DNA repair and cancer in colon and rectum: Novel players in genetic susceptibility
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
U01 CA074799
NCI NIH HHS - United States
P30 CA015704
NCI NIH HHS - United States
K05 CA154337
NCI NIH HHS - United States
HHSN268201100046C
NHLBI NIH HHS - United States
U01 CA167552
NIH HHS - United States
U19 CA148107
NCI NIH HHS - United States
K05 CA154337
NIH HHS - United States
R01 CA60987
NIH HHS - United States
R01 CA059045
NCI NIH HHS - United States
R01 CA076366
NCI NIH HHS - United States
R35 CA197735
NCI NIH HHS - United States
U01 HG004438
NHGRI NIH HHS - United States
HHSN271201100004C
NHLBI NIH HHS - United States
U01/U24 CA097735
NCI NIH HHS - United States
U01 HG004446
NHGRI NIH HHS - United States
N01-PC-35142
NCI NIH HHS - United States
U01/U24 CA074800
NCI NIH HHS - United States
U01 CA167551
NIH HHS - United States
P01 CA087969
NCI NIH HHS - United States
U24 CA074783
NCI NIH HHS - United States
P01 CA055075
NIH HHS - United States
U01 HG004446
NIH HHS - United States
P01 CA055075
NCI NIH HHS - United States
N01 CN067009
NCI NIH HHS - United States
R01 CA151993
NCI NIH HHS - United States
U01 CA167552
NCI NIH HHS - United States
R01 CA048998
NCI NIH HHS - United States
U01 CA137088
NCI NIH HHS - United States
R01 CA076366
NIH HHS - United States
HHSN268201100003C
WHI NIH HHS - United States
Z01 CP010200
Intramural NIH HHS - United States
U24 CA074794
NCI NIH HHS - United States
U01/U24 CA074806
NCI NIH HHS - United States
U01 CA074778
NCI NIH HHS - United States
U01 CA164930
NCI NIH HHS - United States
N01PC35137
NCI NIH HHS - United States
U24 CA074806
NCI NIH HHS - United States
R37 CA54281
NIH HHS - United States
HHSN2612013000121
NCI NIH HHS - United States
R01 CA137178
NCI NIH HHS - United States
U24 CA097735
NCI NIH HHS - United States
U01 CA074794
NCI NIH HHS - United States
U01 CA167551
NCI NIH HHS - United States
N01-CN-67009
NCI NIH HHS - United States
HHSN261201300012I
NCI NIH HHS - United States
Z01 CP 010200
NCI NIH HHS - United States
R01 CA143237
NCI NIH HHS - United States
HHSN268201100003C
NHLBI NIH HHS - United States
N01PC35142
NCI NIH HHS - United States
R01 CA063464
NCI NIH HHS - United States
P01 CA033619
NCI NIH HHS - United States
HHSN268201100001C
NHLBI NIH HHS - United States
UM1 CA186107
NCI NIH HHS - United States
HHSN268201100002C
WHI NIH HHS - United States
HHSN268201100004C
NHLBI NIH HHS - United States
UM1 CA167552
NIH HHS - United States
U01 CA074783
NIH HHS - United States
R01 CA042182
NCI NIH HHS - United States
R01 CA060987
NCI NIH HHS - United States
U01 CA097735
NCI NIH HHS - United States
U01 CA048998
NCI NIH HHS - United States
P01 CA033619
NIH HHS - United States
UM1 CA167552
NCI NIH HHS - United States
R01 CA48998
NCI NIH HHS - United States
U01 CA122839
NCI NIH HHS - United States
R01 CA143247
NIH HHS - United States
U01/U24 CA074799
NCI NIH HHS - United States
U01/U24 CA074783
NCI NIH HHS - United States
U01 CA074783
NCI NIH HHS - United States
R35 CA253185
NCI NIH HHS - United States
HHSN268201100002C
NHLBI NIH HHS - United States
U01 CA122839
NIH HHS - United States
U24 CA074799
NCI NIH HHS - United States
U01 CA074806
NCI NIH HHS - United States
U24 CA074800
NCI NIH HHS - United States
U01 HG 004438
NCI NIH HHS - United States
P50 CA127003
NCI NIH HHS - United States
R01 CA063464
NIH HHS - United States
K07 CA190673
NCI NIH HHS - United States
U01/U24 CA074794
NCI NIH HHS - United States
R37 CA054281
NCI NIH HHS - United States
U01 CA074800
NCI NIH HHS - United States
HHSN268201100001C
WHI NIH HHS - United States
PubMed
31209889
PubMed Central
PMC7301215
DOI
10.1002/ijc.32516
Knihovny.cz E-zdroje
- Klíčová slova
- DNA repair, cancer susceptibility, colon cancer, genome-wide association studies, rectal cancer, single nucleotide polymorphisms,
- MeSH
- biologická variabilita populace genetika MeSH
- DNA modifikační methylasy genetika MeSH
- DNA vazebné proteiny genetika MeSH
- dospělí MeSH
- enzymy opravy DNA genetika MeSH
- genetická predispozice k nemoci * MeSH
- hodnocení rizik MeSH
- jednonukleotidový polymorfismus MeSH
- karcinogeneze genetika MeSH
- kolon patologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- MutL homolog 1 genetika MeSH
- nádorové supresorové proteiny genetika MeSH
- nádory rekta genetika patologie MeSH
- nádory tračníku genetika patologie MeSH
- oprava DNA genetika MeSH
- registrace statistika a číselné údaje MeSH
- rektum patologie MeSH
- senioři MeSH
- studie případů a kontrol MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- DNA modifikační methylasy MeSH
- DNA vazebné proteiny MeSH
- enzymy opravy DNA MeSH
- MGMT protein, human MeSH Prohlížeč
- MLH1 protein, human MeSH Prohlížeč
- MutL homolog 1 MeSH
- nádorové supresorové proteiny MeSH
- RAD51B protein, human MeSH Prohlížeč
Interindividual differences in DNA repair systems may play a role in modulating the individual risk of developing colorectal cancer. To better ascertain the role of DNA repair gene polymorphisms on colon and rectal cancer risk individually, we evaluated 15,419 single nucleotide polymorphisms (SNPs) within 185 DNA repair genes using GWAS data from the Colon Cancer Family Registry (CCFR) and the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO), which included 8,178 colon cancer, 2,936 rectum cancer cases and 14,659 controls. Rs1800734 (in MLH1 gene) was associated with colon cancer risk (p-value = 3.5 × 10-6 ) and rs2189517 (in RAD51B) with rectal cancer risk (p-value = 5.7 × 10-6 ). The results had statistical significance close to the Bonferroni corrected p-value of 5.8 × 10-6 . Ninety-four SNPs were significantly associated with colorectal cancer risk after Binomial Sequential Goodness of Fit (BSGoF) procedure and confirmed the relevance of DNA mismatch repair (MMR) and homologous recombination pathways for colon and rectum cancer, respectively. Defects in MMR genes are known to be crucial for familial form of colorectal cancer but our findings suggest that specific genetic variations in MLH1 are important also in the individual predisposition to sporadic colon cancer. Other SNPs associated with the risk of colon cancer (e.g., rs16906252 in MGMT) were found to affect mRNA expression levels in colon transverse and therefore working as possible cis-eQTL suggesting possible mechanisms of carcinogenesis.
Broad Institute of MIT and Harvard Cambridge MA
Department of Biology University of Pisa Pisa Italy
Department of Epidemiology Harvard T H Chan School of Public Health Boston MA
Department of Health Sciences Research Mayo Clinic Arizona Scottsdale AZ
Department of Internal Medicine University of Utah Health Sciences Center Salt Lake City UT
Department of Medical Sciences University of Turin Turin Italy
Department of Medicine and Epidemiology University of Pittsburgh Medical Center Pittsburgh PA
Department of Oncologic Pathology Dana Farber Cancer Institute Boston MA
Department of Surgery Mount Sinai Hospital Toronto ON Canada
Division of Cancer Epidemiology German Cancer Research Center Heidelberg Germany
Division of Gastroenterology Massachusetts General Hospital Boston MA
Division of Preventive Oncology German Cancer Research Center Heidelberg Germany
Epidemiology Program Research Cancer Center of Hawaii University of Hawaii Honolulu HI
Epidemiology Research Program American Cancer Society Atlanta GA
Faculty of Medicine and Biomedical Center in Pilsen Charles University Pilsen Czech Republic
German Cancer Consortium Heidelberg Germany
Italian Institute for Genomic Medicine Turin Italy
Kaiser Permanente Medical Care Program of Northern California Oakland CA
Melbourne School of Population Health The University of Melbourne Melbourne VIC Australia
Prevention and Cancer Control Cancer Care Ontario Toronto ON Canada
Public Health Sciences Division Fred Hutchinson Cancer Research Center Seattle WA
Public Health Sciences University of Virginia Charlottesville VA
School of Public Health University of Washington Seattle WA
Service de Génétique Médicale Centre Hospitalier Universitaire Nantes France
Zobrazit více v PubMed
Lord CJ, Ashworth A. The DNA damage response and cancer therapy. Nature 2012;481: 287–94. PubMed
Naccarati A, Rosa F, Vymetalkova V, Barone E, Jiraskova K, Di Gaetano C, Novotny J, Levy M, Vodickova L, Gemignani F, Buchler T, Landi S, et al. Double-strand break repair and colorectal cancer: gene variants within 3’ UTRs and microRNAs binding as modulators of cancer risk and clinical outcome. Oncotarget 2016;7: 23156–69. PubMed PMC
Poulogiannis G, Frayling IM, Arends MJ. DNA mismatch repair deficiency in sporadic colorectal cancer and Lynch syndrome. Histopathology 2010;56: 167–79. PubMed
Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990;61: 759–67. PubMed
Li SK, Martin A. Mismatch Repair and Colon Cancer: Mechanisms and Therapies Explored. Trends Mol Med 2016;22: 274–89. PubMed
Boland CR, Goel A. Microsatellite instability in colorectal cancer. Gastroenterology 2010;138: 2073–87 e3. PubMed PMC
Pardini B, Naccarati A, Novotny J, Smerhovsky Z, Vodickova L, Polakova V, Hanova M, Slyskova J, Tulupova E, Kumar R, Bortlik M, Barale R, et al. DNA repair genetic polymorphisms and risk of colorectal cancer in the Czech Republic. Mutation research 2008;638: 146–53. PubMed
Slyskova J, Cordero F, Pardini B, Korenkova V, Vymetalkova V, Bielik L, Vodickova L, Pitule P, Liska V, Matejka VM, Levy M, Buchler T, et al. Post-treatment recovery of suboptimal DNA repair capacity and gene expression levels in colorectal cancer patients. Molecular carcinogenesis 2015;54: 769–78. PubMed
Naccarati A, Pardini B, Hemminki K, Vodicka P. Sporadic colorectal cancer and individual susceptibility: a review of the association studies investigating the role of DNA repair genetic polymorphisms. Mutation research 2007;635: 118–45. PubMed
Laporte GA, Leguisamo NM, Kalil AN, Saffi J. Clinical importance of DNA repair in sporadic colorectal cancer. Critical reviews in oncology/hematology 2018;126: 168–85. PubMed
Li Y, Li S, Wu Z, Hu F, Zhu L, Zhao X, Cui B, Dong X, Tian S, Wang F, Zhao Y. Polymorphisms in genes of APE1, PARP1, and XRCC1: risk and prognosis of colorectal cancer in a northeast Chinese population. Medical oncology 2013;30: 505. PubMed
Gil J, Gaj P, Misiak B, Ostrowski J, Karpinski P, Jarczynska A, Kielan W, Sasiadek MM. CYP1A1 Ile462Val polymorphism and colorectal cancer risk in Polish patients. Medical oncology 2014;31: 72. PubMed PMC
Hua RX, Zhu J, Jiang DH, Zhang SD, Zhang JB, Xue WQ, Li XZ, Zhang PF, He J, Jia WH. Association of XPC Gene Polymorphisms with Colorectal Cancer Risk in a Southern Chinese Population: A Case-Control Study and Meta-Analysis. Genes (Basel) 2016;7. PubMed PMC
Tao H, Shinmura K, Suzuki M, Kono S, Mibu R, Tanaka M, Kakeji Y, Maehara Y, Okamura T, Ikejiri K, Futami K, Yasunami Y, et al. Association between genetic polymorphisms of the base excision repair gene MUTYH and increased colorectal cancer risk in a Japanese population. Cancer science 2008;99: 355–60. PubMed PMC
Forat-Yazdi M, Gholi-Nataj M, Neamatzadeh H, Nourbakhsh P, Shaker-Ardakani H. Association of XRCC1 Arg399Gln Polymorphism with Colorectal Cancer Risk: A HuGE Meta Analysis of 35 Studies. Asian Pacific journal of cancer prevention : APJCP 2015;16: 3285–91. PubMed
Eskandari E, Rezaifar A, Hashemi M. XPG Asp1104His, XRCC2 Rs3218536 A/G and RAD51 135G/C Gene Polymorphisms and Colorectal Cancer Risk: A Meta-Analysis. Asian Pacific journal of cancer prevention : APJCP 2017;18: 1805–13. PubMed PMC
Zhang T, Zhang DM, Zhao D, Hou XM, Ma SC, Liu XJ. Lack of association between the XPD Lys751Gln polymorphism and colorectal cancer risk: a meta-analysis. OncoTargets and therapy 2014;7: 1255–60. PubMed PMC
Vineis P, Manuguerra M, Kavvoura FK, Guarrera S, Allione A, Rosa F, Di Gregorio A, Polidoro S, Saletta F, Ioannidis JP, Matullo G. A field synopsis on low-penetrance variants in DNA repair genes and cancer susceptibility. Journal of the National Cancer Institute 2009;101: 24–36. PubMed
Pardini B, Naccarati A, Polakova V, Smerhovsky Z, Hlavata I, Soucek P, Novotny J, Vodickova L, Tomanova V, Landi S, Vodicka P. NBN 657del5 heterozygous mutations and colorectal cancer risk in the Czech Republic. Mutation research 2009;666: 64–7. PubMed
Tomlinson IP, Houlston RS, Montgomery GW, Sieber OM, Dunlop MG. Investigation of the effects of DNA repair gene polymorphisms on the risk of colorectal cancer. Mutagenesis 2012;27: 219–23. PubMed PMC
Houlston RS. COGENT (COlorectal cancer GENeTics) revisited. Mutagenesis 2012;27: 143–51. PubMed PMC
Shen L, Kondo Y, Rosner GL, Xiao L, Hernandez NS, Vilaythong J, Houlihan PS, Krouse RS, Prasad AR, Einspahr JG, Buckmeier J, Alberts DS, et al. MGMT promoter methylation and field defect in sporadic colorectal cancer. Journal of the National Cancer Institute 2005;97: 1330–8. PubMed
Broderick P, Dobbins SE, Chubb D, Kinnersley B, Dunlop MG, Tomlinson I, Houlston RS. Validation of Recently Proposed Colorectal Cancer Susceptibility Gene Variants in an Analysis of Families and Patients-a Systematic Review. Gastroenterology 2017;152: 75–7 e4. PubMed PMC
Thomas G, Jacobs KB, Kraft P, Yeager M, Wacholder S, Cox DG, Hankinson SE, Hutchinson A, Wang Z, Yu K, Chatterjee N, Garcia-Closas M, et al. A multistage genome-wide association study in breast cancer identifies two new risk alleles at 1p11.2 and 14q24.1 (RAD51L1). Nature genetics 2009;41: 579–84. PubMed PMC
Ogino S, Chan AT, Fuchs CS, Giovannucci E. Molecular pathological epidemiology of colorectal neoplasia: an emerging transdisciplinary and interdisciplinary field. Gut 2011;60: 397–411. PubMed PMC
Lu M, Sun L, Zhou J, Zhang J. Assessment of the association between hOGG1 C8069G polymorphism and colorectal cancer. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 2014;35: 2373–7. PubMed
Wang Z, Zhang W. Association between XRCC3 Thr241Met polymorphism and colorectal cancer risk. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 2013;34: 1421–9. PubMed
Liu L, Miao L, Ji G, Qiang F, Liu Z, Fan Z. Association between XRCC1 and XRCC3 polymorphisms and colorectal cancer risk: a meta-analysis of 23 case-control studies. Molecular biology reports 2013;40: 3943–52. PubMed
Peters U, Jiao S, Schumacher FR, Hutter CM, Aragaki AK, Baron JA, Berndt SI, Bezieau S, Brenner H, Butterbach K, Caan BJ, Campbell PT, et al. Identification of Genetic Susceptibility Loci for Colorectal Tumors in a Genome-Wide Meta-analysis. Gastroenterology 2013;144: 799–807 e24. PubMed PMC
Hutter CM, Chang-Claude J, Slattery ML, Pflugeisen BM, Lin Y, Duggan D, Nan H, Lemire M, Rangrej J, Figueiredo JC, Jiao S, Harrison TA, et al. Characterization of gene-environment interactions for colorectal cancer susceptibility loci. Cancer research 2012;72: 2036–44. PubMed PMC
Newcomb PA, Baron J, Cotterchio M, Gallinger S, Grove J, Haile R, Hall D, Hopper JL, Jass J, Le Marchand L, Limburg P, Lindor N, et al. Colon Cancer Family Registry: an international resource for studies of the genetic epidemiology of colon cancer. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 2007;16: 2331–43. PubMed
Zanke BW, Greenwood CM, Rangrej J, Kustra R, Tenesa A, Farrington SM, Prendergast J, Olschwang S, Chiang T, Crowdy E, Ferretti V, Laflamme P, et al. Genome-wide association scan identifies a colorectal cancer susceptibility locus on chromosome 8q24. Nature genetics 2007;39: 989–94. PubMed
Das S, Forer L, Schonherr S, Sidore C, Locke AE, Kwong A, Vrieze SI, Chew EY, Levy S, McGue M, Schlessinger D, Stambolian D, et al. Next-generation genotype imputation service and methods. Nature genetics 2016;48: 1284–7. PubMed PMC
Delaneau O, Zagury JF, Marchini J. Improved whole-chromosome phasing for disease and population genetic studies. Nature methods 2013;10: 5–6. PubMed
McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood AR, Teumer A, Kang HM, Fuchsberger C, Danecek P, Sharp K, Luo Y, Sidore C, et al. A reference panel of 64,976 haplotypes for genotype imputation. Nature genetics 2016;48: 1279–83. PubMed PMC
Castro-Conde I, de Una-Alvarez J. Adjusted p-values for SGoF multiple test procedure. Biom J 2015;57: 108–22. PubMed
Knudson AG. Hereditary predisposition to cancer. Annals of the New York Academy of Sciences 1997;833: 58–67. PubMed
Oliveira C, Westra JL, Arango D, Ollikainen M, Domingo E, Ferreira A, Velho S, Niessen R, Lagerstedt K, Alhopuro P, Laiho P, Veiga I, et al. Distinct patterns of KRAS mutations in colorectal carcinomas according to germline mismatch repair defects and hMLH1 methylation status. Human molecular genetics 2004;13: 2303–11. PubMed
Ito E, Yanagisawa Y, Iwahashi Y, Suzuki Y, Nagasaki H, Akiyama Y, Sugano S, Yuasa Y, Maruyama K. A core promoter and a frequent single-nucleotide polymorphism of the mismatch repair gene hMLH1. Biochem Bioph Res Co 1999;256: 488–94. PubMed
Goldsborough AS, Kornberg TB. Reduction of transcription by homologue asynapsis in Drosophila imaginal discs. Nature 1996;381: 807–10. PubMed
Wang T, Liu Y, Sima L, Shi L, Wang Z, Ni C, Zhang Z, Wang M. Association between MLH1 −93G>a polymorphism and risk of colorectal cancer. PLoS One 2012;7: e50449. PubMed PMC
Chen H, Shen Z, Hu Y, Xiao Q, Bei D, Shen X, Ding K. Association between MutL homolog 1 polymorphisms and the risk of colorectal cancer: a meta-analysis. Journal of cancer research and clinical oncology 2015;141: 2147–58. PubMed
Perera S, Mrkonjic M, Rawson JB, Bapat B. Functional effects of the MLH1–93G>A polymorphism on MLH1/EPM2AIP1 promoter activity. Oncology reports 2011;25: 809–15. PubMed
Nowacka-Zawisza M, Wisnik E, Wasilewski A, Skowronska M, Forma E, Brys M, Rozanski W, Krajewska WM. Polymorphisms of homologous recombination RAD51, RAD51B, XRCC2, and XRCC3 genes and the risk of prostate cancer. Anal Cell Pathol (Amst) 2015;2015: 828646. PubMed PMC
Amin Al Olama A, Dadaev T, Hazelett DJ, Li Q, Leongamornlert D, Saunders EJ, Stephens S, Cieza-Borrella C, Whitmore I, Benlloch Garcia S, Giles GG, Southey MC, et al. Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans. Human molecular genetics 2015;24: 5589–602. PubMed PMC
Orr N, Lemnrau A, Cooke R, Fletcher O, Tomczyk K, Jones M, Johnson N, Lord CJ, Mitsopoulos C, Zvelebil M, McDade SS, Buck G, et al. Genome-wide association study identifies a common variant in RAD51B associated with male breast cancer risk. Nature genetics 2012;44: 1182–4. PubMed PMC
Pelttari LM, Khan S, Vuorela M, Kiiski JI, Vilske S, Nevanlinna V, Ranta S, Schleutker J, Winqvist R, Kallioniemi A, Dork T, Bogdanova NV, et al. RAD51B in Familial Breast Cancer. PLoS One 2016;11: e0153788. PubMed PMC
Golmard L, Caux-Moncoutier V, Davy G, Al Ageeli E, Poirot B, Tirapo C, Michaux D, Barbaroux C, d’Enghien CD, Nicolas A, Castera L, Sastre-Garau X, et al. Germline mutation in the RAD51B gene confers predisposition to breast cancer. BMC Cancer 2013;13: 484. PubMed PMC
Wadt KA, Aoude LG, Golmard L, Hansen TV, Sastre-Garau X, Hayward NK, Gerdes AM. Germline RAD51B truncating mutation in a family with cutaneous melanoma. Familial cancer 2015;14: 337–40. PubMed
Schmutte C, Marinescu RC, Sadoff MM, Guerrette S, Overhauser J, Fishel R. Human exonuclease I interacts with the mismatch repair protein hMSH2. Cancer research 1998;58: 4537–42. PubMed
DNA Mismatch Repair Gene Variants in Sporadic Solid Cancers