Oxidative Damage in Sporadic Colorectal Cancer: Molecular Mapping of Base Excision Repair Glycosylases in Colorectal Cancer Patients
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
18-09709S
Grantová Agentura České Republiky
19-10543S
Grantová Agentura České Republiky
15-27580A
Ministerstvo Zdravotnictví Ceské Republiky
NV18/03/00199
Ministerstvo Zdravotnictví Ceské Republiky
UNCE/MED/006
Univerzita Karlova v Praze
Progres Q28/LF1
Univerzita Karlova v Praze
(NPU I) L01503
National Sustainability Program I
PubMed
32252452
PubMed Central
PMC7177219
DOI
10.3390/ijms21072473
PII: ijms21072473
Knihovny.cz E-zdroje
- Klíčová slova
- DNA repair, base excision repair (BER)glycosylases, colorectal cancer, oxidative DNA damage,
- MeSH
- buněčné mikroprostředí MeSH
- cílená molekulární terapie MeSH
- DNA-glykosylasy metabolismus MeSH
- kolorektální nádory etiologie metabolismus patologie terapie MeSH
- lidé MeSH
- náchylnost k nemoci * MeSH
- nádorová transformace buněk genetika metabolismus MeSH
- oprava DNA MeSH
- oxidační stres * MeSH
- poškození DNA * MeSH
- střevní sliznice metabolismus mikrobiologie patologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- DNA-glykosylasy MeSH
Oxidative stress with subsequent premutagenic oxidative DNA damage has been implicated in colorectal carcinogenesis. The repair of oxidative DNA damage is initiated by lesion-specific DNA glycosylases (hOGG1, NTH1, MUTYH). The direct evidence of the role of oxidative DNA damage and its repair is proven by hereditary syndromes (MUTYH-associated polyposis, NTHL1-associated tumor syndrome), where germline mutations cause loss-of-function in glycosylases of base excision repair, thus enabling the accumulation of oxidative DNA damage and leading to the adenoma-colorectal cancer transition. Unrepaired oxidative DNA damage often results in G:C>T:A mutations in tumor suppressor genes and proto-oncogenes and widespread occurrence of chromosomal copy-neutral loss of heterozygosity. However, the situation is more complicated in complex and heterogeneous disease, such as sporadic colorectal cancer. Here we summarized our current knowledge of the role of oxidative DNA damage and its repair on the onset, prognosis and treatment of sporadic colorectal cancer. Molecular and histological tumor heterogeneity was considered. Our study has also suggested an additional important source of oxidative DNA damage due to intestinal dysbiosis. The roles of base excision repair glycosylases (hOGG1, MUTYH) in tumor and adjacent mucosa tissues of colorectal cancer patients, particularly in the interplay with other factors (especially microenvironment), deserve further attention. Base excision repair characteristics determined in colorectal cancer tissues reflect, rather, a disease prognosis. Finally, we discuss the role of DNA repair in the treatment of colon cancer, since acquired or inherited defects in DNA repair pathways can be effectively used in therapy.
Zobrazit více v PubMed
Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J. Clin. 2018;68:394–424. doi: 10.3322/caac.21492. PubMed DOI
Brenner H., Chen C. The colorectal cancer epidemic: Challenges and opportunities for primary, secondary and tertiary prevention. Br. J. Cancer. 2018;119:785–792. doi: 10.1038/s41416-018-0264-x. PubMed DOI PMC
Murphy N., Moreno V., Hughes D.J., Vodicka L., Vodicka P., Aglago E.K., Gunter M.J., Jenab M. Lifestyle and dietary environmental factors in colorectal cancer susceptibility. Mol. Asp. Med. 2019;69:2–9. doi: 10.1016/j.mam.2019.06.005. PubMed DOI
Keum N., Giovannucci E. Global burden of colorectal cancer: Emerging trends, risk factors and prevention strategies. Nat. Rev. Gastroenterol. Hepatol. 2019;16:713–732. doi: 10.1038/s41575-019-0189-8. PubMed DOI
Huyghe J.R., Bien S.A., Harrison T.A., Kang H.M., Chen S., Schmit S.L., Conti D.V., Qu C., Jeon J., Edlund C.K., et al. Discovery of common and rare genetic risk variants for colorectal cancer. Nat. Genet. 2019;51:76–87. doi: 10.1038/s41588-018-0286-6. PubMed DOI PMC
Medina Pabon M.A., Babiker H.M. StatPearls. StatPearls Publishing LLC.; Treasure Island, FL, USA: 2019. A Review Of Hereditary Colorectal Cancers. PubMed
Pawlik T.M., Raut C.P., Rodriguez-Bigas M.A. Colorectal carcinogenesis: MSI-H versus MSI-L. Dis. Markers. 2004;20:199–206. doi: 10.1155/2004/368680. PubMed DOI PMC
Yamagishi H., Kuroda H., Imai Y., Hiraishi H. Molecular pathogenesis of sporadic colorectal cancers. Chin. J. Cancer. 2016;35:4. doi: 10.1186/s40880-015-0066-y. PubMed DOI PMC
Collins A.R., Azqueta A., Langie S.A.S. Effects of micronutrients on DNA repair. Eur. J. Nutr. 2012;51:261–279. doi: 10.1007/s00394-012-0318-4. PubMed DOI
Kompella P., Vasquez K.M. Obesity and cancer: A mechanistic overview of metabolic changes in obesity that impact genetic instability. Mol. Carcinog. 2019;58:1531–1550. doi: 10.1002/mc.23048. PubMed DOI PMC
Murphy N., Jenab M., Gunter M.J. Adiposity and gastrointestinal cancers: Epidemiology, mechanisms and future directions. Nat. Rev. Gastroenterol. Hepatol. 2018;15:659–670. doi: 10.1038/s41575-018-0038-1. PubMed DOI
Chakraborty A., Ferk F., Simić T., Brantner A., Dusinská M., Kundi M., Hoelzl C., Nersesyan A., Knasmüller S. DNA-protective effects of sumach (Rhus coriaria L.), a common spice: Results of human and animal studies. Mutat. Res. 2009;661:10–17. doi: 10.1016/j.mrfmmm.2008.10.009. PubMed DOI
Slyskova J., Lorenzo Y., Karlsen A., Carlsen M.H., Novosadova V., Blomhoff R., Vodicka P., Collins A.R. Both genetic and dietary factors underlie individual differences in DNA damage levels and DNA repair capacity. DNA Repair. 2014;16:66–73. doi: 10.1016/j.dnarep.2014.01.016. PubMed DOI
Méplan C., Hesketh J. Selenium and cancer: A story that should not be forgotten-insights from genomics. Cancer Treat. Res. 2014;159:145–166. doi: 10.1007/978-3-642-38007-5_9. PubMed DOI
Simonelli V., Mazzei F., D’Errico M., Dogliotti E. Gene susceptibility to oxidative damage: From single nucleotide polymorphisms to function. Mutat. Res. 2012;731:1–13. doi: 10.1016/j.mrfmmm.2011.10.012. PubMed DOI
Tudek B., Speina E. Oxidatively damaged DNA and its repair in colon carcinogenesis. Mutat. Res. 2012;736:82–92. doi: 10.1016/j.mrfmmm.2012.04.003. PubMed DOI
Guo C., Ding P., Xie C., Ye C., Ye M., Pan C., Cao X., Zhang S., Zheng S. Potential application of the oxidative nucleic acid damage biomarkers in detection of diseases. Oncotarget. 2017;8:75767–75777. doi: 10.18632/oncotarget.20801. PubMed DOI PMC
Hanahan D., Weinberg R.A. Hallmarks of cancer: The next generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013. PubMed DOI
Pearl L.H., Schierz A.C., Ward S.E., Al-Lazikani B., Pearl F.M. Therapeutic opportunities within the DNA damage response. Nat. Rev. Cancer. 2015;15:166–180. doi: 10.1038/nrc3891. PubMed DOI
Carethers J.M., Jung B.H. Genetics and Genetic Biomarkers in Sporadic Colorectal Cancer. Gastroenterology. 2015;149:1177–1190.e1173. doi: 10.1053/j.gastro.2015.06.047. PubMed DOI PMC
Grady W.M., Markowitz S.D. The molecular pathogenesis of colorectal cancer and its potential application to colorectal cancer screening. Dig. Dis. Sci. 2015;60:762–772. doi: 10.1007/s10620-014-3444-4. PubMed DOI PMC
Nielsen F.C., van Overeem Hansen T., Sørensen C.S. Hereditary breast and ovarian cancer: New genes in confined pathways. Nat. Rev. Cancer. 2016;16:599–612. doi: 10.1038/nrc.2016.72. PubMed DOI
Hernández G., Ramírez M.J., Minguillón J., Quiles P., Ruiz de Garibay G., Aza-Carmona M., Bogliolo M., Pujol R., Prados-Carvajal R., Fernández J., et al. Decapping protein EDC4 regulates DNA repair and phenocopies BRCA1. Nat. Commun. 2018;9:967. doi: 10.1038/s41467-018-03433-3. PubMed DOI PMC
Song H., Dicks E., Ramus S.J., Tyrer J.P., Intermaggio M.P., Hayward J., Edlund C.K., Conti D., Harrington P., Fraser L., et al. Contribution of Germline Mutations in the RAD51B, RAD51C, and RAD51D Genes to Ovarian Cancer in the Population. J. Clin. Oncol. 2015;33:2901–2907. doi: 10.1200/JCO.2015.61.2408. PubMed DOI PMC
Niskakoski A., Pasanen A., Lassus H., Renkonen-Sinisalo L., Kaur S., Mecklin J.-P., Bützow R., Peltomäki P. Molecular changes preceding endometrial and ovarian cancer: A study of consecutive endometrial specimens from Lynch syndrome surveillance. Mod. Pathol. 2018;31:1291–1301. doi: 10.1038/s41379-018-0044-4. PubMed DOI
Markowitz S.D., Bertagnolli M.M. Molecular origins of cancer: Molecular basis of colorectal cancer. N. Engl. J. Med. 2009;361:2449–2460. doi: 10.1056/NEJMra0804588. PubMed DOI PMC
Bardaweel S.K., Gul M., Alzweiri M., Ishaqat A., HA A.L., Bashatwah R.M. Reactive Oxygen Species: The Dual Role in Physiological and Pathological Conditions of the Human Body. Eurasian J. Med. 2018;50:193–201. doi: 10.5152/eurasianjmed.2018.17397. PubMed DOI PMC
Schieber M., Chandel N.S. ROS function in redox signaling and oxidative stress. Curr. Biol. 2014;24:R453–R462. doi: 10.1016/j.cub.2014.03.034. PubMed DOI PMC
Manini P., De Palma G., Andreoli R., Marczynski B., Hanova M., Mozzoni P., Naccarati A., Vodickova L., Hlavac P., Mutti A., et al. Biomarkers of nucleic acid oxidation, polymorphism in, and expression of, hOGG1 gene in styrene-exposed workers. Toxicol. Lett. 2009;190:41–47. doi: 10.1016/j.toxlet.2009.06.862. PubMed DOI
Naccarati A., Pardini B., Hemminki K., Vodicka P. Sporadic colorectal cancer and individual susceptibility: A review of the association studies investigating the role of DNA repair genetic polymorphisms. Mutat. Res. 2007;635:118–145. doi: 10.1016/j.mrrev.2007.02.001. PubMed DOI
Vodicka P., Kumar R., Stetina R., Sanyal S., Soucek P., Haufroid V., Dusinska M., Kuricova M., Zamecnikova M., Musak L., et al. Genetic polymorphisms in DNA repair genes and possible links with DNA repair rates, chromosomal aberrations and single-strand breaks in DNA. Carcinogenesis. 2004;25:757–763. doi: 10.1093/carcin/bgh064. PubMed DOI
Ohno M., Sakumi K., Fukumura R., Furuichi M., Iwasaki Y., Hokama M., Ikemura T., Tsuzuki T., Gondo Y., Nakabeppu Y. 8-oxoguanine causes spontaneous de novo germline mutations in mice. Sci. Rep. 2014;4:4689. doi: 10.1038/srep04689. PubMed DOI PMC
Dizdaroglu M. Oxidatively induced DNA damage and its repair in cancer. Mutat. Res. Rev. Mutat. Res. 2015;763:212–245. doi: 10.1016/j.mrrev.2014.11.002. PubMed DOI
Roos W.P., Thomas A.D., Kaina B. DNA damage and the balance between survival and death in cancer biology. Nat. Rev. Cancer. 2016;16:20–33. doi: 10.1038/nrc.2015.2. PubMed DOI
Curtin N.J. DNA repair dysregulation from cancer driver to therapeutic target. Nat. Rev. Cancer. 2012;12:801–817. doi: 10.1038/nrc3399. PubMed DOI
Knijnenburg T.A., Wang L., Zimmermann M.T., Chambwe N., Gao G.F., Cherniack A.D., Fan H., Shen H., Way G.P., Greene C.S., et al. Genomic and Molecular Landscape of DNA Damage Repair Deficiency across The Cancer Genome Atlas. Cell Rep. 2018;23:239–254.e6. doi: 10.1016/j.celrep.2018.03.076. PubMed DOI PMC
Wallace S.S. DNA glycosylases search for and remove oxidized DNA bases. Environ. Mol. Mutagenesis. 2013;54:691–704. doi: 10.1002/em.21820. PubMed DOI PMC
Vodicka P., Vodenkova S., Opattova A., Vodickova L. DNA damage and repair measured by comet assay in cancer patients. Mutat. Res. 2019;843:95–110. doi: 10.1016/j.mrgentox.2019.05.009. PubMed DOI
Radom M., Machnicka M.A., Krwawicz J., Bujnicki J.M., Formanowicz P. Petri net-based model of the human DNA base excision repair pathway. PLoS ONE. 2019;14:e0217913. doi: 10.1371/journal.pone.0217913. PubMed DOI PMC
Köger N., Brieger A., Hinrichsen I.M., Zeuzem S., Plotz G. Analysis of MUTYH alternative transcript expression, promoter function, and the effect of human genetic variants. Hum. Mutat. 2019;40:472–482. doi: 10.1002/humu.23709. PubMed DOI
Wang R., Hao W., Pan L., Boldogh I., Ba X. The roles of base excision repair enzyme OGG1 in gene expression. Cell. Mol. Life Sci. 2018;75:3741–3750. doi: 10.1007/s00018-018-2887-8. PubMed DOI PMC
Leitner-Dagan Y., Sevilya Z., Pinchev M., Kramer R., Elinger D., Roisman L.C., Rennert H.S., Schechtman E., Freedman L., Rennert G., et al. N-methylpurine DNA glycosylase and OGG1 DNA repair activities: Opposite associations with lung cancer risk. J. Natl. Cancer Inst. 2012;104:1765–1769. doi: 10.1093/jnci/djs445. PubMed DOI PMC
Sjolund A.B., Senejani A.G., Sweasy J.B. MBD4 and TDG: Multifaceted DNA glycosylases with ever expanding biological roles. Mutat. Res. 2013;743–744:12–25. doi: 10.1016/j.mrfmmm.2012.11.001. PubMed DOI PMC
Nagaria P., Svilar D., Brown A.R., Wang X.-h., Sobol R.W., Wyatt M.D. SMUG1 but not UNG DNA glycosylase contributes to the cellular response to recovery from 5-fluorouracil induced replication stress. Mutat. Res. 2013;743–744:26–32. doi: 10.1016/j.mrfmmm.2012.12.001. PubMed DOI PMC
Alexeeva M., Moen M.N., Grøsvik K., Tesfahun A.N., Xu X.M., Muruzábal-Lecumberri I., Olsen K.M., Rasmussen A., Ruoff P., Kirpekar F., et al. Excision of uracil from DNA by hSMUG1 includes strand incision and processing. Nucleic Acids Res. 2019;47:779–793. doi: 10.1093/nar/gky1184. PubMed DOI PMC
Shinmura K., Kato H., Kawanishi Y., Goto M., Tao H., Yoshimura K., Nakamura S., Misawa K., Sugimura H. Defective repair capacity of variant proteins of the DNA glycosylase NTHL1 for 5-hydroxyuracil, an oxidation product of cytosine. Free Radic. Biol. Med. 2019;131:264–273. doi: 10.1016/j.freeradbiomed.2018.12.010. PubMed DOI
Slyvka A., Mierzejewska K., Bochtler M. Nei-like 1 (NEIL1) excises 5-carboxylcytosine directly and stimulates TDG-mediated 5-formyl and 5-carboxylcytosine excision. Sci. Rep. 2017;7:9001. doi: 10.1038/s41598-017-07458-4. PubMed DOI PMC
Sarker A.H., Chatterjee A., Williams M., Lin S., Havel C., Jacob P., 3rd, Boldogh I., Hazra T.K., Talbot P., Hang B. NEIL2 protects against oxidative DNA damage induced by sidestream smoke in human cells. PLoS ONE. 2014;9:e90261. doi: 10.1371/journal.pone.0090261. PubMed DOI PMC
Han D., Schomacher L., Schüle K.M., Mallick M., Musheev M.U., Karaulanov E., Krebs L., von Seggern A., Niehrs C. NEIL1 and NEIL2 DNA glycosylases protect neural crest development against mitochondrial oxidative stress. Elife. 2019;8:e49044. doi: 10.7554/eLife.49044. PubMed DOI PMC
Minko I.G., Christov P.P., Li L., Stone M.P., McCullough A.K., Lloyd R.S. Processing of N(5)-substituted formamidopyrimidine DNA adducts by DNA glycosylases NEIL1 and NEIL3. DNA Repair. 2019;73:49–54. doi: 10.1016/j.dnarep.2018.11.001. PubMed DOI PMC
Massaad M.J., Zhou J., Tsuchimoto D., Chou J., Jabara H., Janssen E., Glauzy S., Olson B.G., Morbach H., Ohsumi T.K., et al. Deficiency of base excision repair enzyme NEIL3 drives increased predisposition to autoimmunity. J. Clin. Investig. 2016;126:4219–4236. doi: 10.1172/JCI85647. PubMed DOI PMC
Da L.-T., Shi Y., Ning G., Yu J. Dynamics of the excised base release in thymine DNA glycosylase during DNA repair process. Nucleic Acids Res. 2018;46:568–581. doi: 10.1093/nar/gkx1261. PubMed DOI PMC
Fu T., Liu L., Yang Q.-L., Wang Y., Xu P., Zhang L., Liu S., Dai Q., Ji Q., Xu G.-L., et al. Thymine DNA glycosylase recognizes the geometry alteration of minor grooves induced by 5-formylcytosine and 5-carboxylcytosine. Chem. Sci. 2019;10:7407–7417. doi: 10.1039/C9SC02807B. PubMed DOI PMC
Weiser B.P., Rodriguez G., Cole P.A., Stivers J.T. N-terminal domain of human uracil DNA glycosylase (hUNG2) promotes targeting to uracil sites adjacent to ssDNA-dsDNA junctions. Nucleic Acids Res. 2018;46:7169–7178. doi: 10.1093/nar/gky525. PubMed DOI PMC
Bai H., Grist S., Gardner J., Suthers G., Wilson T.M., Lu A.L. Functional characterization of human MutY homolog (hMYH) missense mutation (R231L) that is linked with hMYH-associated polyposis. Cancer Lett. 2007;250:74–81. doi: 10.1016/j.canlet.2006.09.016. PubMed DOI PMC
Schubert S.A., Morreau H., de Miranda N.F.C.C., van Wezel T. The missing heritability of familial colorectal cancer. Mutagenesis. 2019 doi: 10.1093/mutage/gez027. PubMed DOI PMC
Krokan H.E., Bjørås M. Base excision repair. Cold Spring Harb. Perspect. Biol. 2013;5:a012583. doi: 10.1101/cshperspect.a012583. PubMed DOI PMC
Hazra T.K., Izumi T., Kow Y.W., Mitra S. The discovery of a new family of mammalian enzymes for repair of oxidatively damaged DNA, and its physiological implications. Carcinogenesis. 2003;24:155–157. doi: 10.1093/carcin/24.2.155. PubMed DOI
Sakumi K., Furuichi M., Tsuzuki T., Kakuma T., Kawabata S., Maki H., Sekiguchi M. Cloning and expression of cDNA for a human enzyme that hydrolyzes 8-oxo-dGTP, a mutagenic substrate for DNA synthesis. J. Biol. Chem. 1993;268:23524–23530. PubMed
El-Khamisy S.F., Masutani M., Suzuki H., Caldecott K.W. A requirement for PARP-1 for the assembly or stability of XRCC1 nuclear foci at sites of oxidative DNA damage. Nucleic Acids Res. 2003;31:5526–5533. doi: 10.1093/nar/gkg761. PubMed DOI PMC
Takao M., Kanno S.-I., Kobayashi K., Zhang Q.-M., Yonei S., van der Horst G.T.J., Yasui A. A back-up glycosylase in Nth1 knock-out mice is a functional Nei (endonuclease VIII) homologue. J. Biol. Chem. 2002;277:42205–42213. doi: 10.1074/jbc.M206884200. PubMed DOI
Galick H.A., Kathe S., Liu M., Robey-Bond S., Kidane D., Wallace S.S., Sweasy J.B. Germ-line variant of human NTH1 DNA glycosylase induces genomic instability and cellular transformation. Proc. Natl. Acad. Sci. USA. 2013;110:14314–14319. doi: 10.1073/pnas.1306752110. PubMed DOI PMC
Gad H., Koolmeister T., Jemth A.-S., Eshtad S., Jacques S.A., Ström C.E., Svensson L.M., Schultz N., Lundbäck T., Einarsdottir B.O., et al. MTH1 inhibition eradicates cancer by preventing sanitation of the dNTP pool. Nature. 2014;508:215–221. doi: 10.1038/nature13181. PubMed DOI
Rai P., Sobol R.W. Mechanisms of MTH1 inhibition-induced DNA strand breaks: The slippery slope from the oxidized nucleotide pool to genotoxic damage. DNA Repair. 2019;77:18–26. doi: 10.1016/j.dnarep.2019.03.001. PubMed DOI PMC
Ahmed W., Lingner J. PRDX1 and MTH1 cooperate to prevent ROS-mediated inhibition of telomerase. Genes Dev. 2018;32:658–669. doi: 10.1101/gad.313460.118. PubMed DOI PMC
Ellenberger T., Tomkinson A.E. Eukaryotic DNA ligases: Structural and functional insights. Annu. Rev. Biochem. 2008;77:313–338. doi: 10.1146/annurev.biochem.77.061306.123941. PubMed DOI PMC
Sun D., Urrabaz R., Nguyen M., Marty J., Stringer S., Cruz E., Medina-Gundrum L., Weitman S. Elevated expression of DNA ligase I in human cancers. Clin. Cancer Res. 2001;7:4143–4148. PubMed
Saquib M., Ansari M.I., Johnson C.R., Khatoon S., Kamil Hussain M., Coop A. Recent advances in the targeting of human DNA ligase I as a potential new strategy for cancer treatment. Eur. J. Med. Chem. 2019;182:111657. doi: 10.1016/j.ejmech.2019.111657. PubMed DOI
McNally J.R., O’Brien P.J. Kinetic analyses of single-stranded break repair by human DNA ligase III isoforms reveal biochemical differences from DNA ligase I. J. Biol. Chem. 2017;292:15870–15879. doi: 10.1074/jbc.M117.804625. PubMed DOI PMC
Adachi S., Takemoto K., Hirosue T., Hosogai Y. Spontaneous and 2-nitropropane induced levels of 8-hydroxy-2′-deoxyguanosine in liver DNA of rats fed iron-deficient or manganese- and copper-deficient diets. Carcinogenesis. 1993;14:265–268. doi: 10.1093/carcin/14.2.265. PubMed DOI
Kasai H., Crain P.F., Kuchino Y., Nishimura S., Ootsuyama A., Tanooka H. Formation of 8-hydroxyguanine moiety in cellular DNA by agents producing oxygen radicals and evidence for its repair. Carcinogenesis. 1986;7:1849–1851. doi: 10.1093/carcin/7.11.1849. PubMed DOI
Wood M.L., Dizdaroglu M., Gajewski E., Essigmann J.M. Mechanistic studies of ionizing radiation and oxidative mutagenesis: Genetic effects of a single 8-hydroxyguanine (7-hydro-8-oxoguanine) residue inserted at a unique site in a viral genome. Biochemistry. 1990;29:7024–7032. doi: 10.1021/bi00482a011. PubMed DOI
Olinski R., Gackowski D., Foksinski M., Rozalski R., Roszkowski K., Jaruga P. Oxidative DNA damage: Assessment of the role in carcinogenesis, atherosclerosis, and acquired immunodeficiency syndrome. Free Radic. Biol. Med. 2002;33:192–200. doi: 10.1016/S0891-5849(02)00878-X. PubMed DOI
Robertson A.B., Klungland A., Rognes T., Leiros I. DNA repair in mammalian cells: Base excision repair: The long and short of it. Cell Mol. Life Sci. 2009;66:981–993. doi: 10.1007/s00018-009-8736-z. PubMed DOI PMC
Russo M.T., De Luca G., Degan P., Parlanti E., Dogliotti E., Barnes D.E., Lindahl T., Yang H., Miller J.H., Bignami M. Accumulation of the oxidative base lesion 8-hydroxyguanine in DNA of tumor-prone mice defective in both the Myh and Ogg1 DNA glycosylases. Cancer Res. 2004;64:4411–4414. doi: 10.1158/0008-5472.CAN-04-0355. PubMed DOI
Pilati C., Shinde J., Alexandrov L.B., Assié G., André T., Hélias-Rodzewicz Z., Ducoudray R., Le Corre D., Zucman-Rossi J., Emile J.-F., et al. Mutational signature analysis identifies MUTYH deficiency in colorectal cancers and adrenocortical carcinomas. J. Pathol. 2017;242:10–15. doi: 10.1002/path.4880. PubMed DOI
Weren R.D.A., Ligtenberg M.J., Geurts van Kessel A., De Voer R.M., Hoogerbrugge N., Kuiper R.P. NTHL1 and MUTYH polyposis syndromes: Two sides of the same coin? J. Pathol. 2018;244:135–142. doi: 10.1002/path.5002. PubMed DOI
Nascimento E.F.R., Ribeiro M.L., Magro D.O., Carvalho J., Kanno D.T., Martinez C.A.R., Coy C.S.R. tissue expresion of the genes mutyh and ogg1 in patients with sporadic colorectal cancer. Arq. Bras. Cir. Dig. 2017;30:98–102. doi: 10.1590/0102-6720201700020005. PubMed DOI PMC
Vodenkova S., Jiraskova K., Urbanova M., Kroupa M., Slyskova J., Schneiderova M., Levy M., Buchler T., Liska V., Vodickova L., et al. Base excision repair capacity as a determinant of prognosis and therapy response in colon cancer patients. DNA Repair. 2018;72:77–85. doi: 10.1016/j.dnarep.2018.09.006. PubMed DOI
Koketsu S., Watanabe T., Nagawa H. Expression of DNA repair protein: MYH, NTH1, and MTH1 in colorectal cancer. Hepatogastroenterology. 2004;51:638–642. PubMed
Zhang X., Song W., Zhou Y., Mao F., Lin Y., Guan J., Sun Q. Expression and function of MutT homolog 1 in distinct subtypes of breast cancer. Oncol. Lett. 2017;13:2161–2168. doi: 10.3892/ol.2017.5726. PubMed DOI PMC
Furlan D., Trapani D., Berrino E., Debernardi C., Panero M., Libera L., Sahnane N., Riva C., Tibiletti M.G., Sessa F., et al. Oxidative DNA damage induces hypomethylation in a compromised base excision repair colorectal tumourigenesis. Br. J. Cancer. 2017;116:793–801. doi: 10.1038/bjc.2017.9. PubMed DOI PMC
Farkas S.A., Vymetalkova V., Vodickova L., Vodicka P., Nilsson T.K. DNA methylation changes in genes frequently mutated in sporadic colorectal cancer and in the DNA repair and Wnt/beta-catenin signaling pathway genes. Epigenomics. 2014;6:179–191. doi: 10.2217/epi.14.7. PubMed DOI
Cooke M.S., Evans M.D., Dizdaroglu M., Lunec J. Oxidative DNA damage: Mechanisms, mutation, and disease. FASEB J. 2003;17:1195–1214. doi: 10.1096/fj.02-0752rev. PubMed DOI
Przybylowska K., Kabzinski J., Sygut A., Dziki L., Dziki A., Majsterek I. An association selected polymorphisms of XRCC1, OGG1 and MUTYH gene and the level of efficiency oxidative DNA damage repair with a risk of colorectal cancer. Mutat. Res. 2013;745–746:6–15. doi: 10.1016/j.mrfmmm.2013.04.002. PubMed DOI
Slyskova J., Korenkova V., Collins A.R., Prochazka P., Vodickova L., Svec J., Lipska L., Levy M., Schneiderova M., Liska V., et al. Functional, genetic, and epigenetic aspects of base and nucleotide excision repair in colorectal carcinomas. Clin. Cancer Res. 2012;18:5878–5887. doi: 10.1158/1078-0432.CCR-12-1380. PubMed DOI
Lerner L.K., Moreno N.C., Rocha C.R.R., Munford V., Santos V., Soltys D.T., Garcia C.C.M., Sarasin A., Menck C.F.M. XPD/ERCC2 mutations interfere in cellular responses to oxidative stress. Mutagenesis. 2019;34:341–354. doi: 10.1093/mutage/gez020. PubMed DOI
Melis J.P.M., van Steeg H., Luijten M. Oxidative DNA damage and nucleotide excision repair. Antioxid. Redox Signal. 2013;18:2409–2419. doi: 10.1089/ars.2012.5036. PubMed DOI PMC
Lee T.-H., Kang T.-H. DNA Oxidation and Excision Repair Pathways. Int. J. Mol. Sci. 2019;20:6092. doi: 10.3390/ijms20236092. PubMed DOI PMC
He J., Shi T.-Y., Zhu M.-L., Wang M.-Y., Li Q.-X., Wei Q.-Y. Associations of Lys939Gln and Ala499Val polymorphisms of the XPC gene with cancer susceptibility: A meta-analysis. Int. J. Cancer. 2013;133:1765–1775. doi: 10.1002/ijc.28089. PubMed DOI
Slyskova J., Naccarati A., Pardini B., Polakova V., Vodickova L., Smerhovsky Z., Levy M., Lipska L., Liska V., Vodicka P. Differences in nucleotide excision repair capacity between newly diagnosed colorectal cancer patients and healthy controls. Mutagenesis. 2012;27:225–232. doi: 10.1093/mutage/ger088. PubMed DOI
Vodicka P., Stetina R., Polakova V., Tulupova E., Naccarati A., Vodickova L., Kumar R., Hanova M., Pardini B., Slyskova J., et al. Association of DNA repair polymorphisms with DNA repair functional outcomes in healthy human subjects. Carcinogenesis. 2007;28:657–664. doi: 10.1093/carcin/bgl187. PubMed DOI
Lai C.-Y., Hsieh L.-L., Tang R., Santella R.M., Chang-Chieh C.R., Yeh C.-C. Association between polymorphisms of APE1 and OGG1 and risk of colorectal cancer in Taiwan. World J. Gastroenterol. 2016;22:3372–3380. doi: 10.3748/wjg.v22.i12.3372. PubMed DOI PMC
Pardini B., Naccarati A., Novotny J., Smerhovsky Z., Vodickova L., Polakova V., Hanova M., Slyskova J., Tulupova E., Kumar R., et al. DNA repair genetic polymorphisms and risk of colorectal cancer in the Czech Republic. Mutat. Res. 2008;638:146–153. doi: 10.1016/j.mrfmmm.2007.09.008. PubMed DOI
Guo C.-L., Han F.-F., Wang H.-Y., Wang L. Meta-analysis of the association between hOGG1 Ser326Cys polymorphism and risk of colorectal cancer based on case--control studies. J. Cancer Res. Clin. Oncol. 2012;138:1443–1448. doi: 10.1007/s00432-012-1197-z. PubMed DOI PMC
Kinnersley B., Buch S., Castellví-Bel S., Farrington S.M., Forsti A., Hampe J., Hemminki K., Hofstra R.M.W., Northwood E., Palles C., et al. Re: Role of the oxidative DNA damage repair gene OGG1 in colorectal tumorigenesis. J. Natl. Cancer Inst. 2014;106:dju086. doi: 10.1093/jnci/dju086. PubMed DOI PMC
Zhang Y., He B.-S., Pan Y.-Q., Xu Y.-Q., Wang S.-K. Association of OGG1 Ser326Cys polymorphism with colorectal cancer risk: A meta-analysis. Int. J. Colorectal Dis. 2011;26:1525–1530. doi: 10.1007/s00384-011-1258-9. PubMed DOI
Pardini B., Rosa F., Barone E., Di Gaetano C., Slyskova J., Novotny J., Levy M., Garritano S., Vodickova L., Buchler T., et al. Variation within 3′-UTRs of base excision repair genes and response to therapy in colorectal cancer patients: A potential modulation of microRNAs binding. Clin. Cancer Res. 2013;19:6044–6056. doi: 10.1158/1078-0432.CCR-13-0314. PubMed DOI
Jiraskova K., Hughes D.J., Brezina S., Gumpenberger T., Veskrnova V., Buchler T., Schneiderova M., Levy M., Liska V., Vodenkova S., et al. Functional Polymorphisms in DNA Repair Genes Are Associated with Sporadic Colorectal Cancer Susceptibility and Clinical Outcome. Int. J. Mol. Sci. 2018;20:97. doi: 10.3390/ijms20010097. PubMed DOI PMC
Picelli S., Lorenzo Bermejo J., Chang-Claude J., Hoffmeister M., Fernández-Rozadilla C., Carracedo A., Castells A., Castellví-Bel S., The EPICOLON Consortium Members of the EPICOLON Consortium. Naccarati A., et al. Meta-analysis of mismatch repair polymorphisms within the cogent consortium for colorectal cancer susceptibility. PLoS ONE. 2013;8:e72091. doi: 10.1371/journal.pone.0072091. PubMed DOI PMC
Tlaskalová-Hogenová H., Stěpánková R., Kozáková H., Hudcovic T., Vannucci L., Tučková L., Rossmann P., Hrnčíř T., Kverka M., Zákostelská Z., et al. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: Contribution of germ-free and gnotobiotic animal models of human diseases. Cell. Mol. Immunol. 2011;8:110–120. doi: 10.1038/cmi.2010.67. PubMed DOI PMC
Bajer L., Kverka M., Kostovcik M., Macinga P., Dvorak J., Stehlikova Z., Brezina J., Wohl P., Spicak J., Drastich P. Distinct gut microbiota profiles in patients with primary sclerosing cholangitis and ulcerative colitis. World J. Gastroenterol. 2017;23:4548–4558. doi: 10.3748/wjg.v23.i25.4548. PubMed DOI PMC
Flemer B., Lynch D.B., Brown J.M.R., Jeffery I.B., Ryan F.J., Claesson M.J., O’Riordain M., Shanahan F., O’Toole P.W. Tumour-associated and non-tumour-associated microbiota in colorectal cancer. Gut. 2017;66:633–643. doi: 10.1136/gutjnl-2015-309595. PubMed DOI PMC
Park H.E., Kim J.H., Cho N.-Y., Lee H.S., Kang G.H. Intratumoral Fusobacterium nucleatum abundance correlates with macrophage infiltration and CDKN2A methylation in microsatellite-unstable colorectal carcinoma. Virchows Arch. 2017;471:329–336. doi: 10.1007/s00428-017-2171-6. PubMed DOI
Arthur J.C., Perez-Chanona E., Mühlbauer M., Tomkovich S., Uronis J.M., Fan T.-J., Campbell B.J., Abujamel T., Dogan B., Rogers A.B., et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science. 2012;338:120–123. doi: 10.1126/science.1224820. PubMed DOI PMC
Klimesova K., Jiraskova Zakostelska Z., Tlaskalova-Hogenova H. Oral Bacterial and Fungal Microbiome Impacts Colorectal Carcinogenesis. Front. Microbiol. 2018;9:774. doi: 10.3389/fmicb.2018.00774. PubMed DOI PMC
Gagnière J., Raisch J., Veziant J., Barnich N., Bonnet R., Buc E., Bringer M.-A., Pezet D., Bonnet M. Gut microbiota imbalance and colorectal cancer. World J. Gastroenterol. 2016;22:501–518. doi: 10.3748/wjg.v22.i2.501. PubMed DOI PMC
Wilson M.R., Jiang Y., Villalta P.W., Stornetta A., Boudreau P.D., Carrá A., Brennan C.A., Chun E., Ngo L., Samson L.D., et al. The human gut bacterial genotoxin colibactin alkylates DNA. Science. 2019;363:eaar7785. doi: 10.1126/science.aar7785. PubMed DOI PMC
Panieri E., Santoro M.M. ROS homeostasis and metabolism: A dangerous liason in cancer cells. Cell Death Dis. 2016;7:e2253. doi: 10.1038/cddis.2016.105. PubMed DOI PMC
Hsu C.W., Sowers M.L., Hsu W., Eyzaguirre E., Qiu S., Chao C., Mouton C.P., Fofanov Y., Singh P., Sowers L.C. How does inflammation drive mutagenesis in colorectal cancer? Trends Cancer Res. 2017;12:111–132. PubMed PMC
Shalapour S., Karin M. Pas de Deux: Control of Anti-tumor Immunity by Cancer-Associated Inflammation. Immunity. 2019;51:15–26. doi: 10.1016/j.immuni.2019.06.021. PubMed DOI PMC
De Barrios O., Sanchez-Moral L., Cortés M., Ninfali C., Profitós-Pelejà N., Martínez-Campanario M.C., Siles L., Del Campo R., Fernández-Aceñero M.J., Darling D.S., et al. ZEB1 promotes inflammation and progression towards inflammation-driven carcinoma through repression of the DNA repair glycosylase MPG in epithelial cells. Gut. 2019;68:2129–2141. doi: 10.1136/gutjnl-2018-317294. PubMed DOI
Weng M.T., Chiu Y.T., Wei P.Y., Chiang C.W., Fang H.L., Wei S.C. Microbiota and gastrointestinal cancer. J. Formos. Med. Assoc. 2019;118(Suppl. 1):S32–S41. doi: 10.1016/j.jfma.2019.01.002. PubMed DOI
Møller P., Loft S. Dietary antioxidants and beneficial effect on oxidatively damaged DNA. Free Radic. Biol. Med. 2006;41:388–415. doi: 10.1016/j.freeradbiomed.2006.04.001. PubMed DOI
Hoelzl C., Knasmüller S., Misík M., Collins A., Dusinská M., Nersesyan A. Use of single cell gel electrophoresis assays for the detection of DNA-protective effects of dietary factors in humans: Recent results and trends. Mutat. Res. 2009;681:68–79. doi: 10.1016/j.mrrev.2008.07.004. PubMed DOI
Yamamoto N., Shoji M., Hoshigami H., Watanabe K., Watanabe K., Takatsuzu T., Yasuda S., Igoshi K., Kinoshita H. Antioxidant capacity of soymilk yogurt and exopolysaccharides produced by lactic acid bacteria. Biosci. Microbiota Food Health. 2019;38:97–104. doi: 10.12938/bmfh.18-017. PubMed DOI PMC
Rejhová A., Opattová A., Čumová A., Slíva D., Vodička P. Natural compounds and combination therapy in colorectal cancer treatment. Eur. J. Med. Chem. 2018;144:582–594. doi: 10.1016/j.ejmech.2017.12.039. PubMed DOI
Claesson M.J., Jeffery I.B., Conde S., Power S.E., O’Connor E.M., Cusack S., Harris H.M.B., Coakley M., Lakshminarayanan B., O’Sullivan O., et al. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488:178–184. doi: 10.1038/nature11319. PubMed DOI
Zoetendal E.G., de Vos W.M. Effect of diet on the intestinal microbiota and its activity. Curr. Opin. Gastroenterol. 2014;30:189–195. doi: 10.1097/MOG.0000000000000048. PubMed DOI
Kau A.L., Ahern P.P., Griffin N.W., Goodman A.L., Gordon J.I. Human nutrition, the gut microbiome and the immune system. Nature. 2011;474:327–336. doi: 10.1038/nature10213. PubMed DOI PMC
David L.A., Maurice C.F., Carmody R.N., Gootenberg D.B., Button J.E., Wolfe B.E., Ling A.V., Devlin A.S., Varma Y., Fischbach M.A., et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–563. doi: 10.1038/nature12820. PubMed DOI PMC
De Filippo C., Cavalieri D., Di Paola M., Ramazzotti M., Poullet J.B., Massart S., Collini S., Pieraccini G., Lionetti P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. USA. 2010;107:14691–14696. doi: 10.1073/pnas.1005963107. PubMed DOI PMC
Vodenkova S., Buchler T., Cervena K., Veskrnova V., Vodicka P., Vymetalkova V. 5-fluorouracil and other fluoropyrimidines in colorectal cancer: Past, present and future. Pharmacol. Ther. 2019 doi: 10.1016/j.pharmthera.2019.107447. PubMed DOI
Gustavsson B., Carlsson G., Machover D., Petrelli N., Roth A., Schmoll H.-J., Tveit K.-M., Gibson F. A review of the evolution of systemic chemotherapy in the management of colorectal cancer. Clin. Colorectal. Cancer. 2015;14:1–10. doi: 10.1016/j.clcc.2014.11.002. PubMed DOI
Slyskova J., Cordero F., Pardini B., Korenkova V., Vymetalkova V., Bielik L., Vodickova L., Pitule P., Liska V., Matejka V.M., et al. Post-treatment recovery of suboptimal DNA repair capacity and gene expression levels in colorectal cancer patients. Mol. Carcinog. 2015;54:769–778. doi: 10.1002/mc.22141. PubMed DOI
Wyatt M.D., Wilson D.M., 3rd Participation of DNA repair in the response to 5-fluorouracil. Cell. Mol. Life Sci. 2009;66:788–799. doi: 10.1007/s00018-008-8557-5. PubMed DOI PMC
Gorrini C., Harris I.S., Mak T.W. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov. 2013;12:931–947. doi: 10.1038/nrd4002. PubMed DOI
Chen W., Lian W., Yuan Y., Li M. The synergistic effects of oxaliplatin and piperlongumine on colorectal cancer are mediated by oxidative stress. Cell Death Dis. 2019;10:600. doi: 10.1038/s41419-019-1824-6. PubMed DOI PMC
Kumar S., Agnihotri N. Piperlongumine, a piper alkaloid targets Ras/PI3K/Akt/mTOR signaling axis to inhibit tumor cell growth and proliferation in DMH/DSS induced experimental colon cancer. Biomed. Pharmacother. 2019;109:1462–1477. doi: 10.1016/j.biopha.2018.10.182. PubMed DOI
Opattova A., Horak J., Vodenkova S., Kostovcikova K., Cumova A., Macinga P., Galanova N., Rejhova A., Vodickova L., Kozics K., et al. Ganoderma Lucidum induces oxidative DNA damage and enhances the effect of 5-Fluorouracil in colorectal cancer in vitro and in vivo. Mutat. Res. 2019;845:403065. doi: 10.1016/j.mrgentox.2019.06.001. PubMed DOI
Liu W., Gu J., Qi J., Zeng X.-N., Ji J., Chen Z.-Z., Sun X.-L. Lentinan exerts synergistic apoptotic effects with paclitaxel in A549 cells via activating ROS-TXNIP-NLRP3 inflammasome. J. Cell Mol. Med. 2015;19:1949–1955. doi: 10.1111/jcmm.12570. PubMed DOI PMC
Morano F., Corallo S., Niger M., Barault L., Milione M., Berenato R., Moretto R., Randon G., Antista M., Belfiore A., et al. Temozolomide and irinotecan (TEMIRI regimen) as salvage treatment of irinotecan-sensitive advanced colorectal cancer patients bearing MGMT methylation. Ann. Oncol. 2018;29:1800–1806. doi: 10.1093/annonc/mdy197. PubMed DOI
Jaiswal A.S., Banerjee S., Aneja R., Sarkar F.H., Ostrov D.A., Narayan S. DNA polymerase β as a novel target for chemotherapeutic intervention of colorectal cancer. PLoS ONE. 2011;6:e16691. doi: 10.1371/journal.pone.0016691. PubMed DOI PMC
Fujishita T., Okamoto T., Akamine T., Takamori S., Takada K., Katsura M., Toyokawa G., Shoji F., Shimokawa M., Oda Y., et al. Association of MTH1 expression with the tumor malignant potential and poor prognosis in patients with resected lung cancer. Lung Cancer. 2017;109:52–57. doi: 10.1016/j.lungcan.2017.04.012. PubMed DOI
Akiyama S., Saeki H., Nakashima Y., Iimori M., Kitao H., Oki E., Oda Y., Nakabeppu Y., Kakeji Y., Maehara Y. Prognostic impact of MutT homolog-1 expression on esophageal squamous cell carcinoma. Cancer Med. 2017;6:258–266. doi: 10.1002/cam4.979. PubMed DOI PMC
Zhou W., Ma L., Yang J., Qiao H., Li L., Guo Q., Ma J., Zhao L., Wang J., Jiang G., et al. Potent and specific MTH1 inhibitors targeting gastric cancer. Cell Death Dis. 2019;10:434. doi: 10.1038/s41419-019-1665-3. PubMed DOI PMC
Abbas H.H.K., Alhamoudi K.M.H., Evans M.D., Jones G.D.D., Foster S.S. MTH1 deficiency selectively increases non-cytotoxic oxidative DNA damage in lung cancer cells: More bad news than good? BMC Cancer. 2018;18:423. doi: 10.1186/s12885-018-4332-7. PubMed DOI PMC
Frattini M., Balestra D., Suardi S., Oggionni M., Alberici P., Radice P., Costa A., Daidone M.G., Leo E., Pilotti S., et al. Different genetic features associated with colon and rectal carcinogenesis. Clin. Cancer Res. 2004;10:4015–4021. doi: 10.1158/1078-0432.CCR-04-0031. PubMed DOI
Lee G.H., Malietzis G., Askari A., Bernardo D., Al-Hassi H.O., Clark S.K. Is right-sided colon cancer different to left-sided colorectal cancer?-a systematic review. Eur. J. Surg Oncol. 2015;41:300–308. doi: 10.1016/j.ejso.2014.11.001. PubMed DOI
Punt C.J.A., Koopman M., Vermeulen L. From tumour heterogeneity to advances in precision treatment of colorectal cancer. Nat. Rev. Clin. Oncol. 2017;14:235–246. doi: 10.1038/nrclinonc.2016.171. PubMed DOI
Kuiper R.P., Hoogerbrugge N. NTHL1 defines novel cancer syndrome. Oncotarget. 2015;6:34069–34070. doi: 10.18632/oncotarget.5864. PubMed DOI PMC
Rolseth V., Luna L., Olsen A.K., Suganthan R., Scheffler K., Neurauter C.G., Esbensen Y., Kuśnierczyk A., Hildrestrand G.A., Graupner A., et al. No cancer predisposition or increased spontaneous mutation frequencies in NEIL DNA glycosylases-deficient mice. Sci. Rep. 2017;7:4384. doi: 10.1038/s41598-017-04472-4. PubMed DOI PMC
Samaranayake G.J., Huynh M., Rai P. MTH1 as a Chemotherapeutic Target: The Elephant in the Room. Cancers. 2017;9:47. doi: 10.3390/cancers9050047. PubMed DOI PMC
Kay J., Thadhani E., Samson L., Engelward B. Inflammation-induced DNA damage, mutations and cancer. DNA Repair. 2019;83:102673. doi: 10.1016/j.dnarep.2019.102673. PubMed DOI PMC
Pardini B., Corrado A., Paolicchi E., Cugliari G., Berndt S.I., Bezieau S., Bien S.A., Brenner H., Caan B.J., Campbell P.T., et al. DNA repair and cancer in colon and rectum: Novel players in genetic susceptibility. Int. J. Cancer. 2020;146:363–372. doi: 10.1002/ijc.32516. PubMed DOI PMC
Forsti A., Frank C., Smolkova B., Kazimirova A., Barancokova M., Vymetalkova V., Kroupa M., Naccarati A., Vodickova L., Buchancova J., et al. Genetic variation in the major mitotic checkpoint genes associated with chromosomal aberrations in healthy humans. Cancer Lett. 2016;380:442–446. doi: 10.1016/j.canlet.2016.07.011. PubMed DOI
Vodicka P., Musak L., Frank C., Kazimirova A., Vymetalkova V., Barancokova M., Smolkova B., Dzupinkova Z., Jiraskova K., Vodenkova S., et al. Interactions of DNA repair gene variants modulate chromosomal aberrations in healthy subjects. Carcinogenesis. 2015;36:1299–1306. doi: 10.1093/carcin/bgv127. PubMed DOI
Vodicka P., Vodenkova S., Buchler T., Vodickova L. DNA repair capacity and response to treatment of colon cancer. Pharmacogenomics. 2019;20:1225–1233. doi: 10.2217/pgs-2019-0070. PubMed DOI
Ghiringhelli F., Richard C., Chevrier S., Végran F., Boidot R. Efficiency of olaparib in colorectal cancer patients with an alteration of the homologous repair protein. World J. Gastroenterol. 2016;22:10680–10686. doi: 10.3748/wjg.v22.i48.10680. PubMed DOI PMC
Morales J., Li L., Fattah F.J., Dong Y., Bey E.A., Patel M., Gao J., Boothman D.A. Review of poly (ADP-ribose) polymerase (PARP) mechanisms of action and rationale for targeting in cancer and other diseases. Crit. Rev. Eukaryot Gene Expr. 2014;24:15–28. doi: 10.1615/CritRevEukaryotGeneExpr.2013006875. PubMed DOI PMC
Kamel D., Gray C., Walia J.S., Kumar V. PARP Inhibitor Drugs in the Treatment of Breast, Ovarian, Prostate and Pancreatic Cancers: An Update of Clinical Trials. Curr. Drug Targets. 2018;19:21–37. doi: 10.2174/1389450118666170711151518. PubMed DOI
Tomkinson A.E., Howes T.R.L., Wiest N.E. DNA ligases as therapeutic targets. Transl. Cancer Res. 2013;2:1219. PubMed PMC
DNA Repair and Ovarian Carcinogenesis: Impact on Risk, Prognosis and Therapy Outcome