Oxidative Damage in Sporadic Colorectal Cancer: Molecular Mapping of Base Excision Repair Glycosylases in Colorectal Cancer Patients

. 2020 Apr 02 ; 21 (7) : . [epub] 20200402

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32252452

Grantová podpora
18-09709S Grantová Agentura České Republiky
19-10543S Grantová Agentura České Republiky
15-27580A Ministerstvo Zdravotnictví Ceské Republiky
NV18/03/00199 Ministerstvo Zdravotnictví Ceské Republiky
UNCE/MED/006 Univerzita Karlova v Praze
Progres Q28/LF1 Univerzita Karlova v Praze
(NPU I) L01503 National Sustainability Program I

Oxidative stress with subsequent premutagenic oxidative DNA damage has been implicated in colorectal carcinogenesis. The repair of oxidative DNA damage is initiated by lesion-specific DNA glycosylases (hOGG1, NTH1, MUTYH). The direct evidence of the role of oxidative DNA damage and its repair is proven by hereditary syndromes (MUTYH-associated polyposis, NTHL1-associated tumor syndrome), where germline mutations cause loss-of-function in glycosylases of base excision repair, thus enabling the accumulation of oxidative DNA damage and leading to the adenoma-colorectal cancer transition. Unrepaired oxidative DNA damage often results in G:C>T:A mutations in tumor suppressor genes and proto-oncogenes and widespread occurrence of chromosomal copy-neutral loss of heterozygosity. However, the situation is more complicated in complex and heterogeneous disease, such as sporadic colorectal cancer. Here we summarized our current knowledge of the role of oxidative DNA damage and its repair on the onset, prognosis and treatment of sporadic colorectal cancer. Molecular and histological tumor heterogeneity was considered. Our study has also suggested an additional important source of oxidative DNA damage due to intestinal dysbiosis. The roles of base excision repair glycosylases (hOGG1, MUTYH) in tumor and adjacent mucosa tissues of colorectal cancer patients, particularly in the interplay with other factors (especially microenvironment), deserve further attention. Base excision repair characteristics determined in colorectal cancer tissues reflect, rather, a disease prognosis. Finally, we discuss the role of DNA repair in the treatment of colon cancer, since acquired or inherited defects in DNA repair pathways can be effectively used in therapy.

Zobrazit více v PubMed

Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J. Clin. 2018;68:394–424. doi: 10.3322/caac.21492. PubMed DOI

Brenner H., Chen C. The colorectal cancer epidemic: Challenges and opportunities for primary, secondary and tertiary prevention. Br. J. Cancer. 2018;119:785–792. doi: 10.1038/s41416-018-0264-x. PubMed DOI PMC

Murphy N., Moreno V., Hughes D.J., Vodicka L., Vodicka P., Aglago E.K., Gunter M.J., Jenab M. Lifestyle and dietary environmental factors in colorectal cancer susceptibility. Mol. Asp. Med. 2019;69:2–9. doi: 10.1016/j.mam.2019.06.005. PubMed DOI

Keum N., Giovannucci E. Global burden of colorectal cancer: Emerging trends, risk factors and prevention strategies. Nat. Rev. Gastroenterol. Hepatol. 2019;16:713–732. doi: 10.1038/s41575-019-0189-8. PubMed DOI

Huyghe J.R., Bien S.A., Harrison T.A., Kang H.M., Chen S., Schmit S.L., Conti D.V., Qu C., Jeon J., Edlund C.K., et al. Discovery of common and rare genetic risk variants for colorectal cancer. Nat. Genet. 2019;51:76–87. doi: 10.1038/s41588-018-0286-6. PubMed DOI PMC

Medina Pabon M.A., Babiker H.M. StatPearls. StatPearls Publishing LLC.; Treasure Island, FL, USA: 2019. A Review Of Hereditary Colorectal Cancers. PubMed

Pawlik T.M., Raut C.P., Rodriguez-Bigas M.A. Colorectal carcinogenesis: MSI-H versus MSI-L. Dis. Markers. 2004;20:199–206. doi: 10.1155/2004/368680. PubMed DOI PMC

Yamagishi H., Kuroda H., Imai Y., Hiraishi H. Molecular pathogenesis of sporadic colorectal cancers. Chin. J. Cancer. 2016;35:4. doi: 10.1186/s40880-015-0066-y. PubMed DOI PMC

Collins A.R., Azqueta A., Langie S.A.S. Effects of micronutrients on DNA repair. Eur. J. Nutr. 2012;51:261–279. doi: 10.1007/s00394-012-0318-4. PubMed DOI

Kompella P., Vasquez K.M. Obesity and cancer: A mechanistic overview of metabolic changes in obesity that impact genetic instability. Mol. Carcinog. 2019;58:1531–1550. doi: 10.1002/mc.23048. PubMed DOI PMC

Murphy N., Jenab M., Gunter M.J. Adiposity and gastrointestinal cancers: Epidemiology, mechanisms and future directions. Nat. Rev. Gastroenterol. Hepatol. 2018;15:659–670. doi: 10.1038/s41575-018-0038-1. PubMed DOI

Chakraborty A., Ferk F., Simić T., Brantner A., Dusinská M., Kundi M., Hoelzl C., Nersesyan A., Knasmüller S. DNA-protective effects of sumach (Rhus coriaria L.), a common spice: Results of human and animal studies. Mutat. Res. 2009;661:10–17. doi: 10.1016/j.mrfmmm.2008.10.009. PubMed DOI

Slyskova J., Lorenzo Y., Karlsen A., Carlsen M.H., Novosadova V., Blomhoff R., Vodicka P., Collins A.R. Both genetic and dietary factors underlie individual differences in DNA damage levels and DNA repair capacity. DNA Repair. 2014;16:66–73. doi: 10.1016/j.dnarep.2014.01.016. PubMed DOI

Méplan C., Hesketh J. Selenium and cancer: A story that should not be forgotten-insights from genomics. Cancer Treat. Res. 2014;159:145–166. doi: 10.1007/978-3-642-38007-5_9. PubMed DOI

Simonelli V., Mazzei F., D’Errico M., Dogliotti E. Gene susceptibility to oxidative damage: From single nucleotide polymorphisms to function. Mutat. Res. 2012;731:1–13. doi: 10.1016/j.mrfmmm.2011.10.012. PubMed DOI

Tudek B., Speina E. Oxidatively damaged DNA and its repair in colon carcinogenesis. Mutat. Res. 2012;736:82–92. doi: 10.1016/j.mrfmmm.2012.04.003. PubMed DOI

Guo C., Ding P., Xie C., Ye C., Ye M., Pan C., Cao X., Zhang S., Zheng S. Potential application of the oxidative nucleic acid damage biomarkers in detection of diseases. Oncotarget. 2017;8:75767–75777. doi: 10.18632/oncotarget.20801. PubMed DOI PMC

Hanahan D., Weinberg R.A. Hallmarks of cancer: The next generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013. PubMed DOI

Pearl L.H., Schierz A.C., Ward S.E., Al-Lazikani B., Pearl F.M. Therapeutic opportunities within the DNA damage response. Nat. Rev. Cancer. 2015;15:166–180. doi: 10.1038/nrc3891. PubMed DOI

Carethers J.M., Jung B.H. Genetics and Genetic Biomarkers in Sporadic Colorectal Cancer. Gastroenterology. 2015;149:1177–1190.e1173. doi: 10.1053/j.gastro.2015.06.047. PubMed DOI PMC

Grady W.M., Markowitz S.D. The molecular pathogenesis of colorectal cancer and its potential application to colorectal cancer screening. Dig. Dis. Sci. 2015;60:762–772. doi: 10.1007/s10620-014-3444-4. PubMed DOI PMC

Nielsen F.C., van Overeem Hansen T., Sørensen C.S. Hereditary breast and ovarian cancer: New genes in confined pathways. Nat. Rev. Cancer. 2016;16:599–612. doi: 10.1038/nrc.2016.72. PubMed DOI

Hernández G., Ramírez M.J., Minguillón J., Quiles P., Ruiz de Garibay G., Aza-Carmona M., Bogliolo M., Pujol R., Prados-Carvajal R., Fernández J., et al. Decapping protein EDC4 regulates DNA repair and phenocopies BRCA1. Nat. Commun. 2018;9:967. doi: 10.1038/s41467-018-03433-3. PubMed DOI PMC

Song H., Dicks E., Ramus S.J., Tyrer J.P., Intermaggio M.P., Hayward J., Edlund C.K., Conti D., Harrington P., Fraser L., et al. Contribution of Germline Mutations in the RAD51B, RAD51C, and RAD51D Genes to Ovarian Cancer in the Population. J. Clin. Oncol. 2015;33:2901–2907. doi: 10.1200/JCO.2015.61.2408. PubMed DOI PMC

Niskakoski A., Pasanen A., Lassus H., Renkonen-Sinisalo L., Kaur S., Mecklin J.-P., Bützow R., Peltomäki P. Molecular changes preceding endometrial and ovarian cancer: A study of consecutive endometrial specimens from Lynch syndrome surveillance. Mod. Pathol. 2018;31:1291–1301. doi: 10.1038/s41379-018-0044-4. PubMed DOI

Markowitz S.D., Bertagnolli M.M. Molecular origins of cancer: Molecular basis of colorectal cancer. N. Engl. J. Med. 2009;361:2449–2460. doi: 10.1056/NEJMra0804588. PubMed DOI PMC

Bardaweel S.K., Gul M., Alzweiri M., Ishaqat A., HA A.L., Bashatwah R.M. Reactive Oxygen Species: The Dual Role in Physiological and Pathological Conditions of the Human Body. Eurasian J. Med. 2018;50:193–201. doi: 10.5152/eurasianjmed.2018.17397. PubMed DOI PMC

Schieber M., Chandel N.S. ROS function in redox signaling and oxidative stress. Curr. Biol. 2014;24:R453–R462. doi: 10.1016/j.cub.2014.03.034. PubMed DOI PMC

Manini P., De Palma G., Andreoli R., Marczynski B., Hanova M., Mozzoni P., Naccarati A., Vodickova L., Hlavac P., Mutti A., et al. Biomarkers of nucleic acid oxidation, polymorphism in, and expression of, hOGG1 gene in styrene-exposed workers. Toxicol. Lett. 2009;190:41–47. doi: 10.1016/j.toxlet.2009.06.862. PubMed DOI

Naccarati A., Pardini B., Hemminki K., Vodicka P. Sporadic colorectal cancer and individual susceptibility: A review of the association studies investigating the role of DNA repair genetic polymorphisms. Mutat. Res. 2007;635:118–145. doi: 10.1016/j.mrrev.2007.02.001. PubMed DOI

Vodicka P., Kumar R., Stetina R., Sanyal S., Soucek P., Haufroid V., Dusinska M., Kuricova M., Zamecnikova M., Musak L., et al. Genetic polymorphisms in DNA repair genes and possible links with DNA repair rates, chromosomal aberrations and single-strand breaks in DNA. Carcinogenesis. 2004;25:757–763. doi: 10.1093/carcin/bgh064. PubMed DOI

Ohno M., Sakumi K., Fukumura R., Furuichi M., Iwasaki Y., Hokama M., Ikemura T., Tsuzuki T., Gondo Y., Nakabeppu Y. 8-oxoguanine causes spontaneous de novo germline mutations in mice. Sci. Rep. 2014;4:4689. doi: 10.1038/srep04689. PubMed DOI PMC

Dizdaroglu M. Oxidatively induced DNA damage and its repair in cancer. Mutat. Res. Rev. Mutat. Res. 2015;763:212–245. doi: 10.1016/j.mrrev.2014.11.002. PubMed DOI

Roos W.P., Thomas A.D., Kaina B. DNA damage and the balance between survival and death in cancer biology. Nat. Rev. Cancer. 2016;16:20–33. doi: 10.1038/nrc.2015.2. PubMed DOI

Curtin N.J. DNA repair dysregulation from cancer driver to therapeutic target. Nat. Rev. Cancer. 2012;12:801–817. doi: 10.1038/nrc3399. PubMed DOI

Knijnenburg T.A., Wang L., Zimmermann M.T., Chambwe N., Gao G.F., Cherniack A.D., Fan H., Shen H., Way G.P., Greene C.S., et al. Genomic and Molecular Landscape of DNA Damage Repair Deficiency across The Cancer Genome Atlas. Cell Rep. 2018;23:239–254.e6. doi: 10.1016/j.celrep.2018.03.076. PubMed DOI PMC

Wallace S.S. DNA glycosylases search for and remove oxidized DNA bases. Environ. Mol. Mutagenesis. 2013;54:691–704. doi: 10.1002/em.21820. PubMed DOI PMC

Vodicka P., Vodenkova S., Opattova A., Vodickova L. DNA damage and repair measured by comet assay in cancer patients. Mutat. Res. 2019;843:95–110. doi: 10.1016/j.mrgentox.2019.05.009. PubMed DOI

Radom M., Machnicka M.A., Krwawicz J., Bujnicki J.M., Formanowicz P. Petri net-based model of the human DNA base excision repair pathway. PLoS ONE. 2019;14:e0217913. doi: 10.1371/journal.pone.0217913. PubMed DOI PMC

Köger N., Brieger A., Hinrichsen I.M., Zeuzem S., Plotz G. Analysis of MUTYH alternative transcript expression, promoter function, and the effect of human genetic variants. Hum. Mutat. 2019;40:472–482. doi: 10.1002/humu.23709. PubMed DOI

Wang R., Hao W., Pan L., Boldogh I., Ba X. The roles of base excision repair enzyme OGG1 in gene expression. Cell. Mol. Life Sci. 2018;75:3741–3750. doi: 10.1007/s00018-018-2887-8. PubMed DOI PMC

Leitner-Dagan Y., Sevilya Z., Pinchev M., Kramer R., Elinger D., Roisman L.C., Rennert H.S., Schechtman E., Freedman L., Rennert G., et al. N-methylpurine DNA glycosylase and OGG1 DNA repair activities: Opposite associations with lung cancer risk. J. Natl. Cancer Inst. 2012;104:1765–1769. doi: 10.1093/jnci/djs445. PubMed DOI PMC

Sjolund A.B., Senejani A.G., Sweasy J.B. MBD4 and TDG: Multifaceted DNA glycosylases with ever expanding biological roles. Mutat. Res. 2013;743–744:12–25. doi: 10.1016/j.mrfmmm.2012.11.001. PubMed DOI PMC

Nagaria P., Svilar D., Brown A.R., Wang X.-h., Sobol R.W., Wyatt M.D. SMUG1 but not UNG DNA glycosylase contributes to the cellular response to recovery from 5-fluorouracil induced replication stress. Mutat. Res. 2013;743–744:26–32. doi: 10.1016/j.mrfmmm.2012.12.001. PubMed DOI PMC

Alexeeva M., Moen M.N., Grøsvik K., Tesfahun A.N., Xu X.M., Muruzábal-Lecumberri I., Olsen K.M., Rasmussen A., Ruoff P., Kirpekar F., et al. Excision of uracil from DNA by hSMUG1 includes strand incision and processing. Nucleic Acids Res. 2019;47:779–793. doi: 10.1093/nar/gky1184. PubMed DOI PMC

Shinmura K., Kato H., Kawanishi Y., Goto M., Tao H., Yoshimura K., Nakamura S., Misawa K., Sugimura H. Defective repair capacity of variant proteins of the DNA glycosylase NTHL1 for 5-hydroxyuracil, an oxidation product of cytosine. Free Radic. Biol. Med. 2019;131:264–273. doi: 10.1016/j.freeradbiomed.2018.12.010. PubMed DOI

Slyvka A., Mierzejewska K., Bochtler M. Nei-like 1 (NEIL1) excises 5-carboxylcytosine directly and stimulates TDG-mediated 5-formyl and 5-carboxylcytosine excision. Sci. Rep. 2017;7:9001. doi: 10.1038/s41598-017-07458-4. PubMed DOI PMC

Sarker A.H., Chatterjee A., Williams M., Lin S., Havel C., Jacob P., 3rd, Boldogh I., Hazra T.K., Talbot P., Hang B. NEIL2 protects against oxidative DNA damage induced by sidestream smoke in human cells. PLoS ONE. 2014;9:e90261. doi: 10.1371/journal.pone.0090261. PubMed DOI PMC

Han D., Schomacher L., Schüle K.M., Mallick M., Musheev M.U., Karaulanov E., Krebs L., von Seggern A., Niehrs C. NEIL1 and NEIL2 DNA glycosylases protect neural crest development against mitochondrial oxidative stress. Elife. 2019;8:e49044. doi: 10.7554/eLife.49044. PubMed DOI PMC

Minko I.G., Christov P.P., Li L., Stone M.P., McCullough A.K., Lloyd R.S. Processing of N(5)-substituted formamidopyrimidine DNA adducts by DNA glycosylases NEIL1 and NEIL3. DNA Repair. 2019;73:49–54. doi: 10.1016/j.dnarep.2018.11.001. PubMed DOI PMC

Massaad M.J., Zhou J., Tsuchimoto D., Chou J., Jabara H., Janssen E., Glauzy S., Olson B.G., Morbach H., Ohsumi T.K., et al. Deficiency of base excision repair enzyme NEIL3 drives increased predisposition to autoimmunity. J. Clin. Investig. 2016;126:4219–4236. doi: 10.1172/JCI85647. PubMed DOI PMC

Da L.-T., Shi Y., Ning G., Yu J. Dynamics of the excised base release in thymine DNA glycosylase during DNA repair process. Nucleic Acids Res. 2018;46:568–581. doi: 10.1093/nar/gkx1261. PubMed DOI PMC

Fu T., Liu L., Yang Q.-L., Wang Y., Xu P., Zhang L., Liu S., Dai Q., Ji Q., Xu G.-L., et al. Thymine DNA glycosylase recognizes the geometry alteration of minor grooves induced by 5-formylcytosine and 5-carboxylcytosine. Chem. Sci. 2019;10:7407–7417. doi: 10.1039/C9SC02807B. PubMed DOI PMC

Weiser B.P., Rodriguez G., Cole P.A., Stivers J.T. N-terminal domain of human uracil DNA glycosylase (hUNG2) promotes targeting to uracil sites adjacent to ssDNA-dsDNA junctions. Nucleic Acids Res. 2018;46:7169–7178. doi: 10.1093/nar/gky525. PubMed DOI PMC

Bai H., Grist S., Gardner J., Suthers G., Wilson T.M., Lu A.L. Functional characterization of human MutY homolog (hMYH) missense mutation (R231L) that is linked with hMYH-associated polyposis. Cancer Lett. 2007;250:74–81. doi: 10.1016/j.canlet.2006.09.016. PubMed DOI PMC

Schubert S.A., Morreau H., de Miranda N.F.C.C., van Wezel T. The missing heritability of familial colorectal cancer. Mutagenesis. 2019 doi: 10.1093/mutage/gez027. PubMed DOI PMC

Krokan H.E., Bjørås M. Base excision repair. Cold Spring Harb. Perspect. Biol. 2013;5:a012583. doi: 10.1101/cshperspect.a012583. PubMed DOI PMC

Hazra T.K., Izumi T., Kow Y.W., Mitra S. The discovery of a new family of mammalian enzymes for repair of oxidatively damaged DNA, and its physiological implications. Carcinogenesis. 2003;24:155–157. doi: 10.1093/carcin/24.2.155. PubMed DOI

Sakumi K., Furuichi M., Tsuzuki T., Kakuma T., Kawabata S., Maki H., Sekiguchi M. Cloning and expression of cDNA for a human enzyme that hydrolyzes 8-oxo-dGTP, a mutagenic substrate for DNA synthesis. J. Biol. Chem. 1993;268:23524–23530. PubMed

El-Khamisy S.F., Masutani M., Suzuki H., Caldecott K.W. A requirement for PARP-1 for the assembly or stability of XRCC1 nuclear foci at sites of oxidative DNA damage. Nucleic Acids Res. 2003;31:5526–5533. doi: 10.1093/nar/gkg761. PubMed DOI PMC

Takao M., Kanno S.-I., Kobayashi K., Zhang Q.-M., Yonei S., van der Horst G.T.J., Yasui A. A back-up glycosylase in Nth1 knock-out mice is a functional Nei (endonuclease VIII) homologue. J. Biol. Chem. 2002;277:42205–42213. doi: 10.1074/jbc.M206884200. PubMed DOI

Galick H.A., Kathe S., Liu M., Robey-Bond S., Kidane D., Wallace S.S., Sweasy J.B. Germ-line variant of human NTH1 DNA glycosylase induces genomic instability and cellular transformation. Proc. Natl. Acad. Sci. USA. 2013;110:14314–14319. doi: 10.1073/pnas.1306752110. PubMed DOI PMC

Gad H., Koolmeister T., Jemth A.-S., Eshtad S., Jacques S.A., Ström C.E., Svensson L.M., Schultz N., Lundbäck T., Einarsdottir B.O., et al. MTH1 inhibition eradicates cancer by preventing sanitation of the dNTP pool. Nature. 2014;508:215–221. doi: 10.1038/nature13181. PubMed DOI

Rai P., Sobol R.W. Mechanisms of MTH1 inhibition-induced DNA strand breaks: The slippery slope from the oxidized nucleotide pool to genotoxic damage. DNA Repair. 2019;77:18–26. doi: 10.1016/j.dnarep.2019.03.001. PubMed DOI PMC

Ahmed W., Lingner J. PRDX1 and MTH1 cooperate to prevent ROS-mediated inhibition of telomerase. Genes Dev. 2018;32:658–669. doi: 10.1101/gad.313460.118. PubMed DOI PMC

Ellenberger T., Tomkinson A.E. Eukaryotic DNA ligases: Structural and functional insights. Annu. Rev. Biochem. 2008;77:313–338. doi: 10.1146/annurev.biochem.77.061306.123941. PubMed DOI PMC

Sun D., Urrabaz R., Nguyen M., Marty J., Stringer S., Cruz E., Medina-Gundrum L., Weitman S. Elevated expression of DNA ligase I in human cancers. Clin. Cancer Res. 2001;7:4143–4148. PubMed

Saquib M., Ansari M.I., Johnson C.R., Khatoon S., Kamil Hussain M., Coop A. Recent advances in the targeting of human DNA ligase I as a potential new strategy for cancer treatment. Eur. J. Med. Chem. 2019;182:111657. doi: 10.1016/j.ejmech.2019.111657. PubMed DOI

McNally J.R., O’Brien P.J. Kinetic analyses of single-stranded break repair by human DNA ligase III isoforms reveal biochemical differences from DNA ligase I. J. Biol. Chem. 2017;292:15870–15879. doi: 10.1074/jbc.M117.804625. PubMed DOI PMC

Adachi S., Takemoto K., Hirosue T., Hosogai Y. Spontaneous and 2-nitropropane induced levels of 8-hydroxy-2′-deoxyguanosine in liver DNA of rats fed iron-deficient or manganese- and copper-deficient diets. Carcinogenesis. 1993;14:265–268. doi: 10.1093/carcin/14.2.265. PubMed DOI

Kasai H., Crain P.F., Kuchino Y., Nishimura S., Ootsuyama A., Tanooka H. Formation of 8-hydroxyguanine moiety in cellular DNA by agents producing oxygen radicals and evidence for its repair. Carcinogenesis. 1986;7:1849–1851. doi: 10.1093/carcin/7.11.1849. PubMed DOI

Wood M.L., Dizdaroglu M., Gajewski E., Essigmann J.M. Mechanistic studies of ionizing radiation and oxidative mutagenesis: Genetic effects of a single 8-hydroxyguanine (7-hydro-8-oxoguanine) residue inserted at a unique site in a viral genome. Biochemistry. 1990;29:7024–7032. doi: 10.1021/bi00482a011. PubMed DOI

Olinski R., Gackowski D., Foksinski M., Rozalski R., Roszkowski K., Jaruga P. Oxidative DNA damage: Assessment of the role in carcinogenesis, atherosclerosis, and acquired immunodeficiency syndrome. Free Radic. Biol. Med. 2002;33:192–200. doi: 10.1016/S0891-5849(02)00878-X. PubMed DOI

Robertson A.B., Klungland A., Rognes T., Leiros I. DNA repair in mammalian cells: Base excision repair: The long and short of it. Cell Mol. Life Sci. 2009;66:981–993. doi: 10.1007/s00018-009-8736-z. PubMed DOI PMC

Russo M.T., De Luca G., Degan P., Parlanti E., Dogliotti E., Barnes D.E., Lindahl T., Yang H., Miller J.H., Bignami M. Accumulation of the oxidative base lesion 8-hydroxyguanine in DNA of tumor-prone mice defective in both the Myh and Ogg1 DNA glycosylases. Cancer Res. 2004;64:4411–4414. doi: 10.1158/0008-5472.CAN-04-0355. PubMed DOI

Pilati C., Shinde J., Alexandrov L.B., Assié G., André T., Hélias-Rodzewicz Z., Ducoudray R., Le Corre D., Zucman-Rossi J., Emile J.-F., et al. Mutational signature analysis identifies MUTYH deficiency in colorectal cancers and adrenocortical carcinomas. J. Pathol. 2017;242:10–15. doi: 10.1002/path.4880. PubMed DOI

Weren R.D.A., Ligtenberg M.J., Geurts van Kessel A., De Voer R.M., Hoogerbrugge N., Kuiper R.P. NTHL1 and MUTYH polyposis syndromes: Two sides of the same coin? J. Pathol. 2018;244:135–142. doi: 10.1002/path.5002. PubMed DOI

Nascimento E.F.R., Ribeiro M.L., Magro D.O., Carvalho J., Kanno D.T., Martinez C.A.R., Coy C.S.R. tissue expresion of the genes mutyh and ogg1 in patients with sporadic colorectal cancer. Arq. Bras. Cir. Dig. 2017;30:98–102. doi: 10.1590/0102-6720201700020005. PubMed DOI PMC

Vodenkova S., Jiraskova K., Urbanova M., Kroupa M., Slyskova J., Schneiderova M., Levy M., Buchler T., Liska V., Vodickova L., et al. Base excision repair capacity as a determinant of prognosis and therapy response in colon cancer patients. DNA Repair. 2018;72:77–85. doi: 10.1016/j.dnarep.2018.09.006. PubMed DOI

Koketsu S., Watanabe T., Nagawa H. Expression of DNA repair protein: MYH, NTH1, and MTH1 in colorectal cancer. Hepatogastroenterology. 2004;51:638–642. PubMed

Zhang X., Song W., Zhou Y., Mao F., Lin Y., Guan J., Sun Q. Expression and function of MutT homolog 1 in distinct subtypes of breast cancer. Oncol. Lett. 2017;13:2161–2168. doi: 10.3892/ol.2017.5726. PubMed DOI PMC

Furlan D., Trapani D., Berrino E., Debernardi C., Panero M., Libera L., Sahnane N., Riva C., Tibiletti M.G., Sessa F., et al. Oxidative DNA damage induces hypomethylation in a compromised base excision repair colorectal tumourigenesis. Br. J. Cancer. 2017;116:793–801. doi: 10.1038/bjc.2017.9. PubMed DOI PMC

Farkas S.A., Vymetalkova V., Vodickova L., Vodicka P., Nilsson T.K. DNA methylation changes in genes frequently mutated in sporadic colorectal cancer and in the DNA repair and Wnt/beta-catenin signaling pathway genes. Epigenomics. 2014;6:179–191. doi: 10.2217/epi.14.7. PubMed DOI

Cooke M.S., Evans M.D., Dizdaroglu M., Lunec J. Oxidative DNA damage: Mechanisms, mutation, and disease. FASEB J. 2003;17:1195–1214. doi: 10.1096/fj.02-0752rev. PubMed DOI

Przybylowska K., Kabzinski J., Sygut A., Dziki L., Dziki A., Majsterek I. An association selected polymorphisms of XRCC1, OGG1 and MUTYH gene and the level of efficiency oxidative DNA damage repair with a risk of colorectal cancer. Mutat. Res. 2013;745–746:6–15. doi: 10.1016/j.mrfmmm.2013.04.002. PubMed DOI

Slyskova J., Korenkova V., Collins A.R., Prochazka P., Vodickova L., Svec J., Lipska L., Levy M., Schneiderova M., Liska V., et al. Functional, genetic, and epigenetic aspects of base and nucleotide excision repair in colorectal carcinomas. Clin. Cancer Res. 2012;18:5878–5887. doi: 10.1158/1078-0432.CCR-12-1380. PubMed DOI

Lerner L.K., Moreno N.C., Rocha C.R.R., Munford V., Santos V., Soltys D.T., Garcia C.C.M., Sarasin A., Menck C.F.M. XPD/ERCC2 mutations interfere in cellular responses to oxidative stress. Mutagenesis. 2019;34:341–354. doi: 10.1093/mutage/gez020. PubMed DOI

Melis J.P.M., van Steeg H., Luijten M. Oxidative DNA damage and nucleotide excision repair. Antioxid. Redox Signal. 2013;18:2409–2419. doi: 10.1089/ars.2012.5036. PubMed DOI PMC

Lee T.-H., Kang T.-H. DNA Oxidation and Excision Repair Pathways. Int. J. Mol. Sci. 2019;20:6092. doi: 10.3390/ijms20236092. PubMed DOI PMC

He J., Shi T.-Y., Zhu M.-L., Wang M.-Y., Li Q.-X., Wei Q.-Y. Associations of Lys939Gln and Ala499Val polymorphisms of the XPC gene with cancer susceptibility: A meta-analysis. Int. J. Cancer. 2013;133:1765–1775. doi: 10.1002/ijc.28089. PubMed DOI

Slyskova J., Naccarati A., Pardini B., Polakova V., Vodickova L., Smerhovsky Z., Levy M., Lipska L., Liska V., Vodicka P. Differences in nucleotide excision repair capacity between newly diagnosed colorectal cancer patients and healthy controls. Mutagenesis. 2012;27:225–232. doi: 10.1093/mutage/ger088. PubMed DOI

Vodicka P., Stetina R., Polakova V., Tulupova E., Naccarati A., Vodickova L., Kumar R., Hanova M., Pardini B., Slyskova J., et al. Association of DNA repair polymorphisms with DNA repair functional outcomes in healthy human subjects. Carcinogenesis. 2007;28:657–664. doi: 10.1093/carcin/bgl187. PubMed DOI

Lai C.-Y., Hsieh L.-L., Tang R., Santella R.M., Chang-Chieh C.R., Yeh C.-C. Association between polymorphisms of APE1 and OGG1 and risk of colorectal cancer in Taiwan. World J. Gastroenterol. 2016;22:3372–3380. doi: 10.3748/wjg.v22.i12.3372. PubMed DOI PMC

Pardini B., Naccarati A., Novotny J., Smerhovsky Z., Vodickova L., Polakova V., Hanova M., Slyskova J., Tulupova E., Kumar R., et al. DNA repair genetic polymorphisms and risk of colorectal cancer in the Czech Republic. Mutat. Res. 2008;638:146–153. doi: 10.1016/j.mrfmmm.2007.09.008. PubMed DOI

Guo C.-L., Han F.-F., Wang H.-Y., Wang L. Meta-analysis of the association between hOGG1 Ser326Cys polymorphism and risk of colorectal cancer based on case--control studies. J. Cancer Res. Clin. Oncol. 2012;138:1443–1448. doi: 10.1007/s00432-012-1197-z. PubMed DOI PMC

Kinnersley B., Buch S., Castellví-Bel S., Farrington S.M., Forsti A., Hampe J., Hemminki K., Hofstra R.M.W., Northwood E., Palles C., et al. Re: Role of the oxidative DNA damage repair gene OGG1 in colorectal tumorigenesis. J. Natl. Cancer Inst. 2014;106:dju086. doi: 10.1093/jnci/dju086. PubMed DOI PMC

Zhang Y., He B.-S., Pan Y.-Q., Xu Y.-Q., Wang S.-K. Association of OGG1 Ser326Cys polymorphism with colorectal cancer risk: A meta-analysis. Int. J. Colorectal Dis. 2011;26:1525–1530. doi: 10.1007/s00384-011-1258-9. PubMed DOI

Pardini B., Rosa F., Barone E., Di Gaetano C., Slyskova J., Novotny J., Levy M., Garritano S., Vodickova L., Buchler T., et al. Variation within 3′-UTRs of base excision repair genes and response to therapy in colorectal cancer patients: A potential modulation of microRNAs binding. Clin. Cancer Res. 2013;19:6044–6056. doi: 10.1158/1078-0432.CCR-13-0314. PubMed DOI

Jiraskova K., Hughes D.J., Brezina S., Gumpenberger T., Veskrnova V., Buchler T., Schneiderova M., Levy M., Liska V., Vodenkova S., et al. Functional Polymorphisms in DNA Repair Genes Are Associated with Sporadic Colorectal Cancer Susceptibility and Clinical Outcome. Int. J. Mol. Sci. 2018;20:97. doi: 10.3390/ijms20010097. PubMed DOI PMC

Picelli S., Lorenzo Bermejo J., Chang-Claude J., Hoffmeister M., Fernández-Rozadilla C., Carracedo A., Castells A., Castellví-Bel S., The EPICOLON Consortium Members of the EPICOLON Consortium. Naccarati A., et al. Meta-analysis of mismatch repair polymorphisms within the cogent consortium for colorectal cancer susceptibility. PLoS ONE. 2013;8:e72091. doi: 10.1371/journal.pone.0072091. PubMed DOI PMC

Tlaskalová-Hogenová H., Stěpánková R., Kozáková H., Hudcovic T., Vannucci L., Tučková L., Rossmann P., Hrnčíř T., Kverka M., Zákostelská Z., et al. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: Contribution of germ-free and gnotobiotic animal models of human diseases. Cell. Mol. Immunol. 2011;8:110–120. doi: 10.1038/cmi.2010.67. PubMed DOI PMC

Bajer L., Kverka M., Kostovcik M., Macinga P., Dvorak J., Stehlikova Z., Brezina J., Wohl P., Spicak J., Drastich P. Distinct gut microbiota profiles in patients with primary sclerosing cholangitis and ulcerative colitis. World J. Gastroenterol. 2017;23:4548–4558. doi: 10.3748/wjg.v23.i25.4548. PubMed DOI PMC

Flemer B., Lynch D.B., Brown J.M.R., Jeffery I.B., Ryan F.J., Claesson M.J., O’Riordain M., Shanahan F., O’Toole P.W. Tumour-associated and non-tumour-associated microbiota in colorectal cancer. Gut. 2017;66:633–643. doi: 10.1136/gutjnl-2015-309595. PubMed DOI PMC

Park H.E., Kim J.H., Cho N.-Y., Lee H.S., Kang G.H. Intratumoral Fusobacterium nucleatum abundance correlates with macrophage infiltration and CDKN2A methylation in microsatellite-unstable colorectal carcinoma. Virchows Arch. 2017;471:329–336. doi: 10.1007/s00428-017-2171-6. PubMed DOI

Arthur J.C., Perez-Chanona E., Mühlbauer M., Tomkovich S., Uronis J.M., Fan T.-J., Campbell B.J., Abujamel T., Dogan B., Rogers A.B., et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science. 2012;338:120–123. doi: 10.1126/science.1224820. PubMed DOI PMC

Klimesova K., Jiraskova Zakostelska Z., Tlaskalova-Hogenova H. Oral Bacterial and Fungal Microbiome Impacts Colorectal Carcinogenesis. Front. Microbiol. 2018;9:774. doi: 10.3389/fmicb.2018.00774. PubMed DOI PMC

Gagnière J., Raisch J., Veziant J., Barnich N., Bonnet R., Buc E., Bringer M.-A., Pezet D., Bonnet M. Gut microbiota imbalance and colorectal cancer. World J. Gastroenterol. 2016;22:501–518. doi: 10.3748/wjg.v22.i2.501. PubMed DOI PMC

Wilson M.R., Jiang Y., Villalta P.W., Stornetta A., Boudreau P.D., Carrá A., Brennan C.A., Chun E., Ngo L., Samson L.D., et al. The human gut bacterial genotoxin colibactin alkylates DNA. Science. 2019;363:eaar7785. doi: 10.1126/science.aar7785. PubMed DOI PMC

Panieri E., Santoro M.M. ROS homeostasis and metabolism: A dangerous liason in cancer cells. Cell Death Dis. 2016;7:e2253. doi: 10.1038/cddis.2016.105. PubMed DOI PMC

Hsu C.W., Sowers M.L., Hsu W., Eyzaguirre E., Qiu S., Chao C., Mouton C.P., Fofanov Y., Singh P., Sowers L.C. How does inflammation drive mutagenesis in colorectal cancer? Trends Cancer Res. 2017;12:111–132. PubMed PMC

Shalapour S., Karin M. Pas de Deux: Control of Anti-tumor Immunity by Cancer-Associated Inflammation. Immunity. 2019;51:15–26. doi: 10.1016/j.immuni.2019.06.021. PubMed DOI PMC

De Barrios O., Sanchez-Moral L., Cortés M., Ninfali C., Profitós-Pelejà N., Martínez-Campanario M.C., Siles L., Del Campo R., Fernández-Aceñero M.J., Darling D.S., et al. ZEB1 promotes inflammation and progression towards inflammation-driven carcinoma through repression of the DNA repair glycosylase MPG in epithelial cells. Gut. 2019;68:2129–2141. doi: 10.1136/gutjnl-2018-317294. PubMed DOI

Weng M.T., Chiu Y.T., Wei P.Y., Chiang C.W., Fang H.L., Wei S.C. Microbiota and gastrointestinal cancer. J. Formos. Med. Assoc. 2019;118(Suppl. 1):S32–S41. doi: 10.1016/j.jfma.2019.01.002. PubMed DOI

Møller P., Loft S. Dietary antioxidants and beneficial effect on oxidatively damaged DNA. Free Radic. Biol. Med. 2006;41:388–415. doi: 10.1016/j.freeradbiomed.2006.04.001. PubMed DOI

Hoelzl C., Knasmüller S., Misík M., Collins A., Dusinská M., Nersesyan A. Use of single cell gel electrophoresis assays for the detection of DNA-protective effects of dietary factors in humans: Recent results and trends. Mutat. Res. 2009;681:68–79. doi: 10.1016/j.mrrev.2008.07.004. PubMed DOI

Yamamoto N., Shoji M., Hoshigami H., Watanabe K., Watanabe K., Takatsuzu T., Yasuda S., Igoshi K., Kinoshita H. Antioxidant capacity of soymilk yogurt and exopolysaccharides produced by lactic acid bacteria. Biosci. Microbiota Food Health. 2019;38:97–104. doi: 10.12938/bmfh.18-017. PubMed DOI PMC

Rejhová A., Opattová A., Čumová A., Slíva D., Vodička P. Natural compounds and combination therapy in colorectal cancer treatment. Eur. J. Med. Chem. 2018;144:582–594. doi: 10.1016/j.ejmech.2017.12.039. PubMed DOI

Claesson M.J., Jeffery I.B., Conde S., Power S.E., O’Connor E.M., Cusack S., Harris H.M.B., Coakley M., Lakshminarayanan B., O’Sullivan O., et al. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488:178–184. doi: 10.1038/nature11319. PubMed DOI

Zoetendal E.G., de Vos W.M. Effect of diet on the intestinal microbiota and its activity. Curr. Opin. Gastroenterol. 2014;30:189–195. doi: 10.1097/MOG.0000000000000048. PubMed DOI

Kau A.L., Ahern P.P., Griffin N.W., Goodman A.L., Gordon J.I. Human nutrition, the gut microbiome and the immune system. Nature. 2011;474:327–336. doi: 10.1038/nature10213. PubMed DOI PMC

David L.A., Maurice C.F., Carmody R.N., Gootenberg D.B., Button J.E., Wolfe B.E., Ling A.V., Devlin A.S., Varma Y., Fischbach M.A., et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–563. doi: 10.1038/nature12820. PubMed DOI PMC

De Filippo C., Cavalieri D., Di Paola M., Ramazzotti M., Poullet J.B., Massart S., Collini S., Pieraccini G., Lionetti P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. USA. 2010;107:14691–14696. doi: 10.1073/pnas.1005963107. PubMed DOI PMC

Vodenkova S., Buchler T., Cervena K., Veskrnova V., Vodicka P., Vymetalkova V. 5-fluorouracil and other fluoropyrimidines in colorectal cancer: Past, present and future. Pharmacol. Ther. 2019 doi: 10.1016/j.pharmthera.2019.107447. PubMed DOI

Gustavsson B., Carlsson G., Machover D., Petrelli N., Roth A., Schmoll H.-J., Tveit K.-M., Gibson F. A review of the evolution of systemic chemotherapy in the management of colorectal cancer. Clin. Colorectal. Cancer. 2015;14:1–10. doi: 10.1016/j.clcc.2014.11.002. PubMed DOI

Slyskova J., Cordero F., Pardini B., Korenkova V., Vymetalkova V., Bielik L., Vodickova L., Pitule P., Liska V., Matejka V.M., et al. Post-treatment recovery of suboptimal DNA repair capacity and gene expression levels in colorectal cancer patients. Mol. Carcinog. 2015;54:769–778. doi: 10.1002/mc.22141. PubMed DOI

Wyatt M.D., Wilson D.M., 3rd Participation of DNA repair in the response to 5-fluorouracil. Cell. Mol. Life Sci. 2009;66:788–799. doi: 10.1007/s00018-008-8557-5. PubMed DOI PMC

Gorrini C., Harris I.S., Mak T.W. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov. 2013;12:931–947. doi: 10.1038/nrd4002. PubMed DOI

Chen W., Lian W., Yuan Y., Li M. The synergistic effects of oxaliplatin and piperlongumine on colorectal cancer are mediated by oxidative stress. Cell Death Dis. 2019;10:600. doi: 10.1038/s41419-019-1824-6. PubMed DOI PMC

Kumar S., Agnihotri N. Piperlongumine, a piper alkaloid targets Ras/PI3K/Akt/mTOR signaling axis to inhibit tumor cell growth and proliferation in DMH/DSS induced experimental colon cancer. Biomed. Pharmacother. 2019;109:1462–1477. doi: 10.1016/j.biopha.2018.10.182. PubMed DOI

Opattova A., Horak J., Vodenkova S., Kostovcikova K., Cumova A., Macinga P., Galanova N., Rejhova A., Vodickova L., Kozics K., et al. Ganoderma Lucidum induces oxidative DNA damage and enhances the effect of 5-Fluorouracil in colorectal cancer in vitro and in vivo. Mutat. Res. 2019;845:403065. doi: 10.1016/j.mrgentox.2019.06.001. PubMed DOI

Liu W., Gu J., Qi J., Zeng X.-N., Ji J., Chen Z.-Z., Sun X.-L. Lentinan exerts synergistic apoptotic effects with paclitaxel in A549 cells via activating ROS-TXNIP-NLRP3 inflammasome. J. Cell Mol. Med. 2015;19:1949–1955. doi: 10.1111/jcmm.12570. PubMed DOI PMC

Morano F., Corallo S., Niger M., Barault L., Milione M., Berenato R., Moretto R., Randon G., Antista M., Belfiore A., et al. Temozolomide and irinotecan (TEMIRI regimen) as salvage treatment of irinotecan-sensitive advanced colorectal cancer patients bearing MGMT methylation. Ann. Oncol. 2018;29:1800–1806. doi: 10.1093/annonc/mdy197. PubMed DOI

Jaiswal A.S., Banerjee S., Aneja R., Sarkar F.H., Ostrov D.A., Narayan S. DNA polymerase β as a novel target for chemotherapeutic intervention of colorectal cancer. PLoS ONE. 2011;6:e16691. doi: 10.1371/journal.pone.0016691. PubMed DOI PMC

Fujishita T., Okamoto T., Akamine T., Takamori S., Takada K., Katsura M., Toyokawa G., Shoji F., Shimokawa M., Oda Y., et al. Association of MTH1 expression with the tumor malignant potential and poor prognosis in patients with resected lung cancer. Lung Cancer. 2017;109:52–57. doi: 10.1016/j.lungcan.2017.04.012. PubMed DOI

Akiyama S., Saeki H., Nakashima Y., Iimori M., Kitao H., Oki E., Oda Y., Nakabeppu Y., Kakeji Y., Maehara Y. Prognostic impact of MutT homolog-1 expression on esophageal squamous cell carcinoma. Cancer Med. 2017;6:258–266. doi: 10.1002/cam4.979. PubMed DOI PMC

Zhou W., Ma L., Yang J., Qiao H., Li L., Guo Q., Ma J., Zhao L., Wang J., Jiang G., et al. Potent and specific MTH1 inhibitors targeting gastric cancer. Cell Death Dis. 2019;10:434. doi: 10.1038/s41419-019-1665-3. PubMed DOI PMC

Abbas H.H.K., Alhamoudi K.M.H., Evans M.D., Jones G.D.D., Foster S.S. MTH1 deficiency selectively increases non-cytotoxic oxidative DNA damage in lung cancer cells: More bad news than good? BMC Cancer. 2018;18:423. doi: 10.1186/s12885-018-4332-7. PubMed DOI PMC

Frattini M., Balestra D., Suardi S., Oggionni M., Alberici P., Radice P., Costa A., Daidone M.G., Leo E., Pilotti S., et al. Different genetic features associated with colon and rectal carcinogenesis. Clin. Cancer Res. 2004;10:4015–4021. doi: 10.1158/1078-0432.CCR-04-0031. PubMed DOI

Lee G.H., Malietzis G., Askari A., Bernardo D., Al-Hassi H.O., Clark S.K. Is right-sided colon cancer different to left-sided colorectal cancer?-a systematic review. Eur. J. Surg Oncol. 2015;41:300–308. doi: 10.1016/j.ejso.2014.11.001. PubMed DOI

Punt C.J.A., Koopman M., Vermeulen L. From tumour heterogeneity to advances in precision treatment of colorectal cancer. Nat. Rev. Clin. Oncol. 2017;14:235–246. doi: 10.1038/nrclinonc.2016.171. PubMed DOI

Kuiper R.P., Hoogerbrugge N. NTHL1 defines novel cancer syndrome. Oncotarget. 2015;6:34069–34070. doi: 10.18632/oncotarget.5864. PubMed DOI PMC

Rolseth V., Luna L., Olsen A.K., Suganthan R., Scheffler K., Neurauter C.G., Esbensen Y., Kuśnierczyk A., Hildrestrand G.A., Graupner A., et al. No cancer predisposition or increased spontaneous mutation frequencies in NEIL DNA glycosylases-deficient mice. Sci. Rep. 2017;7:4384. doi: 10.1038/s41598-017-04472-4. PubMed DOI PMC

Samaranayake G.J., Huynh M., Rai P. MTH1 as a Chemotherapeutic Target: The Elephant in the Room. Cancers. 2017;9:47. doi: 10.3390/cancers9050047. PubMed DOI PMC

Kay J., Thadhani E., Samson L., Engelward B. Inflammation-induced DNA damage, mutations and cancer. DNA Repair. 2019;83:102673. doi: 10.1016/j.dnarep.2019.102673. PubMed DOI PMC

Pardini B., Corrado A., Paolicchi E., Cugliari G., Berndt S.I., Bezieau S., Bien S.A., Brenner H., Caan B.J., Campbell P.T., et al. DNA repair and cancer in colon and rectum: Novel players in genetic susceptibility. Int. J. Cancer. 2020;146:363–372. doi: 10.1002/ijc.32516. PubMed DOI PMC

Forsti A., Frank C., Smolkova B., Kazimirova A., Barancokova M., Vymetalkova V., Kroupa M., Naccarati A., Vodickova L., Buchancova J., et al. Genetic variation in the major mitotic checkpoint genes associated with chromosomal aberrations in healthy humans. Cancer Lett. 2016;380:442–446. doi: 10.1016/j.canlet.2016.07.011. PubMed DOI

Vodicka P., Musak L., Frank C., Kazimirova A., Vymetalkova V., Barancokova M., Smolkova B., Dzupinkova Z., Jiraskova K., Vodenkova S., et al. Interactions of DNA repair gene variants modulate chromosomal aberrations in healthy subjects. Carcinogenesis. 2015;36:1299–1306. doi: 10.1093/carcin/bgv127. PubMed DOI

Vodicka P., Vodenkova S., Buchler T., Vodickova L. DNA repair capacity and response to treatment of colon cancer. Pharmacogenomics. 2019;20:1225–1233. doi: 10.2217/pgs-2019-0070. PubMed DOI

Ghiringhelli F., Richard C., Chevrier S., Végran F., Boidot R. Efficiency of olaparib in colorectal cancer patients with an alteration of the homologous repair protein. World J. Gastroenterol. 2016;22:10680–10686. doi: 10.3748/wjg.v22.i48.10680. PubMed DOI PMC

Morales J., Li L., Fattah F.J., Dong Y., Bey E.A., Patel M., Gao J., Boothman D.A. Review of poly (ADP-ribose) polymerase (PARP) mechanisms of action and rationale for targeting in cancer and other diseases. Crit. Rev. Eukaryot Gene Expr. 2014;24:15–28. doi: 10.1615/CritRevEukaryotGeneExpr.2013006875. PubMed DOI PMC

Kamel D., Gray C., Walia J.S., Kumar V. PARP Inhibitor Drugs in the Treatment of Breast, Ovarian, Prostate and Pancreatic Cancers: An Update of Clinical Trials. Curr. Drug Targets. 2018;19:21–37. doi: 10.2174/1389450118666170711151518. PubMed DOI

Tomkinson A.E., Howes T.R.L., Wiest N.E. DNA ligases as therapeutic targets. Transl. Cancer Res. 2013;2:1219. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace