Functional Polymorphisms in DNA Repair Genes Are Associated with Sporadic Colorectal Cancer Susceptibility and Clinical Outcome

. 2018 Dec 27 ; 20 (1) : . [epub] 20181227

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30591675

Grantová podpora
GAUK112515 the Grant Agency of Charles University
HRA_PHS/2015/1142 the Health Research Board of Ireland
UNCE/MED/006 the Centrum of clinical and experimental liver surgery
LO1503 Ministry of Education Youth and Sports of the Czech Republic, the National Sustainability Program I
GACR 17-16857S Grantová Agentura České Republiky
Post-doctoral fellowship Year 2014-2017 the Fondazione Umberto Veronesi
AZV MZ 15-26535A the Internal Grant Agency of the Ministry of Health of the Czech Republic
AZV 17-30920A the Internal Grant Agency of the Ministry of Health of the Czech Republic
829675 the FFG BRIDGE
the Herzfelder´sche Familienstiftung the Herzfelder´sche Familienstiftung
GACR 15-14789S Grantová Agentura České Republiky

DNA repair processes are involved in both the onset and treatment efficacy of colorectal cancer (CRC). A change of a single nucleotide causing an amino acid substitution in the corresponding protein may alter the efficiency of DNA repair, thus modifying the CRC susceptibility and clinical outcome. We performed a candidate gene approach in order to analyze the association of non-synonymous single nucleotide polymorphisms (nsSNPs) in the genes covering the main DNA repair pathways with CRC risk and clinical outcome modifications. Our candidate polymorphisms were selected according to the foremost genomic and functional prediction databases. Sixteen nsSNPs in 12 DNA repair genes were evaluated in cohorts from the Czech Republic and Austria. Apart from the tumor-node-metastasis (TNM) stage, which occurred as the main prognostic factor in all of the performed analyses, we observed several significant associations of different nsSNPs with survival and clinical outcomes in both cohorts. However, only some of the genes (REV3L, POLQ, and NEIL3) were prominently defined as prediction factors in the classification and regression tree analysis; therefore, the study suggests their association for patient survival. In summary, we provide observational and bioinformatics evidence that even subtle alterations in specific proteins of the DNA repair pathways may contribute to CRC susceptibility and clinical outcome.

Zobrazit více v PubMed

Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018 doi: 10.3322/caac.21492. PubMed DOI

Ferlay J., Steliarova-Foucher E., Lortet-Tieulent J., Rosso S., Coebergh J.W., Comber H., Forman D., Bray F. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries in 2012. Eur. J. Cancer. 2013;49:1374–1403. doi: 10.1016/j.ejca.2012.12.027. PubMed DOI

Aran V., Victorino A.P., Thuler L.C., Ferreira C.G. Colorectal Cancer: Epidemiology, Disease Mechanisms and Interventions to Reduce Onset and Mortality. Clin. Colorectal Cancer. 2016;15:195–203. doi: 10.1016/j.clcc.2016.02.008. PubMed DOI

Binefa G., Rodriguez-Moranta F., Teule A., Medina-Hayas M. Colorectal cancer: From prevention to personalized medicine. World J. Gastroenterol. 2014;20:6786–6808. doi: 10.3748/wjg.v20.i22.6786. PubMed DOI PMC

Gustavsson B., Carlsson G., Machover D., Petrelli N., Roth A., Schmoll H.J., Tveit K.M., Gibson F. A review of the evolution of systemic chemotherapy in the management of colorectal cancer. Clin. Colorectal Cancer. 2015;14:1–10. doi: 10.1016/j.clcc.2014.11.002. PubMed DOI

Brenner H., Kloor M., Pox C.P. Colorectal cancer. Lancet. 2014;383:1490–1502. doi: 10.1016/S0140-6736(13)61649-9. PubMed DOI

Vodicka P., Stetina R., Polakova V., Tulupova E., Naccarati A., Vodickova L., Kumar R., Hanova M., Pardini B., Slyskova J., et al. Association of DNA repair polymorphisms with DNA repair functional outcomes in healthy human subjects. Carcinogenesis. 2007;28:657–664. doi: 10.1093/carcin/bgl187. PubMed DOI

He J., Shi T.Y., Zhu M.L., Wang M.Y., Li Q.X., Wei Q.Y. Associations of Lys939Gln and Ala499Val polymorphisms of the XPC gene with cancer susceptibility: A meta-analysis. Int. J. Cancer. 2013;133:1765–1775. doi: 10.1002/ijc.28089. PubMed DOI

Slyskova J., Naccarati A., Pardini B., Polakova V., Vodickova L., Smerhovsky Z., Levy M., Lipska L., Liska V., Vodicka P. Differences in nucleotide excision repair capacity between newly diagnosed colorectal cancer patients and healthy controls. Mutagenesis. 2012;27:225–232. doi: 10.1093/mutage/ger088. PubMed DOI

Peters U., Jiao S., Schumacher F.R., Hutter C.M., Aragaki A.K., Baron J.A., Berndt S.I., Bezieau S., Brenner H., Butterbach K., et al. Identification of Genetic Susceptibility Loci for Colorectal Tumors in a Genome-Wide Meta-analysis. Gastroenterology. 2013;144:799–807.e24. doi: 10.1053/j.gastro.2012.12.020. PubMed DOI PMC

Whiffin N., Hosking F.J., Farrington S.M., Palles C., Dobbins S.E., Zgaga L., Lloyd A., Kinnersley B., Gorman M., Tenesa A., et al. Identification of susceptibility loci for colorectal cancer in a genome-wide meta-analysis. Hum. Mol. Genet. 2014;23:4729–4737. doi: 10.1093/hmg/ddu177. PubMed DOI PMC

Shen C., Yan T., Wang Z., Su H.C., Zhu X., Tian X., Fang J.Y., Chen H., Hong J. Variant of SNP rs1317082 at CCSlnc362 (RP11-362K14.5) creates a binding site for miR-4658 and diminishes the susceptibility to CRC. Cell Death Dis. 2018;9:1177. doi: 10.1038/s41419-018-1222-5. PubMed DOI PMC

Tanskanen T., van den Berg L., Valimaki N., Aavikko M., Ness-Jensen E., Hveem K., Wettergren Y., Bexe Lindskog E., Tonisson N., Metspalu A., et al. Genome-wide association study and meta-analysis in Northern European populations replicate multiple colorectal cancer risk loci. Int. J. Cancer. 2018;142:540–546. doi: 10.1002/ijc.31076. PubMed DOI PMC

Huyghe J.R., Bien S.A., Harrison T.A., Kang H.M., Chen S., Schmit S.L., Conti D.V., Qu C., Jeon J., Edlund C.K., et al. Discovery of common and rare genetic risk variants for colorectal cancer. Nat. Genet. 2018 doi: 10.1038/s41588-018-0286-6. PubMed DOI PMC

Slyskova J., Cordero F., Pardini B., Korenkova V., Vymetalkova V., Bielik L., Vodickova L., Pitule P., Liska V., Matejka V.M., et al. Post-treatment recovery of suboptimal DNA repair capacity and gene expression levels in colorectal cancer patients. Mol. Carcinog. 2015;54:769–778. doi: 10.1002/mc.22141. PubMed DOI

Wyatt M.D., Wilson D.M., 3rd Participation of DNA repair in the response to 5-fluorouracil. Cell. Mol. Life Sci. 2009;66:788–799. doi: 10.1007/s00018-008-8557-5. PubMed DOI PMC

Martin L.P., Hamilton T.C., Schilder R.J. Platinum resistance: The role of DNA repair pathways. Clin. Cancer Res. 2008;14:1291–1295. doi: 10.1158/1078-0432.CCR-07-2238. PubMed DOI

De Mattia E., Cecchin E., Toffoli G. Pharmacogenomics of intrinsic and acquired pharmacoresistance in colorectal cancer: Toward targeted personalized therapy. Drug Resist. Updat. 2015;20:39–70. doi: 10.1016/j.drup.2015.05.003. PubMed DOI

Vaisman A., Woodgate R. Translesion DNA polymerases in eukaryotes: What makes them tick? Crit. Rev. Biochem. Mol. Biol. 2017;52:274–303. doi: 10.1080/10409238.2017.1291576. PubMed DOI PMC

Wittschieben J.P., Patil V., Glushets V., Robinson L.J., Kusewitt D.F., Wood R.D. Loss of DNA polymerase zeta enhances spontaneous tumorigenesis. Cancer Res. 2010;70:2770–2778. doi: 10.1158/0008-5472.CAN-09-4267. PubMed DOI PMC

Aparicio T., Baer R., Gautier J. DNA double-strand break repair pathway choice and cancer. DNA Repair (Amst.) 2014;19:169–175. doi: 10.1016/j.dnarep.2014.03.014. PubMed DOI PMC

Knobel P.A., Marti T.M. Translesion DNA synthesis in the context of cancer research. Cancer Cell Int. 2011;11:39. doi: 10.1186/1475-2867-11-39. PubMed DOI PMC

Galluzzi L., Senovilla L., Vitale I., Michels J., Martins I., Kepp O., Castedo M., Kroemer G. Molecular mechanisms of cisplatin resistance. Oncogene. 2012;31:1869–1883. doi: 10.1038/onc.2011.384. PubMed DOI

Wang H., Zhang S.Y., Wang S., Lu J., Wu W., Weng L., Chen D., Zhang Y., Lu Z., Yang J., et al. REV3L confers chemoresistance to cisplatin in human gliomas: The potential of its RNAi for synergistic therapy. Neuro Oncol. 2009;11:790–802. doi: 10.1215/15228517-2009-015. PubMed DOI PMC

Roos W.P., Tsaalbi-Shtylik A., Tsaryk R., Guvercin F., de Wind N., Kaina B. The translesion polymerase Rev3L in the tolerance of alkylating anticancer drugs. Mol. Pharmacol. 2009;76:927–934. doi: 10.1124/mol.109.058131. PubMed DOI

Stallons L.J., McGregor W.G. Translesion synthesis polymerases in the prevention and promotion of carcinogenesis. J. Nucleic Acids. 2010;2010:643857. doi: 10.4061/2010/643857. PubMed DOI PMC

Brondello J.M., Pillaire M.J., Rodriguez C., Gourraud P.A., Selves J., Cazaux C., Piette J. Novel evidences for a tumor suppressor role of Rev3, the catalytic subunit of Pol zeta. Oncogene. 2008;27:6093–6101. doi: 10.1038/onc.2008.212. PubMed DOI

Varadi V., Bevier M., Grzybowska E., Johansson R., Enquist K., Henriksson R., Butkiewicz D., Pamula-Pilat J., Tecza K., Hemminki K., et al. Genetic variation in genes encoding for polymerase zeta subunits associates with breast cancer risk, tumour characteristics and survival. Breast Cancer Res. Treat. 2011;129:235–245. doi: 10.1007/s10549-011-1460-z. PubMed DOI

Pan J., Chi P., Lu X., Xu Z. Genetic polymorphisms in translesion synthesis genes are associated with colorectal cancer risk and metastasis in Han Chinese. Gene. 2012;504:151–155. doi: 10.1016/j.gene.2012.05.042. PubMed DOI

Hussain S.K., Mu L.N., Cai L., Chang S.C., Park S.L., Oh S.S., Wang Y., Goldstein B.Y., Ding B.G., Jiang Q., et al. Genetic variation in immune regulation and DNA repair pathways and stomach cancer in China. Cancer Epidemiol. Biomark. Prev. 2009;18:2304–2309. doi: 10.1158/1055-9965.EPI-09-0233. PubMed DOI PMC

Yousefzadeh M.J., Wood R.D. DNA polymerase POLQ and cellular defense against DNA damage. DNA Repair (Amst.) 2013;12:1–9. doi: 10.1016/j.dnarep.2012.10.004. PubMed DOI PMC

Beagan K., McVey M. Linking DNA polymerase theta structure and function in health and disease. Cell. Mol. Life Sci. 2016;73:603–615. doi: 10.1007/s00018-015-2078-9. PubMed DOI PMC

Kawamura K., Bahar R., Seimiya M., Chiyo M., Wada A., Okada S., Hatano M., Tokuhisa T., Kimura H., Watanabe S., et al. DNA polymerase theta is preferentially expressed in lymphoid tissues and upregulated in human cancers. Int. J. Cancer. 2004;109:9–16. doi: 10.1002/ijc.11666. PubMed DOI

Lemee F., Bergoglio V., Fernandez-Vidal A., Machado-Silva A., Pillaire M.J., Bieth A., Gentil C., Baker L., Martin A.L., Leduc C., et al. DNA polymerase theta up-regulation is associated with poor survival in breast cancer, perturbs DNA replication, and promotes genetic instability. Proc. Natl. Acad. Sci. USA. 2010;107:13390–13395. doi: 10.1073/pnas.0910759107. PubMed DOI PMC

Allera-Moreau C., Rouquette I., Lepage B., Oumouhou N., Walschaerts M., Leconte E., Schilling V., Gordien K., Brouchet L., Delisle M.B., et al. DNA replication stress response involving PLK1, CDC6, POLQ, RAD51 and CLASPIN upregulation prognoses the outcome of early/mid-stage non-small cell lung cancer patients. Oncogenesis. 2012;1:e30. doi: 10.1038/oncsis.2012.29. PubMed DOI PMC

Pillaire M.J., Selves J., Gordien K., Gourraud P.A., Gentil C., Danjoux M., Do C., Negre V., Bieth A., Guimbaud R., et al. A ‘DNA replication’ signature of progression and negative outcome in colorectal cancer. Oncogene. 2010;29:876–887. doi: 10.1038/onc.2009.378. PubMed DOI

Li W.Q., Hu N., Hyland P.L., Gao Y., Wang Z.M., Yu K., Su H., Wang C.Y., Wang L.M., Chanock S.J., et al. Genetic variants in DNA repair pathway genes and risk of esophageal squamous cell carcinoma and gastric adenocarcinoma in a Chinese population. Carcinogenesis. 2013;34:1536–1542. doi: 10.1093/carcin/bgt094. PubMed DOI PMC

Brandalize A.P., Schuler-Faccini L., Hoffmann J.S., Caleffi M., Cazaux C., Ashton-Prolla P. A DNA repair variant in POLQ (c.-1060A > G) is associated to hereditary breast cancer patients: A case-control study. BMC Cancer. 2014;14:850. doi: 10.1186/1471-2407-14-850. PubMed DOI PMC

Rendleman J., Antipin Y., Reva B., Adaniel C., Przybylo J.A., Dutra-Clarke A., Hansen N., Heguy A., Huberman K., Borsu L., et al. Genetic variation in DNA repair pathways and risk of non-Hodgkin’s lymphoma. PLoS ONE. 2014;9:e101685. doi: 10.1371/journal.pone.0101685. PubMed DOI PMC

Family L., Bensen J.T., Troester M.A., Wu M.C., Anders C.K., Olshan A.F. Single-nucleotide polymorphisms in DNA bypass polymerase genes and association with breast cancer and breast cancer subtypes among African Americans and Whites. Breast Cancer Res. Treat. 2015;149:181–190. doi: 10.1007/s10549-014-3203-4. PubMed DOI PMC

Krokeide S.Z., Laerdahl J.K., Salah M., Luna L., Cederkvist F.H., Fleming A.M., Burrows C.J., Dalhus B., Bjoras M. Human NEIL3 is mainly a monofunctional DNA glycosylase removing spiroimindiohydantoin and guanidinohydantoin. DNA Repair (Amst.) 2013;12:1159–1164. doi: 10.1016/j.dnarep.2013.04.026. PubMed DOI PMC

Wallace S.S., Murphy D.L., Sweasy J.B. Base excision repair and cancer. Cancer Lett. 2012;327:73–89. doi: 10.1016/j.canlet.2011.12.038. PubMed DOI PMC

Hildrestrand G.A., Neurauter C.G., Diep D.B., Castellanos C.G., Krauss S., Bjoras M., Luna L. Expression patterns of Neil3 during embryonic brain development and neoplasia. BMC Neurosci. 2009;10:45. doi: 10.1186/1471-2202-10-45. PubMed DOI PMC

Shinmura K., Kato H., Kawanishi Y., Igarashi H., Goto M., Tao H., Inoue Y., Nakamura S., Misawa K., Mineta H., et al. Abnormal Expressions of DNA Glycosylase Genes NEIL1, NEIL2, and NEIL3 Are Associated with Somatic Mutation Loads in Human Cancer. Oxid. Med. Cell. Longev. 2016;2016:1546392. doi: 10.1155/2016/1546392. PubMed DOI PMC

Kauffmann A., Rosselli F., Lazar V., Winnepenninckx V., Mansuet-Lupo A., Dessen P., van den Oord J.J., Spatz A., Sarasin A. High expression of DNA repair pathways is associated with metastasis in melanoma patients. Oncogene. 2008;27:565–573. doi: 10.1038/sj.onc.1210700. PubMed DOI

D’Errico M., Parlanti E., Pascucci B., Fortini P., Baccarini S., Simonelli V., Dogliotti E. Single nucleotide polymorphisms in DNA glycosylases: From function to disease. Free Radic. Biol. Med. 2017;107:278–291. doi: 10.1016/j.freeradbiomed.2016.12.002. PubMed DOI

Barry K.H., Koutros S., Berndt S.I., Andreotti G., Hoppin J.A., Sandler D.P., Burdette L.A., Yeager M., Freeman L.E., Lubin J.H., et al. Genetic variation in base excision repair pathway genes, pesticide exposure, and prostate cancer risk. Environ. Health Perspect. 2011;119:1726–1732. doi: 10.1289/ehp.1103454. PubMed DOI PMC

Bethke L., Webb E., Murray A., Schoemaker M., Johansen C., Christensen H.C., Muir K., McKinney P., Hepworth S., Dimitropoulou P., et al. Comprehensive analysis of the role of DNA repair gene polymorphisms on risk of glioma. Hum. Mol. Genet. 2008;17:800–805. doi: 10.1093/hmg/ddm351. PubMed DOI

Cipollini M., Figlioli G., Maccari G., Garritano S., De Santi C., Melaiu O., Barone E., Bambi F., Ermini S., Pellegrini G., et al. Polymorphisms within base and nucleotide excision repair pathways and risk of differentiated thyroid carcinoma. DNA Repair (Amst.) 2016;41:27–31. doi: 10.1016/j.dnarep.2016.03.011. PubMed DOI

Allione A., Pardini B., Viberti C., Oderda M., Allasia M., Gontero P., Vineis P., Sacerdote C., Matullo G. The prognostic value of basal DNA damage level in peripheral blood lymphocytes of patients affected by bladder cancer. Urol. Oncol. 2018;36:241.e15–241.e23. doi: 10.1016/j.urolonc.2018.01.006. PubMed DOI

Lee P.H., Shatkay H. F-SNP: Computationally predicted functional SNPs for disease association studies. Nucleic Acids Res. 2008;36:D820–D824. doi: 10.1093/nar/gkm904. PubMed DOI PMC

Vymetalkova V., Pardini B., Rosa F., Jiraskova K., Di Gaetano C., Bendova P., Levy M., Veskrnova V., Buchler T., Vodickova L., et al. Polymorphisms in microRNA binding sites of mucin genes as predictors of clinical outcome in colorectal cancer patients. Carcinogenesis. 2017;38:28–39. doi: 10.1093/carcin/bgw114. PubMed DOI

Schneiderova M., Naccarati A., Pardini B., Rosa F., Gaetano C.D., Jiraskova K., Opattova A., Levy M., Veskrna K., Veskrnova V., et al. MicroRNA-binding site polymorphisms in genes involved in colorectal cancer etiopathogenesis and their impact on disease prognosis. Mutagenesis. 2017;32:533–542. doi: 10.1093/mutage/gex026. PubMed DOI

Hofer P., Hagmann M., Brezina S., Dolejsi E., Mach K., Leeb G., Baierl A., Buch S., Sutterluty-Fall H., Karner-Hanusch J., et al. Bayesian and frequentist analysis of an Austrian genome-wide association study of colorectal cancer and advanced adenomas. Oncotarget. 2017;8:98623–98634. doi: 10.18632/oncotarget.21697. PubMed DOI PMC

Lemon S.C., Roy J., Clark M.A., Friedmann P.D., Rakowski W. Classification and regression tree analysis in public health: Methodological review and comparison with logistic regression. Ann. Behav. Med. 2003;26:172–181. doi: 10.1207/S15324796ABM2603_02. PubMed DOI

Benjamini Y., Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Statist. Soc. B. 1995;57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...