Colorectal Adenomas-Genetics and Searching for New Molecular Screening Biomarkers

. 2020 May 05 ; 21 (9) : . [epub] 20200505

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32380676

Grantová podpora
AZVNV18-03-00199 Grant Agency of the Ministry of Health of the Czech Republic
GACR18-09709S Grant Agency of the Czech Republic
GAUK 302119 Charles University Grant Agency
CA17118 European Cooperation in Science and Technology

Colorectal cancer (CRC) is a malignant disease with an incidence of over 1.8 million new cases per year worldwide. CRC outcome is closely related to the respective stage of CRC and is more favorable at less advanced stages. Detection of early colorectal adenomas is the key to survival. In spite of implemented screening programs showing efficiency in the detection of early precancerous lesions and CRC in asymptomatic patients, a significant number of patients are still diagnosed in advanced stages. Research on CRC accomplished during the last decade has improved our understanding of the etiology and development of colorectal adenomas and revealed weaknesses in the general approach to their detection and elimination. Recent studies seek to find a reliable non-invasive biomarker detectable even in the blood. New candidate biomarkers could be selected on the basis of so-called liquid biopsy, such as long non-coding RNA, microRNA, circulating cell-free DNA, circulating tumor cells, and inflammatory factors released from the adenoma into circulation. In this work, we focused on both genetic and epigenetic changes associated with the development of colorectal adenomas into colorectal carcinoma and we also discuss new possible biomarkers that are detectable even in adenomas prior to cancer development.

Zobrazit více v PubMed

Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018;68:394–424. doi: 10.3322/caac.21492. PubMed DOI

Kuipers E.J., Grady W.M., Lieberman D., Seufferlein T., Sung J.J., Boelens P.G., van de Velde C.J., Watanabe T. Colorectal cancer. Nat. Rev. Dis Primers. 2015;1:15065. doi: 10.1038/nrdp.2015.65. PubMed DOI PMC

Pande R., Froggatt P., Baragwanath P., Harmston C. Survival outcome of patients with screening versus symptomatically detected colorectal cancers. Colorectal Dis. 2013;15:74–79. doi: 10.1111/j.1463-1318.2012.03120.x. PubMed DOI

Altobelli E., Rapacchietta L., Marziliano C., Campagna G., Profeta V.F., Fagnano R. Differences in colorectal cancer surveillance epidemiology and screening in the WHO European Region. Oncol. Lett. 2019;17:2531–2542. doi: 10.3892/ol.2018.9851. PubMed DOI PMC

National Cancer Institute, Surveillance Research Program, Surveillance Systems Branch, Surveillance, Epidemiology, and End Results (SEER) Program SEER*Stat Database: Incidence – SEER 18 Regs Research Data + Hurricane Katrina Impacted Louisiana Cases, Nov 2015 Sub (1973–2013 varying) – Linked To County Attributes – Total U.S., 1969–2014 Counties. [(accessed on 4 May 2020)];2016 Available online: https://seer.cancer.gov/data-software/documentation/seerstat/nov2016/

Rawla P., Sunkara T., Barsouk A. Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors. Prz. Gastroenterol. 2019;14:89–103. doi: 10.5114/pg.2018.81072. PubMed DOI PMC

Binefa G., Rodriguez-Moranta F., Teule A., Medina-Hayas M. Colorectal cancer: From prevention to personalized medicine. World J. Gastroenterol. 2014;20:6786–6808. doi: 10.3748/wjg.v20.i22.6786. PubMed DOI PMC

Schreuders E.H., Grobbee E.J., Spaander M.C.W., Kuipers E.J. Advances in Fecal Tests for Colorectal Cancer Screening. Curr. Treat. Options. Gastroenterol. 2016;14:52–162. doi: 10.1007/s11938-016-0076-0. PubMed DOI PMC

Mandel J.S., Bond J.H., Church T.R., Snover D.C., Bradley G.M., Schuman L.M., Ederer F. Reducing Mortality from Colorectal Cancer by Screening for Fecal Occult Blood. N. Engl. J. Med. 1993;328:1365–1371. doi: 10.1056/NEJM199305133281901. PubMed DOI

Ladabaum U., Dominitz J.A., Kahi C., Schoen R.E. Strategies for Colorectal Cancer Screening. Gastroenterology. 2020;158:418–432. doi: 10.1053/j.gastro.2019.06.043. PubMed DOI

Winawer S.J., Zauber A.G., Ho M.N., O’Brien M.J., Gottlieb L.S., Sternberg S.S., Waye J.D., Schapiro M., Bond J.H., Panish J.F., et al. Prevention of colorectal cancer by colonoscopic polypectomy. The National Polyp Study Workgroup. N. Engl. J. Med. 1993;329:1977–1981. doi: 10.1056/NEJM199312303292701. PubMed DOI

Lhewa D.Y., Strate L.L. Pros and cons of colonoscopy in management of acute lower gastrointestinal bleeding. World J. Gastroenterol. 2012;18:1185–1190. doi: 10.3748/wjg.v18.i11.1185. PubMed DOI PMC

Atkin W.S., Edwards R., Kralj-Hans I., Wooldrage K., Hart A.R., Northover J.M., Parkin D.M., Wardle J., Duffy S.W., Cuzick J. Once-only flexible sigmoidoscopy screening in prevention of colorectal cancer: A multicentre randomised controlled trial. Lancet. 2010;375:1624–1633. doi: 10.1016/S0140-6736(10)60551-X. PubMed DOI

Rokkas T., Papaxoinis K., Triantafyllou K., Ladas S.D. A meta-analysis evaluating the accuracy of colon capsule endoscopy in detecting colon polyps. Gastrointest. Endosc. 2010;71:792–798. doi: 10.1016/j.gie.2009.10.050. PubMed DOI

Johnson C.D., Chen M.-H., Toledano A.Y., Heiken J.P., Dachman A., Kuo M.D., Menias C.O., Siewert B., Cheema J.I., Obregon R.G., et al. Accuracy of CT Colonography for Detection of Large Adenomas and Cancers. N. Engl. J. Med. 2008;359:1207–1217. doi: 10.1056/NEJMoa0800996. PubMed DOI PMC

Sun J., Fei F., Zhang M., Li Y., Zhang X., Zhu S., Zhang S. The role of (m)SEPT9 in screening, diagnosis, and recurrence monitoring of colorectal cancer. BMC Cancer. 2019;19:450. doi: 10.1186/s12885-019-5663-8. PubMed DOI PMC

Song L., Jia J., Peng X., Xiao W., Li Y. The performance of the SEPT9 gene methylation assay and a comparison with other CRC screening tests: A meta-analysis. Sci. Rep. 2017;7:3032. doi: 10.1038/s41598-017-03321-8. PubMed DOI PMC

Rubio C.A., Jaramillo E., Lindblom A., Fogt F. Classification of Colorectal Polyps: Guidelines for the Endoscopist. Endoscopy. 2002;34:226–236. doi: 10.1055/s-2002-20296. PubMed DOI

Hassan C., Quintero E., Dumonceau J.M., Regula J., Brandao C., Chaussade S., Dekker E., Dinis-Ribeiro M., Ferlitsch M., Gimeno-Garcia A., et al. Post-polypectomy colonoscopy surveillance: European Society of Gastrointestinal Endoscopy (ESGE) Guideline. Endoscopy. 2013;45:842–851. doi: 10.1055/s-0033-1344548. PubMed DOI

Levin B., Lieberman D.A., McFarland B., Smith R.A., Brooks D., Andrews K.S., Dash C., Giardiello F.M., Glick S., Levin T.R., et al. Screening and surveillance for the early detection of colorectal cancer and adenomatous polyps, 2008: A joint guideline from the American Cancer Society, the US Multi-Society Task Force on Colorectal Cancer, and the American College of Radiology. CA Cancer J. Clin. 2008;58:130–160. doi: 10.3322/CA.2007.0018. PubMed DOI

Shussman N., Wexner S.D. Colorectal polyps and polyposis syndromes. Gastroenterol. Rep. (Oxf) 2014;2:1–15. doi: 10.1093/gastro/got041. PubMed DOI PMC

Dong S.-H., Huang J.-Q., Chen J.-S. Interval colorectal cancer: A challenging field in colorectal cancer. Future Oncol. 2018;14:1307–1316. doi: 10.2217/fon-2017-0439. PubMed DOI

Whiffin N., Hosking F.J., Farrington S.M., Palles C., Dobbins S.E., Zgaga L., Lloyd A., Kinnersley B., Gorman M., Tenesa A., et al. Identification of susceptibility loci for colorectal cancer in a genome-wide meta-analysis. Hum. Mol. Genet. 2014;23:4729–4737. doi: 10.1093/hmg/ddu177. PubMed DOI PMC

Archambault A.N., Su Y.R., Jeon J., Thomas M., Lin Y., Conti D.V., Win A.K., Sakoda L.C., Lansdorp-Vogelaar I., Peterse E.F.P., et al. Cumulative Burden of Colorectal Cancer-Associated Genetic Variants Is More Strongly Associated With Early-Onset vs. Late-Onset Cancer. Gastroenterology. 2020;158:1274–1286.e12. doi: 10.1053/j.gastro.2019.12.012. PubMed DOI PMC

Brenner H., Hoffmeister M., Stegmaier C., Brenner G., Altenhofen L., Haug U. Risk of progression of advanced adenomas to colorectal cancer by age and sex: Estimates based on 840,149 screening colonoscopies. Gut. 2007;56:1585–1589. doi: 10.1136/gut.2007.122739. PubMed DOI PMC

Loeve F., Boer R., Zauber A.G., Van Ballegooijen M., Van Oortmarssen G.J., Winawer S.J., Habbema J.D. National Polyp Study data: Evidence for regression of adenomas. Int. J. Cancer. 2004;111:633–639. doi: 10.1002/ijc.20277. PubMed DOI

Cross W., Kovac M., Mustonen V., Temko D., Davis H., Baker A.M., Biswas S., Arnold R., Chegwidden L., Gatenbee C., et al. The evolutionary landscape of colorectal tumorigenesis. Nat. Ecol. Evol. 2018;2:1661–1672. doi: 10.1038/s41559-018-0642-z. PubMed DOI PMC

Muller M.F., Ibrahim A.E., Arends M.J. Molecular pathological classification of colorectal cancer. Virchows Arch. 2016;469:125–134. doi: 10.1007/s00428-016-1956-3. PubMed DOI PMC

Pellino G., Gallo G., Pallante P., Capasso R., De Stefano A., Maretto I., Malapelle U., Qiu S., Nikolaou S., Barina A., et al. Noninvasive Biomarkers of Colorectal Cancer: Role in Diagnosis and Personalised Treatment Perspectives. Gastroenterol. Res. Pract. 2018;2018:2397863. doi: 10.1155/2018/2397863. PubMed DOI PMC

Winawer S.J., Zauber A.G., Fletcher R.H., Stillman J.S., O’Brien M.J., Levin B., Smith R.A., Lieberman D.A., Burt R.W., Levin T.R., et al. Guidelines for colonoscopy surveillance after polypectomy: A consensus update by the US Multi-Society Task Force on Colorectal Cancer and the American Cancer Society. CA Cancer J. Clin. 2006;56:143–159. doi: 10.3322/canjclin.56.3.143. quiz 184-5. PubMed DOI

Cernat L., Blaj C., Jackstadt R., Brandl L., Engel J., Hermeking H., Jung A., Kirchner T., Horst D. Colorectal Cancers Mimic Structural Organization of Normal Colonic Crypts. PLoS ONE. 2014;9:e104284. doi: 10.1371/journal.pone.0104284. PubMed DOI PMC

Kinzler K.W., Vogelstein B. Cancer-susceptibility genes. Gatekeepers and caretakers. Nature. 1997;386:761–763. doi: 10.1038/386761a0. PubMed DOI

Tomasetti C., Vogelstein B., Parmigiani G. Half or more of the somatic mutations in cancers of self-renewing tissues originate prior to tumor initiation. Proc. Natl. Acad. Sci. USA. 2013;110:1999–2004. doi: 10.1073/pnas.1221068110. PubMed DOI PMC

Khurana E., Fu Y., Colonna V., Mu X.J., Kang H.M., Lappalainen T., Sboner A., Lochovsky L., Chen J., Harmanci A., et al. Integrative annotation of variants from 1092 humans: Application to cancer genomics. Science. 2013;342:1235587. doi: 10.1126/science.1235587. PubMed DOI PMC

Bozic I., Antal T., Ohtsuki H., Carter H., Kim D., Chen S., Karchin R., Kinzler K.W., Vogelstein B., Nowak M.A. Accumulation of driver and passenger mutations during tumor progression. Proc. Natl. Acad. Sci. USA. 2010;107:18545–18550. doi: 10.1073/pnas.1010978107. PubMed DOI PMC

Ciriello G., Miller M.L., Aksoy B.A., Senbabaoglu Y., Schultz N., Sander C. Emerging landscape of oncogenic signatures across human cancers. Nat. Genet. 2013;45:1127–1133. doi: 10.1038/ng.2762. PubMed DOI PMC

Rowan A.J., Lamlum H., Ilyas M., Wheeler J., Straub J., Papadopoulou A., Bicknell D., Bodmer W.F., Tomlinson I.P.M. APC mutations in sporadic colorectal tumors: A mutational “hotspot” and interdependence of the “two hits”. Proc. Natl. Acad. Sci. USA. 2000;97:3352–3357. doi: 10.1073/pnas.97.7.3352. PubMed DOI PMC

Kwong L.N., Dove W.F. APC and its modifiers in colon cancer. Adv. Exp. Med. Biol. 2009;656:85–106. PubMed PMC

Burrell R.A., McClelland S.E., Endesfelder D., Groth P., Weller M.C., Shaikh N., Domingo E., Kanu N., Dewhurst S.M., Gronroos E., et al. Replication stress links structural and numerical cancer chromosomal instability. Nature. 2013;494:492–496. doi: 10.1038/nature11935. PubMed DOI PMC

Sansregret L., Vanhaesebroeck B., Swanton C. Determinants and clinical implications of chromosomal instability in cancer. Nat. Rev. Clin. Oncol. 2018;15:139–150. doi: 10.1038/nrclinonc.2017.198. PubMed DOI

Tariq K., Ghias K. Colorectal cancer carcinogenesis: A review of mechanisms. Cancer Bio. Med. 2016;13:120–135. doi: 10.20892/j.issn.2095-3941.2015.0103. PubMed DOI PMC

Hermsen M., Postma C., Baak J., Weiss M., Rapallo A., Sciutto A., Roemen G., Arends J.W., Williams R., Giaretti W., et al. Colorectal adenoma to carcinoma progression follows multiple pathways of chromosomal instability. Gastroenterology. 2002;123:1109–1119. doi: 10.1053/gast.2002.36051. PubMed DOI

Haan J.C., Labots M., Rausch C., Koopman M., Tol J., Mekenkamp L.J., van de Wiel M.A., Israeli D., van Essen H.F., van Grieken N.C., et al. Genomic landscape of metastatic colorectal cancer. Nat. Commun. 2014;5:5457. doi: 10.1038/ncomms6457. PubMed DOI PMC

Boland C.R., Goel A. Microsatellite instability in colorectal cancer. Gastroenterology. 2010;138:2073–2087.e3. doi: 10.1053/j.gastro.2009.12.064. PubMed DOI PMC

Peltomäki P. Deficient DNA mismatch repair: A common etiologic factor for colon cancer. Hum. Mol. Gen. 2001;10:735–740. doi: 10.1093/hmg/10.7.735. PubMed DOI

Loukola A., Salovaara R., Kristo P., Moisio A.L., Kääriäinen H., Ahtola H., Eskelinen M., Härkönen N., Julkunen R., Kangas E., et al. Microsatellite instability in adenomas as a marker for hereditary nonpolyposis colorectal cancer. Am. J. Pathol. 1999;155:1849–1853. doi: 10.1016/S0002-9440(10)65503-4. PubMed DOI PMC

Steinke V., Engel C., Buttner R., Schackert H.K., Schmiegel W.H., Propping P. Hereditary nonpolyposis colorectal cancer (HNPCC)/Lynch syndrome. Dtsch. Arztebl. Int. 2013;110:32–38. doi: 10.3238/arztebl.2013.0032. PubMed DOI PMC

Weber M., Hellmann I., Stadler M.B., Ramos L., Paabo S., Rebhan M., Schubeler D. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat. Genet. 2007;39:457–466. doi: 10.1038/ng1990. PubMed DOI

Bird A.P. CpG-rich islands and the function of DNA methylation. Nature. 1986;321:209–213. doi: 10.1038/321209a0. PubMed DOI

Kumar S., Chinnusamy V., Mohapatra T. Epigenetics of Modified DNA Bases: 5-Methylcytosine and Beyond. Front. Genet. 2018;9:640. doi: 10.3389/fgene.2018.00640. PubMed DOI PMC

Marcuello M., Vymetalkova V., Neves R.P.L., Duran-Sanchon S., Vedeld H.M., Tham E., van Dalum G., Flugen G., Garcia-Barberan V., Fijneman R.J., et al. Circulating biomarkers for early detection and clinical management of colorectal cancer. Mol. Aspects Med. 2019;69:107–122. doi: 10.1016/j.mam.2019.06.002. PubMed DOI

Toyota M., Ahuja N., Ohe-Toyota M., Herman J.G., Baylin S.B., Issa J.-P.J. CpG island methylator phenotype in colorectal cancer. Proc. Natl. Acad. Sci. USA. 1999;96:8681–8686. doi: 10.1073/pnas.96.15.8681. PubMed DOI PMC

Psofaki V., Kalogera C., Tzambouras N., Stephanou D., Tsianos E., Seferiadis K., Kolios G. Promoter methylation status of hMLH1, MGMT, and CDKN2A/p16 in colorectal adenomas. World J. Gastroenterol. 2010;16:3553–3560. doi: 10.3748/wjg.v16.i28.3553. PubMed DOI PMC

Rashid A., Shen L., Morris J.S., Issa J.-P.J., Hamilton S.R. CpG Island Methylation in Colorectal Adenomas. Am. J. Pathol. 2001;159:1129–1135. doi: 10.1016/S0002-9440(10)61789-0. PubMed DOI PMC

Park S.-J., Rashid A., Lee J.-H., Kim S.G., Hamilton S.R., Wu T.-T. Frequent CpG Island Methylation in Serrated Adenomas of the Colorectum. Am. J. Pathol. 2003;162:815–822. doi: 10.1016/S0002-9440(10)63878-3. PubMed DOI PMC

Karen Curtin M.L.S., Wade S. Samowitz CpG Island Methylation in Colorectal Cancer: Past, Present and Future. Pathol. Res. Inter. 2011;2011:8. PubMed PMC

Nazemalhosseini Mojarad E., Kuppen P.J., Aghdaei H.A., Zali M.R. The CpG island methylator phenotype (CIMP) in colorectal cancer. Gastroenterol. Hepatol. Bed. Bench. 2013;6:120–128. PubMed PMC

Djebali S., Davis C.A., Merkel A., Dobin A., Lassmann T., Mortazavi A., Tanzer A., Lagarde J., Lin W., Schlesinger F., et al. Landscape of transcription in human cells. Nature. 2012;489:101–108. doi: 10.1038/nature11233. PubMed DOI PMC

An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74. doi: 10.1038/nature11247. PubMed DOI PMC

Siddiqui H., Al-Ghafari A., Choudhry H., Al Doghaither H. Roles of long non-coding RNAs in colorectal cancer tumorigenesis: A Review. Mol. Clin. Oncol. 2019;11:167–172. doi: 10.3892/mco.2019.1872. PubMed DOI PMC

Zhang H., Chen Z., Wang X., Huang Z., He Z., Chen Y. Long non-coding RNA: A new player in cancer. J. Hematol. Oncol. 2013;6:37. doi: 10.1186/1756-8722-6-37. PubMed DOI PMC

Galamb O., Barták B.K., Kalmár A., Nagy Z.B., Szigeti K.A., Tulassay Z., Igaz P., Molnár B. Diagnostic and prognostic potential of tissue and circulating long non-coding RNAs in colorectal tumors. World J. Gastroenterol. 2019;25:5026–5048. doi: 10.3748/wjg.v25.i34.5026. PubMed DOI PMC

Svoboda M., Slyskova J., Schneiderova M., Makovicky P., Bielik L., Levy M., Lipska L., Hemmelova B., Kala Z., Protivankova M., et al. HOTAIR long non-coding RNA is a negative prognostic factor not only in primary tumors, but also in the blood of colorectal cancer patients. Carcinogenesis. 2014;35:1510–1515. doi: 10.1093/carcin/bgu055. PubMed DOI

Alaiyan B., Ilyayev N., Stojadinovic A., Izadjoo M., Roistacher M., Pavlov V., Tzivin V., Halle D., Pan H., Trink B., et al. Differential expression of colon cancer associated transcript1 (CCAT1) along the colonic adenoma-carcinoma sequence. BMC Cancer. 2013;13:196. doi: 10.1186/1471-2407-13-196. PubMed DOI PMC

He X., Tan X., Wang X., Jin H., Liu L., Ma L., Yu H., Fan Z. C-Myc-activated long noncoding RNA CCAT1 promotes colon cancer cell proliferation and invasion. Tumor Biology. 2014;35:12181–12188. doi: 10.1007/s13277-014-2526-4. PubMed DOI

Wang N., Yu Y., Xu B., Zhang M., Li Q., Miao L. Pivotal prognostic and diagnostic role of the long noncoding RNA colon cancerassociated transcript 1 expression in human cancer (Review) Mol. Med. Rep. 2019;19:771–782. PubMed PMC

Tsang W.P., Ng E.K.O., Ng S.S.M., Jin H., Yu J., Sung J.J.Y., Kwok T.T. Oncofetal H19-derived miR-675 regulates tumor suppressor RB in human colorectal cancer. Carcinogenesis. 2009;31:350–358. doi: 10.1093/carcin/bgp181. PubMed DOI

Ohtsuka M., Ling H., Ivan C., Pichler M., Matsushita D., Goblirsch M., Stiegelbauer V., Shigeyasu K., Zhang X., Chen M., et al. H19 Noncoding RNA, an Independent Prognostic Factor, Regulates Essential Rb-E2F and CDK8-beta-Catenin Signaling in Colorectal Cancer. Ebio. Med. 2016;13:113–124. PubMed PMC

Yoruker E.E., Keskin M., Kulle C.B., Holdenrieder S., Gezer U. Diagnostic and prognostic value of circulating lncRNA H19 in gastric cancer. Biomed. Rep. 2018;9:181–186. PubMed PMC

Yoshimizu T., Miroglio A., Ripoche M.A., Gabory A., Vernucci M., Riccio A., Colnot S., Godard C., Terris B., Jammes H., et al. The H19 locus acts in vivo as a tumor suppressor. Proc. Natl. Acad. Sci. USA. 2008;105:12417–12422. doi: 10.1073/pnas.0801540105. PubMed DOI PMC

Graham L.D., Pedersen S.K., Brown G.S., Ho T., Kassir Z., Moynihan A.T., Vizgoft E.K., Dunne R., Pimlott L., Young G.P., et al. Colorectal Neoplasia Differentially Expressed (CRNDE), a Novel Gene with Elevated Expression in Colorectal Adenomas and Adenocarcinomas. Gen. Cancer. 2011;2:829–840. doi: 10.1177/1947601911431081. PubMed DOI PMC

Liu T., Zhang X., Gao S., Jing F., Yang Y., Du L., Zheng G., Li P., Li C., Wang C. Exosomal long noncoding RNA CRNDE-h as a novel serum-based biomarker for diagnosis and prognosis of colorectal cancer. Oncotarget. 2016;7:85551–85563. doi: 10.18632/oncotarget.13465. PubMed DOI PMC

Jiang H., Wang Y., Ai M., Wang H., Duan Z., Wang H., Zhao L., Yu J., Ding Y., Wang S. Long Long noncoding RNA CRNDE stabilized by hnRNPUL2 accelerates cell proliferation and migration in colorectal carcinoma via activating Ras/MAPK signaling pathways. Cell Death Dis. 2017;8:e2862. doi: 10.1038/cddis.2017.258. PubMed DOI PMC

Yu B., Ye X., Du Q., Zhu B., Zhai Q., Li X.X. The Long Non-Coding RNA CRNDE Promotes Colorectal Carcinoma Progression by Competitively Binding miR-217 with TCF7L2 and Enhancing the Wnt/beta-Catenin Signaling Pathway. Cell. Physiol. Biochem. 2017;41:2489–2502. doi: 10.1159/000475941. PubMed DOI

O’Brien J., Hayder H., Zayed Y., Peng C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018;9:402. doi: 10.3389/fendo.2018.00402. PubMed DOI PMC

Liu G., Li B. Role of miRNA in transformation from normal tissue to colorectal adenoma and cancer. J. Cancer Res. Ther. 2019;15:278–285. PubMed

Vymetalkova V., Vodicka P., Vodenkova S., Alonso S., Schneider-Stock R. DNA methylation and chromatin modifiers in colorectal cancer. Mol. Aspects. Med. 2019;69:73–92. doi: 10.1016/j.mam.2019.04.002. PubMed DOI

Tsikitis V.L., Potter A., Mori M., Buckmeier J.A., Preece C.R., Harrington C.A., Bartley A.N., Bhattacharyya A.K., Hamilton S.R., Lance M.P., et al. MicroRNA Signatures of Colonic Polyps on Screening and Histology. Cancer Prev. Res. 2016;9:942–949. doi: 10.1158/1940-6207.CAPR-16-0086. PubMed DOI PMC

Kanth P., Hazel M.W., Boucher K.M., Yang Z., Wang L., Bronner M.P., Boylan K.E., Burt R.W., Westover M., Neklason D.W., et al. Small RNA sequencing of sessile serrated polyps identifies microRNA profile associated with colon cancer. Genes Chromosomes Cancer. 2019;58:23–33. doi: 10.1002/gcc.22686. PubMed DOI PMC

Aslam M.I., Hussein S., West K., Singh B., Jameson J.S., Pringle J.H. MicroRNAs associated with initiation and progression of colonic polyp: A feasibility study. Int. J. Surg. 2015;13:272–279. doi: 10.1016/j.ijsu.2014.12.009. PubMed DOI

Oberg A.L., French A.J., Sarver A.L., Subramanian S., Morlan B.W., Riska S.M., Borralho P.M., Cunningham J.M., Boardman L.A., Wang L., et al. miRNA expression in colon polyps provides evidence for a multihit model of colon cancer. PLoS ONE. 2011;6:e20465. doi: 10.1371/journal.pone.0020465. PubMed DOI PMC

Ito M., Mitsuhashi K., Igarashi H., Nosho K., Naito T., Yoshii S., Takahashi H., Fujita M., Sukawa Y., Yamamoto E., et al. MicroRNA-31 expression in relation to BRAF mutation, CpG island methylation and colorectal continuum in serrated lesions. Int. J. Cancer. 2014;135:2507–2515. doi: 10.1002/ijc.28920. PubMed DOI

Wang Z.H., Ren L.L., Zheng P., Zheng H.M., Yu Y.N., Wang J.L., Lin Y.W., Chen Y.X., Ge Z.Z., Chen X.Y., et al. miR-194 as a predictor for adenoma recurrence in patients with advanced colorectal adenoma after polypectomy. Cancer. Prev. Res. (Phila) 2014;7:607–616. doi: 10.1158/1940-6207.CAPR-13-0426. PubMed DOI

Ardila H.J., Sanabria-Salas M.C., Meneses X., Rios R., Huertas-Salgado A., Serrano M.L. Circulating miR-141-3p, miR-143-3p and miR-200c-3p are differentially expressed in colorectal cancer and advanced adenomas. Mol. Clin. Oncol. 2019;11:201–207. doi: 10.3892/mco.2019.1876. PubMed DOI PMC

Nagy Z.B., Wichmann B., Kalmar A., Galamb O., Bartak B.K., Spisak S., Tulassay Z., Molnar B. Colorectal adenoma and carcinoma specific miRNA profiles in biopsy and their expression in plasma specimens. Clin. Epigenetics. 2017;9:22. doi: 10.1186/s13148-016-0305-3. PubMed DOI PMC

Uratani R., Toiyama Y., Kitajima T., Kawamura M., Hiro J., Kobayashi M., Tanaka K., Inoue Y., Mohri Y., Mori T., et al. Diagnostic Potential of Cell-Free and Exosomal MicroRNAs in the Identification of Patients with High-Risk Colorectal Adenomas. PLoS ONE. 2016;11:e0160722. doi: 10.1371/journal.pone.0160722. PubMed DOI PMC

Yau T.O., Tang C.M., Harriss E.K., Dickins B., Polytarchou C. Faecal microRNAs as a non-invasive tool in the diagnosis of colonic adenomas and colorectal cancer: A meta-analysis. Sci. Rep. 2019;9:9491. doi: 10.1038/s41598-019-45570-9. PubMed DOI PMC

Wu C.W., Ng S.C., Dong Y., Tian L., Ng S.S., Leung W.W., Law W.T., Yau T.O., Chan F.K., Sung J.J., et al. Identification of microRNA-135b in stool as a potential noninvasive biomarker for colorectal cancer and adenoma. Clin. Cancer Res. 2014;20:2994–3002. doi: 10.1158/1078-0432.CCR-13-1750. PubMed DOI

Schetter A.J., Leung S.Y., Sohn J.J., Zanetti K.A., Bowman E.D., Yanaihara N., Yuen S.T., Chan T.L., Kwong D.L., Au G.K., et al. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. Jama. 2008;299:425–436. doi: 10.1001/jama.299.4.425. PubMed DOI PMC

Diosdado B., van de Wiel M.A., Terhaar Sive Droste J.S., Mongera S., Postma C., Meijerink W.J., Carvalho B., Meijer G.A. MiR-17-92 cluster is associated with 13q gain and c-myc expression during colorectal adenoma to adenocarcinoma progression. Br. J. Cancer. 2009;101:707–714. doi: 10.1038/sj.bjc.6605037. PubMed DOI PMC

Kanaan Z., Roberts H., Eichenberger M.R., Billeter A., Ocheretner G., Pan J., Rai S.N., Jorden J., Williford A., Galandiuk S. A plasma microRNA panel for detection of colorectal adenomas: A step toward more precise screening for colorectal cancer. Ann. Surg. 2013;258:400–408. doi: 10.1097/SLA.0b013e3182a15bcc. PubMed DOI

Tsikitis V.L., White I., Mori M., Potter A., Bhattcharyya A., Hamilton S.R., Buckmeier J., Lance P., Thompson P. Differential expression of microRNA-320a, -145, and -192 along the continuum of normal mucosa to high-grade dysplastic adenomas of the colorectum. Am. J. Surg. 2014;207:717–722. doi: 10.1016/j.amjsurg.2013.12.023. discussion 722. PubMed DOI PMC

Zheng G., Du L., Yang X., Zhang X., Wang L., Yang Y., Li J., Wang C. Serum microRNA panel as biomarkers for early diagnosis of colorectal adenocarcinoma. Br. J. Cancer. 2014;111:1985–1992. doi: 10.1038/bjc.2014.489. PubMed DOI PMC

de Groen F.L., Timmer L.M., Menezes R.X., Diosdado B., Hooijberg E., Meijer G.A., Steenbergen R.D., Carvalho B. Oncogenic Role of miR-15a-3p in 13q Amplicon-Driven Colorectal Adenoma-to-Carcinoma Progression. PLoS ONE. 2015;10:e0132495. doi: 10.1371/journal.pone.0132495. PubMed DOI PMC

Gattolliat C.H., Uguen A., Pesson M., Trillet K., Simon B., Doucet L., Robaszkiewicz M., Corcos L. MicroRNA and targeted mRNA expression profiling analysis in human colorectal adenomas and adenocarcinomas. Eur. J. Cancer. 2015;51:409–420. doi: 10.1016/j.ejca.2014.12.007. PubMed DOI

Hibino Y., Sakamoto N., Naito Y., Goto K., Oo H.Z., Sentani K., Hinoi T., Ohdan H., Oue N., Yasui W. Significance of miR-148a in Colorectal Neoplasia: Downregulation of miR-148a Contributes to the Carcinogenesis and Cell Invasion of Colorectal Cancer. Pathobiology. 2015;82:233–241. doi: 10.1159/000438826. PubMed DOI

Ho G.Y.F., Jung H.J., Schoen R.E., Wang T., Lin J., Williams Z., Weissfeld J.L., Park J.Y., Loudig O., Suh Y. Differential expression of circulating microRNAs according to severity of colorectal neoplasia. Transl. Res. 2015;166:225–232. doi: 10.1016/j.trsl.2015.02.004. PubMed DOI PMC

Tadano T., Kakuta Y., Hamada S., Shimodaira Y., Kuroha M., Kawakami Y., Kimura T., Shiga H., Endo K., Masamune A., et al. MicroRNA-320 family is downregulated in colorectal adenoma and affects tumor proliferation by targeting CDK6. World J. Gastrointest. Oncol. 2016;8:532–542. doi: 10.4251/wjgo.v8.i7.532. PubMed DOI PMC

Zhang Y., Li M., Ding Y., Fan Z., Zhang J., Zhang H., Jiang B., Zhu Y. Serum MicroRNA profile in patients with colon adenomas or cancer. BMC Med. Genomics. 2017;10:23. doi: 10.1186/s12920-017-0260-7. PubMed DOI PMC

Zhang J., Raju G.S., Chang D.W., Lin S.H., Chen Z., Wu X. Global and targeted circulating microRNA profiling of colorectal adenoma and colorectal cancer. Cancer. 2018;124:785–796. doi: 10.1002/cncr.31062. PubMed DOI PMC

Aherne S.T., Madden S.F., Hughes D.J., Pardini B., Naccarati A., Levy M., Vodicka P., Neary P., Dowling P., Clynes M. Circulating miRNAs miR-34a and miR-150 associated with colorectal cancer progression. BMC Cancer. 2015;15:329. doi: 10.1186/s12885-015-1327-5. PubMed DOI PMC

Crowley E., Di Nicolantonio F., Loupakis F., Bardelli A. Liquid biopsy: Monitoring cancer-genetics in the blood. Nat. Rev. Clin. Oncol. 2013;10:472–484. doi: 10.1038/nrclinonc.2013.110. PubMed DOI

Jiraskova K., Hughes D.J., Brezina S., Gumpenberger T., Veskrnova V., Buchler T., Schneiderova M., Levy M., Liska V., Vodenkova S., et al. Functional Polymorphisms in DNA Repair Genes Are Associated with Sporadic Colorectal Cancer Susceptibility and Clinical Outcome. Int J. Mol. Sci. 2018;20:97. doi: 10.3390/ijms20010097. PubMed DOI PMC

Cervena K., Vodicka P., Vymetalkova V. Diagnostic and prognostic impact of cell-free DNA in human cancers: Systematic review. Mutat. Res. 2019;781:100–129. doi: 10.1016/j.mrrev.2019.05.002. PubMed DOI

Myint N.N.M., Verma A.M., Fernandez-Garcia D., Sarmah P., Tarpey P.S., Al-Aqbi S.S., Cai H., Trigg R., West K., Howells L.M., et al. Circulating tumor DNA in patients with colorectal adenomas: Assessment of detectability and genetic heterogeneity. Cell Death Dis. 2018;9:894. doi: 10.1038/s41419-018-0934-x. PubMed DOI PMC

Aravanis A.M., Lee M., Klausner R.D. Next-Generation Sequencing of Circulating Tumor DNA for Early Cancer Detection. Cell. 2017;168:571–574. doi: 10.1016/j.cell.2017.01.030. PubMed DOI

Bettegowda C., Sausen M., Leary R.J., Kinde I., Wang Y., Agrawal N., Bartlett B.R., Wang H., Luber B., Alani R.M., et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl. Med. 2014;6:224ra24. doi: 10.1126/scitranslmed.3007094. PubMed DOI PMC

Mead R., Duku M., Bhandari P., Cree I.A. Circulating tumour markers can define patients with normal colons, benign polyps, and cancers. Br. J. Cancer. 2011;105:239–245. doi: 10.1038/bjc.2011.230. PubMed DOI PMC

Galanopoulos M., Papanikolaou I., Zografos E., Viazis N., Papatheodoridis G., Karamanolis D., Marinos E., Mantzaris G., Gazouli M. Comparative Study of Mutations in Single Nucleotide Polymorphism Loci of KRAS and BRAF Genes in Patients Who Underwent Screening Colonoscopy, With and Without Premalignant Intestinal Polyps. Anticancer Res. 2017;37:651–658. doi: 10.21873/anticanres.11360. PubMed DOI

Kopreski M.S., Benko F.A., Borys D.J., Khan A., McGarrity T.J., Gocke C.D. Somatic Mutation Screening: Identification of Individuals Harboring K-ras Mutations With the Use of Plasma DNA. JNCI: J. Natl. Cancer Inst. 2000;92:918–923. doi: 10.1093/jnci/92.11.918. PubMed DOI

Perrone F., Lampis A., Bertan C., Verderio P., Ciniselli C.M., Pizzamiglio S., Frattini M., Nucifora M., Molinari F., Gallino G., et al. Circulating Free DNA in a Screening Program for Early Colorectal Cancer Detection. Tumori. 2014;100:115–121. doi: 10.1177/030089161410000201. PubMed DOI

Gausachs M., Borras E., Chang K., Gonzalez S., Azuara D., Delgado Amador A., Lopez-Doriga A., San Lucas F.A., Sanjuan X., Paules M.J., et al. Mutational Heterogeneity in APC and KRAS Arises at the Crypt Level and Leads to Polyclonality in Early Colorectal Tumorigenesis. Clin. Cancer Res. 2017;23:5936–5947. doi: 10.1158/1078-0432.CCR-17-0821. PubMed DOI PMC

Thirlwell C., Will O.C., Domingo E., Graham T.A., McDonald S.A., Oukrif D., Jeffrey R., Gorman M., Rodriguez-Justo M., Chin-Aleong J., et al. Clonality assessment and clonal ordering of individual neoplastic crypts shows polyclonality of colorectal adenomas. Gastroenterology. 2010;138:1441–1454.e7. doi: 10.1053/j.gastro.2010.01.033. PubMed DOI

Fleshner P., Braunstein G.D., Ovsepyan G., Tonozzi T.R., Kammesheidt A. Tumor-associated DNA mutation detection in individuals undergoing colonoscopy. Cancer Med. 2018;7:167–174. doi: 10.1002/cam4.1249. PubMed DOI PMC

Fleischhacker M., Schmidt B. Circulating nucleic acids (CNAs) and cancer—A survey. Biochim. Biophys. Acta. 2007;1775:181–232. doi: 10.1016/j.bbcan.2006.10.001. PubMed DOI

Martincorena I., Roshan A., Gerstung M., Ellis P., Van Loo P., McLaren S., Wedge D.C., Fullam A., Alexandrov L.B., Tubio J.M., et al. Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science. 2015;348:880–886. doi: 10.1126/science.aaa6806. PubMed DOI PMC

Zhu D., Keohavong P., Finkelstein S.D., Swalsky P., Bakker A., Weissfeld J., Srivastava S., Whiteside T.L. K-ras gene mutations in normal colorectal tissues from K-ras mutation-positive colorectal cancer patients. Cancer Res. 1997;57:2485–2492. PubMed

Takayama T., Katsuki S., Takahashi Y., Ohi M., Nojiri S., Sakamaki S., Kato J., Kogawa K., Miyake H., Niitsu Y. Aberrant crypt foci of the colon as precursors of adenoma and cancer. N. Engl. J. Med. 1998;339:1277–1284. doi: 10.1056/NEJM199810293391803. PubMed DOI

Tobi M., Luo F.C., Ronai Z. Detection of K-ras mutation in colonic effluent samples from patients without evidence of colorectal carcinoma. J. Natl. Cancer Inst. 1994;86:1007–1010. PubMed

Chen A., Braunstein G., Anselmo M., Jaboni J., Viloria F., Neidich J., Li X., Kammesheidt A. Mutation detection with a liquid biopsy 96 mutation assay in cancer patients and healthy donors. Cancer Trans. Med. 2017;3:39.

Gocke C.D., Benko F.A., Kopreski M.S., McGarrity T.J. p53 and APC mutations are detectable in the plasma and serum of patients with colorectal cancer (CRC) or adenomas. Ann. N. Y. Acad. Sci. 2000;906:44–50. doi: 10.1111/j.1749-6632.2000.tb06589.x. PubMed DOI

Berger B.M., Ahlquist D.A. Stool DNA screening for colorectal neoplasia: Biological and technical basis for high detection rates. Pathology. 2012;44:80–88. doi: 10.1097/PAT.0b013e3283502fdf. PubMed DOI

Lidgard G.P., Domanico M.J., Bruinsma J.J., Light J., Gagrat Z.D., Oldham–Haltom R.L., Fourrier K.D., Allawi H., Yab T.C., Taylor W.R., et al. Clinical Performance of an Automated Stool DNA Assay for Detection of Colorectal Neoplasia. Clin. Gastroenterol. Hepatol. 2013;11:1313–1318. doi: 10.1016/j.cgh.2013.04.023. PubMed DOI

Imperiale T.F., Ransohoff D.F., Itzkowitz S.H., Levin T.R., Lavin P., Lidgard G.P., Ahlquist D.A., Berger B.M. Multitarget Stool DNA Testing for Colorectal-Cancer Screening. N. Engl. J. Med. 2014;370:1287–1297. doi: 10.1056/NEJMoa1311194. PubMed DOI

Hardingham J.E., Hewett P.J., Sage R.E., Finch J.L., Nuttall J.D., Kotasek D., Dobrovic A. Molecular detection of blood-borne epithelial cells in colorectal cancer patients and in patients with benign bowel disease. Int. J. Cancer. 2000;89:8–13. doi: 10.1002/(SICI)1097-0215(20000120)89:1<8::AID-IJC2>3.0.CO;2-K. PubMed DOI

Racila E., Euhus D., Weiss A.J., Rao C., McConnell J., Terstappen L.W., Uhr J.W. Detection and characterization of carcinoma cells in the blood. Proc. Natl. Acad. Sci. USA. 1998;95:4589–4594. doi: 10.1073/pnas.95.8.4589. PubMed DOI PMC

Ferreira M.M., Ramani V.C., Jeffrey S.S. Circulating tumor cell technologies. Mol. Oncol. 2016;10:374–394. doi: 10.1016/j.molonc.2016.01.007. PubMed DOI PMC

Lim S.H.S., Becker T.M., Chua W., Ng W.L., de Souza P., Spring K.J. Circulating tumour cells and the epithelial mesenchymal transition in colorectal cancer. J. Clin. Pathol. 2014;67:848–853. doi: 10.1136/jclinpath-2014-202499. PubMed DOI

Sotelo M.J., Sastre J., Maestro M.L., Veganzones S., Vieitez J.M., Alonso V., Gravalos C., Escudero P., Vera R., Aranda E., et al. Role of circulating tumor cells as prognostic marker in resected stage III colorectal cancer. Ann. Oncol. 2015;26:535–541. doi: 10.1093/annonc/mdu568. PubMed DOI

Tan Y., Wu H. The significant prognostic value of circulating tumor cells in colorectal cancer: A systematic review and meta-analysis. Cur. Prob. Cancer. 2018;42:95–106. doi: 10.1016/j.currproblcancer.2017.11.002. PubMed DOI

Huang X., Gao P., Song Y., Sun J., Chen X., Zhao J., Liu J., Xu H., Wang Z. Relationship between circulating tumor cells and tumor response in colorectal cancer patients treated with chemotherapy: A meta-analysis. BMC Cancer. 2014;14:976. doi: 10.1186/1471-2407-14-976. PubMed DOI PMC

Guadagni S., Fiorentini G., De Simone M., Masedu F., Zoras O., Mackay A.R., Sarti D., Papasotiriou I., Apostolou P., Catarci M., et al. Precision oncotherapy based on liquid biopsies in multidisciplinary treatment of unresectable recurrent rectal cancer: A retrospective cohort study. J. Cancer Res. Clin. Oncol. 2020;146:205–219. doi: 10.1007/s00432-019-03046-3. PubMed DOI PMC

Guadagni S., Clementi M., Mackay A.R., Ricevuto E., Fiorentini G., Sarti D., Palumbo P., Apostolou P., Papasotiriou I., Masedu F., et al. Real-life multidisciplinary treatment for unresectable colorectal cancer liver metastases including hepatic artery infusion with chemo-filtration and liquid biopsy precision oncotherapy: Observational cohort study. J. Cancer Res. Clin. Oncol. 2020;146:1273–1290. doi: 10.1007/s00432-020-03156-3. PubMed DOI PMC

Tsai W.-S., You J.-F., Hung H.-Y., Hsieh P.-S., Hsieh B., Lenz H.-J., Idos G., Friedland S., Yi-Jiun Pan J., Shao H.-J., et al. Novel Circulating Tumor Cell Assay for Detection of Colorectal Adenomas and Cancer. Clin. Trans. Gastroenterol. 2019;10:e00088. doi: 10.14309/ctg.0000000000000088. PubMed DOI PMC

Huang W.-Y., Berndt S.I., Shiels M.S., Katki H.A., Chaturvedi A.K., Wentzensen N., Trabert B., Kemp T.J., Pinto L.A., Hildesheim A., et al. Circulating inflammation markers and colorectal adenoma risk. Carcinogenesis. 2019;40:765–770. doi: 10.1093/carcin/bgz027. PubMed DOI PMC

Godos J., Biondi A., Galvano F., Basile F., Sciacca S., Giovannucci E.L., Grosso G. Markers of systemic inflammation and colorectal adenoma risk: Meta-analysis of observational studies. World J. Gastroenterol. 2017;23:1909–1919. doi: 10.3748/wjg.v23.i10.1909. PubMed DOI PMC

Basavaraju U., Shebl F.M., Palmer A.J., Berry S., Hold G.L., El-Omar E.M., Rabkin C.S. Cytokine gene polymorphisms, cytokine levels and the risk of colorectal neoplasia in a screened population of Northeast Scotland. Eur. J. Cancer. Prev. 2015;24:296–304. doi: 10.1097/CEJ.0000000000000087. PubMed DOI PMC

Henry C.J., Sedjo R.L., Rozhok A., Salstrom J., Ahnen D., Levin T.R., D’Agostino R., Haffner S., DeGregori J., Byers T. Lack of significant association between serum inflammatory cytokine profiles and the presence of colorectal adenoma. BMC Cancer. 2015;15:123. doi: 10.1186/s12885-015-1115-2. PubMed DOI PMC

Murphy N., Cross A.J., Huang W.-Y., Rajabzadeh-Heshejin V., Stanczyk F., Hayes R., Gunter M.J. A prospective evaluation of C-peptide levels and colorectal adenoma incidence. Cancer Epidemiology. 2015;39:160–165. doi: 10.1016/j.canep.2014.12.011. PubMed DOI PMC

Comstock S.S., Xu D., Hortos K., Kovan B., McCaskey S., Pathak D.R., Fenton J.I. Association of serum cytokines with colorectal polyp number and type in adult males. Eur. J. Cancer. Prev. 2016;25:173–181. doi: 10.1097/CEJ.0000000000000160. PubMed DOI PMC

Peacock S.D., Massey T.E., Vanner S.J., King W.D. Telomere length in the colon is related to colorectal adenoma prevalence. PLoS ONE. 2018;13:e0205697. doi: 10.1371/journal.pone.0205697. PubMed DOI PMC

Kroupa M., Rachakonda S.K., Liska V., Srinivas N., Urbanova M., Jiraskova K., Schneiderova M., Vycital O., Vymetalkova V., Vodickova L., et al. Relationship of telomere length in colorectal cancer patients with cancer phenotype and patient prognosis. Br. J. Cancer. 2019;121:344–350. doi: 10.1038/s41416-019-0525-3. PubMed DOI PMC

Tomasova K., Kroupa M., Forsti A., Vodicka P., Vodickova L. Telomere maintenance in interplay with DNA repair in pathogenesis and treatment of colorectal cancer. Mutagenesis. 2020:geaa005. doi: 10.1093/mutage/geaa005. PubMed DOI

Zöchmeister C., Brezina S., Hofer P., Baierl A., Bergmann M.M., Bachleitner-Hofmann T., Karner-Hanusch J., Stift A., Gerger A., Leeb G., et al. Leukocyte telomere length throughout the continuum of colorectal carcinogenesis. Oncotarget. 2018;9:13582–13592. doi: 10.18632/oncotarget.24431. PubMed DOI PMC

Valls Bautista C., Pinol Felis C., Rene Espinet J.M., Buenestado Garcia J., Vinas Salas J. Telomerase activity and telomere length in the colorectal polyp-carcinoma sequence. Rev. Esp. Enferm. Dig. 2009;101:179–186. doi: 10.4321/S1130-01082009000300004. PubMed DOI

Roger L., Jones R.E., Heppel N.H., Williams G.T., Sampson J.R., Baird D.M. Extensive Telomere Erosion in the Initiation of Colorectal Adenomas and Its Association With Chromosomal Instability. J. Natl. Cancer Inst. 2013;105:1202–1211. doi: 10.1093/jnci/djt191. PubMed DOI

Kim H.R., Kim Y.J., Kim H.J., Kim S.K., Lee J.H. Telomere length changes in colorectal cancers and polyps. J. Korean Med. Sci. 2002;17:360–365. doi: 10.3346/jkms.2002.17.3.360. PubMed DOI PMC

Suraweera N., Mouradov D., Li S., Jorissen R.N., Hampson D., Ghosh A., Sengupta N., Thaha M., Ahmed S., Kirwan M., et al. Relative telomere lengths in tumor and normal mucosa are related to disease progression and chromosome instability profiles in colorectal cancer. Oncotarget. 2016;7:36474–36488. doi: 10.18632/oncotarget.9015. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace