reis-Silva M., Alarcao A., Couceiro P., Sousa V., Carvalho L. Promoter hypermethylation of DNA repair genes MLH1 and MSH2 in adenocarcinomas and squamous cell carcinomas of the lung. Rev. Por.T Pneumol. 2014;20:20–30. doi: 10.1016/j.rppneu.2013.07.003. PubMed DOI

Haraldsdottir S., Hampel H., Wu C., Weng D.Y., Shields P.G., Frankel W.L., Pan X., De La Chapelle A., Goldberg R., Bekaii-Saab T. Patients with colorectal cancer associated with Lynch syndrome and MLH1 promoter hypermethylation have similar prognoses. Genet. Med. 2016;18:863–868. doi: 10.1038/gim.2015.184. PubMed DOI PMC

Orimo H., Nakajima E., Yamamoto M., Ikejima M., Emi M., Shimada T. Association between single nucleotide polymorphisms in the hMSH3 gene and sporadic colon cancer with microsatellite instability. J. Hum. Genet. 2000;45:228–230. doi: 10.1007/s100380070031. PubMed DOI

Gazzoli I., Kolodner R.D. Regulation of the Human MSH6 Gene by the Sp1 Transcription Factor and Alteration of Promoter Activity and Expression by Polymorphisms. Mol. Cell. Biol. 2003;23:7992–8007. doi: 10.1128/MCB.23.22.7992-8007.2003. PubMed DOI PMC

Wu S., Chen J., Ji Y., Liu Y., Gao L., Chen G., Shen K., Huang B. Association between the hMSH2 IVS12-6 T>C polymorphism and cancer risk: A meta-analysis. Exp. Ther. Med. 2011;2:1193–1198. doi: 10.3892/etm.2011.336. PubMed DOI PMC

Yuan Z.Q., Gottlieb B., Beitel L.K., Wong N., Gordon P.H., Wang Q., Puisieux A., Foulkes W.D., Trifiro M. Polymorphisms and HNPCC: PMS2-MLH1 protein interactions diminished by single nucleotide polymorphisms. Hum. Mutat. 2002;19:108–113. doi: 10.1002/humu.10040. PubMed DOI

Cortellino S., Turner D., Masciullo V., Schepis F., Albino D., Daniel R., Skalka A.M., Meropol N.J., Alberti C., LaRue L., et al. The base excision repair enzyme MED1 mediates DNA damage response to antitumor drugs and is associated with mismatch repair system integrity. Proc. Natl. Acad. Sci. USA. 2003;100:15071–15076. doi: 10.1073/pnas.2334585100. PubMed DOI PMC

Murata H., Khattar N.H., Gu L., Li G.-M. Roles of mismatch repair proteins hMSH2 and hMLH1 in the development of sporadic breast cancer. Cancer Lett. 2005;223:143–150. doi: 10.1016/j.canlet.2004.09.039. PubMed DOI

Russo A., Corsale S., Cammareri P., Agnese V., Cascio S., Di Fede G., Macaluso M., Bazan V. Pharmacogenomics in colorectal carcinomas: Future perspectives in personalized therapy. J. Cell. Physiol. 2005;204:742–749. doi: 10.1002/jcp.20357. PubMed DOI

Iyer R.R., Pluciennik A., Burdett V., Modrich P. DNA Mismatch Repair: Functions and Mechanisms. Chem. Rev. 2006;37:302–323. doi: 10.1021/cr0404794. PubMed DOI

Worrillow L.J., Travis L.B., Smith A.G., Rollinson S., Smith A.J., Wild C.P., Holowaty E.J., Kohler B.A., Wiklund T., Pukkala E., et al. An intron splice acceptor polymorphism in hMSH2 and risk of leukemia after treatment with chemotherapeutic alkylating agents. Clin. Cancer Res. 2003;9:3012–3020. PubMed

Park J.H., Kim N.S., Park J.Y., Chae Y.S., Kim J.G., Sohn S.K., Moon J.-H., Kang B.W., Ryoo H.M., Bae S.H., et al. MGMT −535G>T polymorphism is associated with prognosis for patients with metastatic colorectal cancer treated with oxaliplatin-based chemotherapy. J. Cancer Res. Clin. Oncol. 2010;136:1135–1142. doi: 10.1007/s00432-010-0760-8. PubMed DOI

Kim J.G., Chae Y.S., Sohn S.K., Moon J.H., Kang B.W., Park J.Y., Jeon S.W., Lee M.-H., Lim K.-H., Choi G.S., et al. IVS10+12A>G polymorphism in hMSH2 gene associated with prognosis for patients with colorectal cancer. Ann. Oncol. 2010;21:525–529. doi: 10.1093/annonc/mdp338. PubMed DOI

Jung C.Y., Choi J.E., Park J.M., Chae M.H., Kang H.-G., Kim K.M., Lee S.J., Lee W.-K., Kam S., Cha S.I., et al. Polymorphisms in the hMSH2 Gene and the Risk of Primary Lung Cancer. Cancer Epidemiol. Biomark. Prev. 2006;15:762–768. doi: 10.1158/1055-9965.EPI-05-0834. PubMed DOI

Boeckmann L., Thoms K.-M., Gutzmer R., Has C., Kunz M., Kuschal C., Laspe P., Struever D., Emmert S. Modulation of the efficacy of temozolomide and dacarbazine melanoma treatment by DNA-repair factors in vivo and in vitro. Int. J. Clin. Pharmacol. Ther. 2009;47:33–35. doi: 10.5414/CPP47033. PubMed DOI

Vymetalkova V., Slyskova J., Korenková V., Bielik L., Langerová L., Procházka P., Rejhova A., Schwarzová L., Pardini B., Naccarati A., et al. Molecular characteristics of mismatch repair genes in sporadic colorectal tumors in Czech patients. BMC Med. Genet. 2014;15:17. doi: 10.1186/1471-2350-15-17. PubMed DOI PMC

Tomasova K., Cumova A., Seborova K., Horak J., Koucka K., Vodickova L., Vaclavikova R., Vodicka P. DNA Repair and Ovarian Carcinogenesis: Impact on Risk, Prognosis and Therapy Outcome. Cancers. 2020;12:1713. doi: 10.3390/cancers12071713. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...