DNA repair and cancer in colon and rectum: Novel players in genetic susceptibility

. 2020 Jan 15 ; 146 (2) : 363-372. [epub] 20190704

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31209889

Grantová podpora
U01 CA074799 NCI NIH HHS - United States
P30 CA015704 NCI NIH HHS - United States
K05 CA154337 NCI NIH HHS - United States
HHSN268201100046C NHLBI NIH HHS - United States
U01 CA167552 NIH HHS - United States
U19 CA148107 NCI NIH HHS - United States
K05 CA154337 NIH HHS - United States
R01 CA60987 NIH HHS - United States
R01 CA059045 NCI NIH HHS - United States
R01 CA076366 NCI NIH HHS - United States
R35 CA197735 NCI NIH HHS - United States
U01 HG004438 NHGRI NIH HHS - United States
HHSN271201100004C NHLBI NIH HHS - United States
U01/U24 CA097735 NCI NIH HHS - United States
U01 HG004446 NHGRI NIH HHS - United States
N01-PC-35142 NCI NIH HHS - United States
U01/U24 CA074800 NCI NIH HHS - United States
U01 CA167551 NIH HHS - United States
P01 CA087969 NCI NIH HHS - United States
U24 CA074783 NCI NIH HHS - United States
P01 CA055075 NIH HHS - United States
U01 HG004446 NIH HHS - United States
P01 CA055075 NCI NIH HHS - United States
N01 CN067009 NCI NIH HHS - United States
R01 CA151993 NCI NIH HHS - United States
U01 CA167552 NCI NIH HHS - United States
R01 CA048998 NCI NIH HHS - United States
U01 CA137088 NCI NIH HHS - United States
R01 CA076366 NIH HHS - United States
HHSN268201100003C WHI NIH HHS - United States
Z01 CP010200 Intramural NIH HHS - United States
U24 CA074794 NCI NIH HHS - United States
U01/U24 CA074806 NCI NIH HHS - United States
U01 CA074778 NCI NIH HHS - United States
U01 CA164930 NCI NIH HHS - United States
N01PC35137 NCI NIH HHS - United States
U24 CA074806 NCI NIH HHS - United States
R37 CA54281 NIH HHS - United States
HHSN2612013000121 NCI NIH HHS - United States
R01 CA137178 NCI NIH HHS - United States
U24 CA097735 NCI NIH HHS - United States
U01 CA074794 NCI NIH HHS - United States
U01 CA167551 NCI NIH HHS - United States
N01-CN-67009 NCI NIH HHS - United States
HHSN261201300012I NCI NIH HHS - United States
Z01 CP 010200 NCI NIH HHS - United States
R01 CA143237 NCI NIH HHS - United States
HHSN268201100003C NHLBI NIH HHS - United States
N01PC35142 NCI NIH HHS - United States
R01 CA063464 NCI NIH HHS - United States
P01 CA033619 NCI NIH HHS - United States
HHSN268201100001C NHLBI NIH HHS - United States
UM1 CA186107 NCI NIH HHS - United States
HHSN268201100002C WHI NIH HHS - United States
HHSN268201100004C NHLBI NIH HHS - United States
UM1 CA167552 NIH HHS - United States
U01 CA074783 NIH HHS - United States
R01 CA042182 NCI NIH HHS - United States
R01 CA060987 NCI NIH HHS - United States
U01 CA097735 NCI NIH HHS - United States
U01 CA048998 NCI NIH HHS - United States
P01 CA033619 NIH HHS - United States
UM1 CA167552 NCI NIH HHS - United States
R01 CA48998 NCI NIH HHS - United States
U01 CA122839 NCI NIH HHS - United States
R01 CA143247 NIH HHS - United States
U01/U24 CA074799 NCI NIH HHS - United States
U01/U24 CA074783 NCI NIH HHS - United States
U01 CA074783 NCI NIH HHS - United States
R35 CA253185 NCI NIH HHS - United States
HHSN268201100002C NHLBI NIH HHS - United States
U01 CA122839 NIH HHS - United States
U24 CA074799 NCI NIH HHS - United States
U01 CA074806 NCI NIH HHS - United States
U24 CA074800 NCI NIH HHS - United States
U01 HG 004438 NCI NIH HHS - United States
P50 CA127003 NCI NIH HHS - United States
R01 CA063464 NIH HHS - United States
K07 CA190673 NCI NIH HHS - United States
U01/U24 CA074794 NCI NIH HHS - United States
R37 CA054281 NCI NIH HHS - United States
U01 CA074800 NCI NIH HHS - United States
HHSN268201100001C WHI NIH HHS - United States

Interindividual differences in DNA repair systems may play a role in modulating the individual risk of developing colorectal cancer. To better ascertain the role of DNA repair gene polymorphisms on colon and rectal cancer risk individually, we evaluated 15,419 single nucleotide polymorphisms (SNPs) within 185 DNA repair genes using GWAS data from the Colon Cancer Family Registry (CCFR) and the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO), which included 8,178 colon cancer, 2,936 rectum cancer cases and 14,659 controls. Rs1800734 (in MLH1 gene) was associated with colon cancer risk (p-value = 3.5 × 10-6 ) and rs2189517 (in RAD51B) with rectal cancer risk (p-value = 5.7 × 10-6 ). The results had statistical significance close to the Bonferroni corrected p-value of 5.8 × 10-6 . Ninety-four SNPs were significantly associated with colorectal cancer risk after Binomial Sequential Goodness of Fit (BSGoF) procedure and confirmed the relevance of DNA mismatch repair (MMR) and homologous recombination pathways for colon and rectum cancer, respectively. Defects in MMR genes are known to be crucial for familial form of colorectal cancer but our findings suggest that specific genetic variations in MLH1 are important also in the individual predisposition to sporadic colon cancer. Other SNPs associated with the risk of colon cancer (e.g., rs16906252 in MGMT) were found to affect mRNA expression levels in colon transverse and therefore working as possible cis-eQTL suggesting possible mechanisms of carcinogenesis.

Broad Institute of MIT and Harvard Cambridge MA

Department of Biology University of Pisa Pisa Italy

Department of Epidemiology Harvard T H Chan School of Public Health Boston MA

Department of Epidemiology Richard M Fairbanks School of Public Health Indiana University Indianapolis IN

Department of Health Sciences Research Mayo Clinic Arizona Scottsdale AZ

Department of Internal Medicine University of Utah Health Sciences Center Salt Lake City UT

Department of Medical Sciences University of Turin Turin Italy

Department of Medicine and Epidemiology University of Pittsburgh Medical Center Pittsburgh PA

Department of Molecular Biology of Cancer Institute of Experimental Medicine The Czech Academy of Sciences Prague Czech Republic

Department of Oncologic Pathology Dana Farber Cancer Institute Boston MA

Department of Surgery Mount Sinai Hospital Toronto ON Canada

Division of Cancer Epidemiology and Genetics National Cancer Institute National Institutes of Health Rockville MD

Division of Cancer Epidemiology German Cancer Research Center Heidelberg Germany

Division of Clinical Epidemiology and Aging Research German Cancer Research Center Heidelberg Germany

Division of Epidemiology Department of Population Health New York University School of Medicine New York NY

Division of Gastroenterology Massachusetts General Hospital Boston MA

Division of Preventive Oncology German Cancer Research Center Heidelberg Germany

Epidemiology Program Research Cancer Center of Hawaii University of Hawaii Honolulu HI

Epidemiology Research Program American Cancer Society Atlanta GA

Faculty of Medicine and Biomedical Center in Pilsen Charles University Pilsen Czech Republic

German Cancer Consortium Heidelberg Germany

Institute of Biology and Medical Genetics 1st Faculty of Medicine Charles University Prague Czech Republic

Italian Institute for Genomic Medicine Turin Italy

Kaiser Permanente Medical Care Program of Northern California Oakland CA

Melbourne School of Population Health The University of Melbourne Melbourne VIC Australia

Prevention and Cancer Control Cancer Care Ontario Toronto ON Canada

Program in MPE Molecular Pathological Epidemiology Department of Pathology Brigham and Women's Hospital and Harvard Medical School Boston MA

Public Health Sciences Division Fred Hutchinson Cancer Research Center Seattle WA

Public Health Sciences University of Virginia Charlottesville VA

School of Public Health University of Washington Seattle WA

Service de Génétique Médicale Centre Hospitalier Universitaire Nantes France

Stanford University School of Medicine Stanford CA

Zobrazit více v PubMed

Lord CJ, Ashworth A. The DNA damage response and cancer therapy. Nature 2012;481: 287–94. PubMed

Naccarati A, Rosa F, Vymetalkova V, Barone E, Jiraskova K, Di Gaetano C, Novotny J, Levy M, Vodickova L, Gemignani F, Buchler T, Landi S, et al. Double-strand break repair and colorectal cancer: gene variants within 3’ UTRs and microRNAs binding as modulators of cancer risk and clinical outcome. Oncotarget 2016;7: 23156–69. PubMed PMC

Poulogiannis G, Frayling IM, Arends MJ. DNA mismatch repair deficiency in sporadic colorectal cancer and Lynch syndrome. Histopathology 2010;56: 167–79. PubMed

Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990;61: 759–67. PubMed

Li SK, Martin A. Mismatch Repair and Colon Cancer: Mechanisms and Therapies Explored. Trends Mol Med 2016;22: 274–89. PubMed

Boland CR, Goel A. Microsatellite instability in colorectal cancer. Gastroenterology 2010;138: 2073–87 e3. PubMed PMC

Pardini B, Naccarati A, Novotny J, Smerhovsky Z, Vodickova L, Polakova V, Hanova M, Slyskova J, Tulupova E, Kumar R, Bortlik M, Barale R, et al. DNA repair genetic polymorphisms and risk of colorectal cancer in the Czech Republic. Mutation research 2008;638: 146–53. PubMed

Slyskova J, Cordero F, Pardini B, Korenkova V, Vymetalkova V, Bielik L, Vodickova L, Pitule P, Liska V, Matejka VM, Levy M, Buchler T, et al. Post-treatment recovery of suboptimal DNA repair capacity and gene expression levels in colorectal cancer patients. Molecular carcinogenesis 2015;54: 769–78. PubMed

Naccarati A, Pardini B, Hemminki K, Vodicka P. Sporadic colorectal cancer and individual susceptibility: a review of the association studies investigating the role of DNA repair genetic polymorphisms. Mutation research 2007;635: 118–45. PubMed

Laporte GA, Leguisamo NM, Kalil AN, Saffi J. Clinical importance of DNA repair in sporadic colorectal cancer. Critical reviews in oncology/hematology 2018;126: 168–85. PubMed

Li Y, Li S, Wu Z, Hu F, Zhu L, Zhao X, Cui B, Dong X, Tian S, Wang F, Zhao Y. Polymorphisms in genes of APE1, PARP1, and XRCC1: risk and prognosis of colorectal cancer in a northeast Chinese population. Medical oncology 2013;30: 505. PubMed

Gil J, Gaj P, Misiak B, Ostrowski J, Karpinski P, Jarczynska A, Kielan W, Sasiadek MM. CYP1A1 Ile462Val polymorphism and colorectal cancer risk in Polish patients. Medical oncology 2014;31: 72. PubMed PMC

Hua RX, Zhu J, Jiang DH, Zhang SD, Zhang JB, Xue WQ, Li XZ, Zhang PF, He J, Jia WH. Association of XPC Gene Polymorphisms with Colorectal Cancer Risk in a Southern Chinese Population: A Case-Control Study and Meta-Analysis. Genes (Basel) 2016;7. PubMed PMC

Tao H, Shinmura K, Suzuki M, Kono S, Mibu R, Tanaka M, Kakeji Y, Maehara Y, Okamura T, Ikejiri K, Futami K, Yasunami Y, et al. Association between genetic polymorphisms of the base excision repair gene MUTYH and increased colorectal cancer risk in a Japanese population. Cancer science 2008;99: 355–60. PubMed PMC

Forat-Yazdi M, Gholi-Nataj M, Neamatzadeh H, Nourbakhsh P, Shaker-Ardakani H. Association of XRCC1 Arg399Gln Polymorphism with Colorectal Cancer Risk: A HuGE Meta Analysis of 35 Studies. Asian Pacific journal of cancer prevention : APJCP 2015;16: 3285–91. PubMed

Eskandari E, Rezaifar A, Hashemi M. XPG Asp1104His, XRCC2 Rs3218536 A/G and RAD51 135G/C Gene Polymorphisms and Colorectal Cancer Risk: A Meta-Analysis. Asian Pacific journal of cancer prevention : APJCP 2017;18: 1805–13. PubMed PMC

Zhang T, Zhang DM, Zhao D, Hou XM, Ma SC, Liu XJ. Lack of association between the XPD Lys751Gln polymorphism and colorectal cancer risk: a meta-analysis. OncoTargets and therapy 2014;7: 1255–60. PubMed PMC

Vineis P, Manuguerra M, Kavvoura FK, Guarrera S, Allione A, Rosa F, Di Gregorio A, Polidoro S, Saletta F, Ioannidis JP, Matullo G. A field synopsis on low-penetrance variants in DNA repair genes and cancer susceptibility. Journal of the National Cancer Institute 2009;101: 24–36. PubMed

Pardini B, Naccarati A, Polakova V, Smerhovsky Z, Hlavata I, Soucek P, Novotny J, Vodickova L, Tomanova V, Landi S, Vodicka P. NBN 657del5 heterozygous mutations and colorectal cancer risk in the Czech Republic. Mutation research 2009;666: 64–7. PubMed

Tomlinson IP, Houlston RS, Montgomery GW, Sieber OM, Dunlop MG. Investigation of the effects of DNA repair gene polymorphisms on the risk of colorectal cancer. Mutagenesis 2012;27: 219–23. PubMed PMC

Houlston RS. COGENT (COlorectal cancer GENeTics) revisited. Mutagenesis 2012;27: 143–51. PubMed PMC

Shen L, Kondo Y, Rosner GL, Xiao L, Hernandez NS, Vilaythong J, Houlihan PS, Krouse RS, Prasad AR, Einspahr JG, Buckmeier J, Alberts DS, et al. MGMT promoter methylation and field defect in sporadic colorectal cancer. Journal of the National Cancer Institute 2005;97: 1330–8. PubMed

Broderick P, Dobbins SE, Chubb D, Kinnersley B, Dunlop MG, Tomlinson I, Houlston RS. Validation of Recently Proposed Colorectal Cancer Susceptibility Gene Variants in an Analysis of Families and Patients-a Systematic Review. Gastroenterology 2017;152: 75–7 e4. PubMed PMC

Thomas G, Jacobs KB, Kraft P, Yeager M, Wacholder S, Cox DG, Hankinson SE, Hutchinson A, Wang Z, Yu K, Chatterjee N, Garcia-Closas M, et al. A multistage genome-wide association study in breast cancer identifies two new risk alleles at 1p11.2 and 14q24.1 (RAD51L1). Nature genetics 2009;41: 579–84. PubMed PMC

Ogino S, Chan AT, Fuchs CS, Giovannucci E. Molecular pathological epidemiology of colorectal neoplasia: an emerging transdisciplinary and interdisciplinary field. Gut 2011;60: 397–411. PubMed PMC

Lu M, Sun L, Zhou J, Zhang J. Assessment of the association between hOGG1 C8069G polymorphism and colorectal cancer. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 2014;35: 2373–7. PubMed

Wang Z, Zhang W. Association between XRCC3 Thr241Met polymorphism and colorectal cancer risk. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 2013;34: 1421–9. PubMed

Liu L, Miao L, Ji G, Qiang F, Liu Z, Fan Z. Association between XRCC1 and XRCC3 polymorphisms and colorectal cancer risk: a meta-analysis of 23 case-control studies. Molecular biology reports 2013;40: 3943–52. PubMed

Peters U, Jiao S, Schumacher FR, Hutter CM, Aragaki AK, Baron JA, Berndt SI, Bezieau S, Brenner H, Butterbach K, Caan BJ, Campbell PT, et al. Identification of Genetic Susceptibility Loci for Colorectal Tumors in a Genome-Wide Meta-analysis. Gastroenterology 2013;144: 799–807 e24. PubMed PMC

Hutter CM, Chang-Claude J, Slattery ML, Pflugeisen BM, Lin Y, Duggan D, Nan H, Lemire M, Rangrej J, Figueiredo JC, Jiao S, Harrison TA, et al. Characterization of gene-environment interactions for colorectal cancer susceptibility loci. Cancer research 2012;72: 2036–44. PubMed PMC

Newcomb PA, Baron J, Cotterchio M, Gallinger S, Grove J, Haile R, Hall D, Hopper JL, Jass J, Le Marchand L, Limburg P, Lindor N, et al. Colon Cancer Family Registry: an international resource for studies of the genetic epidemiology of colon cancer. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 2007;16: 2331–43. PubMed

Zanke BW, Greenwood CM, Rangrej J, Kustra R, Tenesa A, Farrington SM, Prendergast J, Olschwang S, Chiang T, Crowdy E, Ferretti V, Laflamme P, et al. Genome-wide association scan identifies a colorectal cancer susceptibility locus on chromosome 8q24. Nature genetics 2007;39: 989–94. PubMed

Das S, Forer L, Schonherr S, Sidore C, Locke AE, Kwong A, Vrieze SI, Chew EY, Levy S, McGue M, Schlessinger D, Stambolian D, et al. Next-generation genotype imputation service and methods. Nature genetics 2016;48: 1284–7. PubMed PMC

Delaneau O, Zagury JF, Marchini J. Improved whole-chromosome phasing for disease and population genetic studies. Nature methods 2013;10: 5–6. PubMed

McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood AR, Teumer A, Kang HM, Fuchsberger C, Danecek P, Sharp K, Luo Y, Sidore C, et al. A reference panel of 64,976 haplotypes for genotype imputation. Nature genetics 2016;48: 1279–83. PubMed PMC

Castro-Conde I, de Una-Alvarez J. Adjusted p-values for SGoF multiple test procedure. Biom J 2015;57: 108–22. PubMed

Knudson AG. Hereditary predisposition to cancer. Annals of the New York Academy of Sciences 1997;833: 58–67. PubMed

Oliveira C, Westra JL, Arango D, Ollikainen M, Domingo E, Ferreira A, Velho S, Niessen R, Lagerstedt K, Alhopuro P, Laiho P, Veiga I, et al. Distinct patterns of KRAS mutations in colorectal carcinomas according to germline mismatch repair defects and hMLH1 methylation status. Human molecular genetics 2004;13: 2303–11. PubMed

Ito E, Yanagisawa Y, Iwahashi Y, Suzuki Y, Nagasaki H, Akiyama Y, Sugano S, Yuasa Y, Maruyama K. A core promoter and a frequent single-nucleotide polymorphism of the mismatch repair gene hMLH1. Biochem Bioph Res Co 1999;256: 488–94. PubMed

Goldsborough AS, Kornberg TB. Reduction of transcription by homologue asynapsis in Drosophila imaginal discs. Nature 1996;381: 807–10. PubMed

Wang T, Liu Y, Sima L, Shi L, Wang Z, Ni C, Zhang Z, Wang M. Association between MLH1 −93G>a polymorphism and risk of colorectal cancer. PLoS One 2012;7: e50449. PubMed PMC

Chen H, Shen Z, Hu Y, Xiao Q, Bei D, Shen X, Ding K. Association between MutL homolog 1 polymorphisms and the risk of colorectal cancer: a meta-analysis. Journal of cancer research and clinical oncology 2015;141: 2147–58. PubMed

Perera S, Mrkonjic M, Rawson JB, Bapat B. Functional effects of the MLH1–93G>A polymorphism on MLH1/EPM2AIP1 promoter activity. Oncology reports 2011;25: 809–15. PubMed

Nowacka-Zawisza M, Wisnik E, Wasilewski A, Skowronska M, Forma E, Brys M, Rozanski W, Krajewska WM. Polymorphisms of homologous recombination RAD51, RAD51B, XRCC2, and XRCC3 genes and the risk of prostate cancer. Anal Cell Pathol (Amst) 2015;2015: 828646. PubMed PMC

Amin Al Olama A, Dadaev T, Hazelett DJ, Li Q, Leongamornlert D, Saunders EJ, Stephens S, Cieza-Borrella C, Whitmore I, Benlloch Garcia S, Giles GG, Southey MC, et al. Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans. Human molecular genetics 2015;24: 5589–602. PubMed PMC

Orr N, Lemnrau A, Cooke R, Fletcher O, Tomczyk K, Jones M, Johnson N, Lord CJ, Mitsopoulos C, Zvelebil M, McDade SS, Buck G, et al. Genome-wide association study identifies a common variant in RAD51B associated with male breast cancer risk. Nature genetics 2012;44: 1182–4. PubMed PMC

Pelttari LM, Khan S, Vuorela M, Kiiski JI, Vilske S, Nevanlinna V, Ranta S, Schleutker J, Winqvist R, Kallioniemi A, Dork T, Bogdanova NV, et al. RAD51B in Familial Breast Cancer. PLoS One 2016;11: e0153788. PubMed PMC

Golmard L, Caux-Moncoutier V, Davy G, Al Ageeli E, Poirot B, Tirapo C, Michaux D, Barbaroux C, d’Enghien CD, Nicolas A, Castera L, Sastre-Garau X, et al. Germline mutation in the RAD51B gene confers predisposition to breast cancer. BMC Cancer 2013;13: 484. PubMed PMC

Wadt KA, Aoude LG, Golmard L, Hansen TV, Sastre-Garau X, Hayward NK, Gerdes AM. Germline RAD51B truncating mutation in a family with cutaneous melanoma. Familial cancer 2015;14: 337–40. PubMed

Schmutte C, Marinescu RC, Sadoff MM, Guerrette S, Overhauser J, Fishel R. Human exonuclease I interacts with the mismatch repair protein hMSH2. Cancer research 1998;58: 4537–42. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...