Oxidative Damage in Sporadic Colorectal Cancer: Molecular Mapping of Base Excision Repair Glycosylases MUTYH and hOGG1 in Colorectal Cancer Patients
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-03997S
Grantova agentura Ceske republiky (GACR)
CR NU21-03-00506
Agentura pro zdravotnicky vyzkum Ceske Republiky, Ministerstvo zravotnictvi
UNCE/MED/006
Karlova Univerzita
No. 43-Surgical Disciplines
Karlova Univerzita Cooperation
PubMed
35628513
PubMed Central
PMC9145200
DOI
10.3390/ijms23105704
PII: ijms23105704
Knihovny.cz E-zdroje
- Klíčová slova
- BER glycosylases, DNA repair, Oxidative DNA damage, colorectal cancer,
- MeSH
- DNA-glykosylasy * genetika metabolismus MeSH
- familiární adenomatózní polypóza MeSH
- kolorektální nádory * patologie MeSH
- lidé MeSH
- nádorové mikroprostředí MeSH
- oprava DNA genetika MeSH
- oxidační stres genetika MeSH
- protoonkogenní proteiny p21(ras) genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA-glykosylasy * MeSH
- mutY adenine glycosylase MeSH Prohlížeč
- oxoguanine glycosylase 1, human MeSH Prohlížeč
- protoonkogenní proteiny p21(ras) MeSH
Oxidative stress, oxidative DNA damage and resulting mutations play a role in colorectal carcinogenesis. Impaired equilibrium between DNA damage formation, antioxidant status, and DNA repair capacity is responsible for the accumulation of genetic mutations and genomic instability. The lesion-specific DNA glycosylases, e.g., hOGG1 and MUTYH, initiate the repair of oxidative DNA damage. Hereditary syndromes (MUTYH-associated polyposis, NTHL1-associated tumor syndrome) with germline mutations causing a loss-of-function in base excision repair glycosylases, serve as straight forward evidence on the role of oxidative DNA damage and its repair. Altered or inhibited function of above glycosylases result in an accumulation of oxidative DNA damage and contribute to the adenoma-adenocarcinoma transition. Oxidative DNA damage, unless repaired, often gives rise G:C > T:A mutations in tumor suppressor genes and proto-oncogenes with subsequent occurrence of chromosomal copy-neutral loss of heterozygosity. For instance, G>T transversions in position c.34 of a KRAS gene serves as a pre-screening tool for MUTYH-associated polyposis diagnosis. Since sporadic colorectal cancer represents more complex and heterogenous disease, the situation is more complicated. In the present study we focused on the roles of base excision repair glycosylases (hOGG1, MUTYH) in colorectal cancer patients by investigating tumor and adjacent mucosa tissues. Although we found downregulation of both glycosylases and significantly lower expression of hOGG1 in tumor tissues, accompanied with G>T mutations in KRAS gene, oxidative DNA damage and its repair cannot solely explain the onset of sporadic colorectal cancer. In this respect, other factors (especially microenvironment) per se or in combination with oxidative DNA damage warrant further attention. Base excision repair characteristics determined in colorectal cancer tissues and their association with disease prognosis have been discussed as well.
Zobrazit více v PubMed
Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2021;71:209–249. doi: 10.3322/caac.21660. PubMed DOI
Brenner H., Chen C. The colorectal cancer epidemic: Challenges and opportunities for primary, secondary and tertiary prevention. Br. J. Cancer. 2018;119:785–792. doi: 10.1038/s41416-018-0264-x. PubMed DOI PMC
Murphy N., Moreno V., Hughes D.J., Vodicka L., Vodicka P., Aglago E.K., Gunter M.J., Jenab M. Lifestyle and dietary environmental factors in colorectal cancer susceptibility. Mol. Asp. Med. 2019;69:2–9. doi: 10.1016/j.mam.2019.06.005. PubMed DOI
Collins A.R., Azqueta A., Langie S.A. Effects of micronutrients on DNA repair. Eur. J. Nutr. 2012;51:261–279. doi: 10.1007/s00394-012-0318-4. PubMed DOI
Murphy N., Jenab M., Gunter M.J. Adiposity and gastrointestinal cancers: Epidemiology, mechanisms and future directions. Nat. Rev. Gastroenterol. Hepatol. 2018;15:659–670. doi: 10.1038/s41575-018-0038-1. PubMed DOI
Kompella P., Vasquez K.M. Obesity and cancer: A mechanistic overview of metabolic changes in obesity that impact genetic instability. Mol. Carcinog. 2019;58:1531–1550. doi: 10.1002/mc.23048. PubMed DOI PMC
Arthur J.C., Perez-Chanona E., Mühlbauer M., Tomkovich S., Uronis J.M., Fan T.-J., Campbell B.J., Abujamel T., Dogan B., Rogers A.B., et al. Intestinal Inflammation Targets Cancer-Inducing Activity of the Microbiota. Science. 2012;338:120–123. doi: 10.1126/science.1224820. PubMed DOI PMC
Ohno M., Sakumi K., Fukumura R., Furuichi M., Iwasaki Y., Hokama M., Ikemura T., Tsuzuki T., Gondo Y., Nakabeppu Y. 8-oxoguanine causes spontaneous de novo germline mutations in mice. Sci. Rep. 2014;4:4689. doi: 10.1038/srep04689. PubMed DOI PMC
Dizdaroglu M. Oxidatively induced DNA damage and its repair in cancer. Mutat. Res. Mutat. Res. 2015;763:212–245. doi: 10.1016/j.mrrev.2014.11.002. PubMed DOI
Wallace S.S. DNA glycosylases search for and remove oxidized DNA bases. Environ. Mol. Mutagen. 2013;54:691–704. doi: 10.1002/em.21820. PubMed DOI PMC
Vodicka P., Vodenkova S., Opattova A., Vodickova L. DNA damage and repair measured by comet assay in cancer patients. Mutat. Res. Toxicol. Environ. Mutagen. 2019;843:95–110. doi: 10.1016/j.mrgentox.2019.05.009. PubMed DOI
Vodicka P., Urbanova M., Makovicky P., Tomasova K., Kroupa M., Stetina R., Opattova A., Kostovcikova K., Siskova A., Schneiderova M., et al. Oxidative Damage in Sporadic Colorectal Cancer: Molecular Mapping of Base Excision Repair Glycosylases in Colorectal Cancer Patients. Int. J. Mol. Sci. 2020;21:2473. doi: 10.3390/ijms21072473. PubMed DOI PMC
Nascimento E.F.R., Ribeiro M.L., Magro D.O., Carvalho J., Kanno D.T., Martinez C.A.R., Coy C.S.R. Tissue expresion of the genes mutyh and ogg1 in patients with sporadic colorectal cancer. ABCD Arq. Bras. Cir. Dig. 2017;30:98–102. doi: 10.1590/0102-6720201700020005. PubMed DOI PMC
Markowitz S.D., Bertagnolli M.M. Molecular basis of colorectal cancer. New Engl. J. Med. 2009;361:2449–2460. doi: 10.1056/NEJMra0804588. PubMed DOI PMC
Schubert S.A., Morreau H., De Miranda N.F.C.C., Van Wezel T. The missing heritability of familial colorectal cancer. Mutagenesis. 2020;35:221–231. doi: 10.1093/mutage/gez027. PubMed DOI PMC
Aimé A., Coulet F., Lefevre J.H., Colas C., Cervera P., Flejou J.-F., Lascols O., Soubrier F., Parc Y. Somatic c.34G > T KRAS mutation: A new prescreening test for MUTYH-associated polyposis? Cancer Genet. 2015;208:390–395. doi: 10.1016/j.cancergen.2015.04.005. PubMed DOI
Jacobs A.L., Schär P. DNA glycosylases: In DNA repair and beyond. Chromosoma. 2011;121:1–20. doi: 10.1007/s00412-011-0347-4. PubMed DOI PMC
Helleday T., Eshtad S., Nik-Zainal S. Mechanisms underlying mutational signatures in human cancers. Nat. Rev. Genet. 2014;15:585–598. doi: 10.1038/nrg3729. PubMed DOI PMC
Zinsky R., Bölükbas S., Bartsch H., Schirren J., Fisseler-Eckhoff A. Analysis of KRAS Mutations of Exon 2 Codons 12 and 13 by SNaPshot Analysis in Comparison to Common DNA Sequencing. Gastroenterol. Res. Pr. 2010;2010:1–5. doi: 10.1155/2010/789363. PubMed DOI PMC
Slyskova J., Cordero F., Pardini B., Korenkova V., Vymetalkova V., Bielik L., Vodickova L., Pitule P., Liska V., Matejka V.M., et al. Post-treatment recovery of suboptimal DNA repair capacity and gene expression levels in colorectal cancer patients. Mol. Carcinog. 2014;54:769–778. doi: 10.1002/mc.22141. PubMed DOI
Jiraskova K., Hughes D.J., Brezina S., Gumpenberger T., Veskrnova V., Buchler T., Schneiderova M., Levy M., Liska V., Vodenkova S., et al. Functional polymorphisms in DNA repair genes are associated with sporadic colorectal cancer susceptibility and clinical outcome. Int. J. Mol. Sci. 2018;20:97. doi: 10.3390/ijms20010097. PubMed DOI PMC
Vodenkova S., Jiraskova K., Urbanova M., Kroupa M., Slyskova J., Schneiderova M., Levy M., Buchler T., Liska V., Vodickova L., et al. Base excision repair capacity as a determinant of prognosis and therapy response in colon cancer patients. DNA Repair. 2018;72:77–85. doi: 10.1016/j.dnarep.2018.09.006. PubMed DOI
Dolwani S., Williams G.T., West K.P., Newman J., Stock D., Griffiths A.P., Best J., Cheadle J.P., Sampson J.R. Analysis of inherited MYH/(MutYH) mutations in British Asian patients with colorectal cancer. Gut. 2007;56:593. doi: 10.1136/gut.2006.094532. PubMed DOI PMC
Görgens H., Krüger S., Kuhlisch E., Pagenstecher C., Höhl R., Schackert H.K., Müller A. Microsatellite stable colorectal cancers in clinically suspected hereditary nonpolyposis colorectal cancer patients without vertical transmission of disease are unlikely to be caused by biallelic germline mutations in MYH. J. Mol. Diagn. 2006;8:178–182. doi: 10.2353/jmoldx.2006.050119. PubMed DOI PMC
Tang Z., Li C., Kang B., Gao G., Li C., Zhang Z. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45:W98–W102. doi: 10.1093/nar/gkx247. PubMed DOI PMC
Kuiper R.P., Hoogerbrugge N. NTHL1 defines novel cancer syndrome. Oncotarget. 2015;6:34069–34070. doi: 10.18632/oncotarget.5864. PubMed DOI PMC
Panieri E., Santoro M.M. ROS homeostasis and metabolism: A dangerous liason in cancer cells. Cell Death Dis. 2016;7:e2253. doi: 10.1038/cddis.2016.105. PubMed DOI PMC
Kay J., Thadhani E., Samson L., Engelward B. Inflammation-induced DNA damage, mutations and cancer. DNA Repair. 2019;83:102673. doi: 10.1016/j.dnarep.2019.102673. PubMed DOI PMC
Slyskova J., Korenkova V., Collins A., Prochazka P., Vodickova L., Svec J., Lipska L., Levy M., Schneiderová M., Liška V., et al. Functional, Genetic, and Epigenetic Aspects of Base and Nucleotide Excision Repair in Colorectal Carcinomas. Clin. Cancer Res. 2012;18:5878–5887. doi: 10.1158/1078-0432.CCR-12-1380. PubMed DOI
Vodicka P., Vodenkova S., Buchler T., Vodickova L. DNA repair capacity and response to treatment of colon cancer. Pharmacogenomics. 2019;20:1225–1233. doi: 10.2217/pgs-2019-0070. PubMed DOI
Rizzo A., Ricci A.D. PD-L1, TMB, and other potential predictors of response to immunotherapy for hepatocellular carcinoma: How can they assist drug clinical trials? Expert Opin. Investig. Drugs. 2022;31:415–423. doi: 10.1080/13543784.2021.1972969. PubMed DOI
Li X., Dowling E.K., Yan G., Dereli Z., Bozorgui B., Imanirad P., Elnaggar J.H., Luna A., Menter D.G., Pilié P.G., et al. Precision Combination Therapies Based on Recurrent Oncogenic Coalterations. Cancer Discov. 2022:OF1–OF18. doi: 10.1158/2159-8290.CD-21-0832. PubMed DOI PMC
Fahrer J., Kaina B. Impact of DNA repair on the dose-response of colorectal cancer formation induced by dietary carcinogens. Food Chem. Toxicol. 2017;106:583–594. doi: 10.1016/j.fct.2016.09.029. PubMed DOI
Kaina B., Christmann M., Naumann S., Roos W.P. MGMT: Key node in the battle against genotoxicity, carcinogenicity and apoptosis induced by alkylating agents. DNA Repair. 2007;6:1079–1099. doi: 10.1016/j.dnarep.2007.03.008. PubMed DOI
Melis J.P., Van Steeg H., Luijten M. Oxidative DNA damage and nucleotide excision repair. Antioxid. Redox Signal. 2013;18:2409–2419. doi: 10.1089/ars.2012.5036. PubMed DOI PMC
Lerner L.K., Moreno N.C., Rocha C.R.R., Munford V., Santos V., Soltys D.T., Garcia C.C.M., Sarasin A., Menck C.F. XPD/ERCC2 mutations interfere in cellular responses to oxidative stress. Mutagenesis. 2019;34:341–354. doi: 10.1093/mutage/gez020. PubMed DOI
Lee T.-H., Kang T.-H. DNA Oxidation and Excision Repair Pathways. Int. J. Mol. Sci. 2019;20:6092. doi: 10.3390/ijms20236092. PubMed DOI PMC
He J., Shi T.-Y., Zhu M.-L., Wang M.-Y., Li Q.-X., Wei Q.-Y. Associations of Lys939Gln and Ala499Val polymorphisms of the XPC gene with cancer susceptibility: A meta-analysis. Int. J. Cancer. 2013;133:1765–1775. doi: 10.1002/ijc.28089. PubMed DOI
Slyskova J., Naccarati A., Pardini B., Polakova V., Vodickova L., Smerhovsky Z., Levy M., Lipska L., Liska V., Vodicka P. Differences in nucleotide excision repair capacity between newly diagnosed colorectal cancer patients and healthy controls. Mutagenesis. 2012;27:225–232. doi: 10.1093/mutage/ger088. PubMed DOI
Vodicka P., Stetina R., Polakova V., Tulupova E., Naccarati A., Vodickova L., Kumar R., Hanova M., Pardini B., Slyskova J., et al. Association of DNA repair polymorphisms with DNA repair functional outcomes in healthy human subjects. Carcinogenesis. 2007;28:657–664. doi: 10.1093/carcin/bgl187. PubMed DOI
Guo C.-L., Han F.-F., Wang H.-Y., Wang L. Meta-analysis of the association between hOGG1 Ser326Cys polymorphism and risk of colorectal cancer based on case–control studies. J. Cancer Res. Clin. Oncol. 2012;138:1443–1448. doi: 10.1007/s00432-012-1197-z. PubMed DOI PMC
Kinnersley B., Buch S., Castellví-Bel S., Farrington S.M., Forsti A., Hampe J., Hemminki K., Hofstra R.M.W., Northwood E., Palles C., et al. Re: Role of the oxidative DNA damage repair gene OGG1 in colorectal tumorigenesis. J. Natl. Cancer Inst. 2013;106:dju086. doi: 10.1093/jnci/dju086. PubMed DOI PMC
Zuk J., Ozernov-Palchik O., Kim H., Lakshminarayanan K., Gabrieli J.D.E., Tallal P., Gaab N. Enhanced Syllable Discrimination Thresholds in Musicians. PLoS ONE. 2013;8:e80546. doi: 10.1371/journal.pone.0080546. PubMed DOI PMC