Mutational analysis of driver genes defines the colorectal adenoma: in situ carcinoma transition
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35173208
PubMed Central
PMC8850440
DOI
10.1038/s41598-022-06498-9
PII: 10.1038/s41598-022-06498-9
Knihovny.cz E-zdroje
- MeSH
- adenom genetika patologie MeSH
- karcinom in situ genetika patologie MeSH
- kolorektální nádory genetika patologie MeSH
- lidé MeSH
- metylace DNA MeSH
- mikrosatelitní nestabilita * MeSH
- mutace * MeSH
- nádorové biomarkery genetika MeSH
- následné studie MeSH
- prognóza MeSH
- senioři MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- nádorové biomarkery MeSH
A large proportion of colorectal carcinomas (CRC) evolve from colorectal adenomas. However, not all individuals with colonic adenomas have a risk of CRC substantially higher than those of the general population. The aim of the study was to determine the differences or similarities of mutation profile among low- and high-grade adenomas and in situ carcinoma with detailed follow up. We have investigated the mutation spectrum of well-known genes involved in CRC (such as APC, BRAF, EGFR, NRAS, KRAS, PIK3CA, POLE, POLD1, SMAD4, PTEN, and TP53) in a large, well-defined series of 96 adenomas and in situ carcinomas using a high-throughput genotyping technique. Besides, the microsatellite instability and APC and MLH1 promoter methylation were studied as well. We observed a high frequency of pathogenic variants in the studied genes. The APC, KRAS and TP53 mutation frequencies were slightly lower in adenoma samples than in in situ carcinoma samples. Further, when we stratified mutation frequency based on the grade, the frequency distribution was as follows: low-grade adenoma-high-grade adenomas-in situ carcinoma: APC gene 42.9-56.0-54.5%; KRAS gene 32.7-32.0-45.5%; TP53 gene 8.2-20.0-18.2%. The occurrence of KRAS mutation was associated with the presence of villous histology and methylation of the APC promoter was significantly associated with the presence of POLE genetic variations. However, no association was noticed with the presence of any singular mutation and occurrence of subsequent adenoma or CRC. Our data supports the multistep model of gradual accumulation of mutations, especially in the driver genes, such as APC, TP53 and KRAS.
Department of Pathology Leiden University Medical Center Leiden The Netherlands
Department of Surgery Weiden Clinic Söllnerstraße 16 92637 Weiden in der Oberpfalz Germany
DT Gastroenterology Roskotova 1 1225 Prague 4 Czech Republic
Zobrazit více v PubMed
Siegel RL, et al. Cancer statistics, 2021. CA Cancer J. Clin. 2021;71(1):7–33. doi: 10.3322/caac.21654. PubMed DOI
Grady WM, Markowitz SD. The molecular pathogenesis of colorectal cancer and its potential application to colorectal cancer screening. Dig. Dis. Sci. 2015;60(3):762–772. doi: 10.1007/s10620-014-3444-4. PubMed DOI PMC
Carethers JM, Jung BH. Genetics and genetic biomarkers in sporadic colorectal cancer. Gastroenterology. 2015;149(5):1177–1190 e3. doi: 10.1053/j.gastro.2015.06.047. PubMed DOI PMC
Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61(5):759–767. doi: 10.1016/0092-8674(90)90186-I. PubMed DOI
Siskova A, et al. Colorectal adenomas-genetics and searching for new molecular screening biomarkers. Int. J. Mol. Sci. 2020;21(9):3260. doi: 10.3390/ijms21093260. PubMed DOI PMC
Beggs AD, et al. A study of genomic instability in early preneoplastic colonic lesions. Oncogene. 2013;32(46):5333–5337. doi: 10.1038/onc.2012.584. PubMed DOI PMC
Voorham QJ, et al. Comprehensive mutation analysis in colorectal flat adenomas. PLoS One. 2012;7(7):e41963. doi: 10.1371/journal.pone.0041963. PubMed DOI PMC
Wolff RK, et al. Mutation analysis of adenomas and carcinomas of the colon: Early and late drivers. Genes Chromosom. Cancer. 2018;57(7):366–376. doi: 10.1002/gcc.22539. PubMed DOI PMC
Liang TJ, et al. APC hypermethylation for early diagnosis of colorectal cancer: A meta-analysis and literature review. Oncotarget. 2017;8(28):46468–46479. doi: 10.18632/oncotarget.17576. PubMed DOI PMC
Tate JG, et al. COSMIC: The catalogue of somatic mutations in cancer. Nucleic Acids Res. 2019;47(D1):D941–D947. doi: 10.1093/nar/gky1015. PubMed DOI PMC
Fokkema IF, et al. LOVD v.2.0: The next generation in gene variant databases. Hum. Mutat. 2011;32(5):557–63. doi: 10.1002/humu.21438. PubMed DOI
Stenson PD, et al. Human gene mutation database (HGMD): 2003 update. Hum. Mutat. 2003;21(6):577–581. doi: 10.1002/humu.10212. PubMed DOI
Loeve F, et al. National polyp study data: Evidence for regression of adenomas. Int. J. Cancer. 2004;111(4):633–639. doi: 10.1002/ijc.20277. PubMed DOI
Cross W, et al. The evolutionary landscape of colorectal tumorigenesis. Nat. Ecol. Evol. 2018;2(10):1661–1672. doi: 10.1038/s41559-018-0642-z. PubMed DOI PMC
Muller MF, Ibrahim AE, Arends MJ. Molecular pathological classification of colorectal cancer. Virchows Arch. 2016;469(2):125–134. doi: 10.1007/s00428-016-1956-3. PubMed DOI PMC
Lee-Six H, et al. The landscape of somatic mutation in normal colorectal epithelial cells. Nature. 2019;574(7779):532–537. doi: 10.1038/s41586-019-1672-7. PubMed DOI
Lewandowska MA, Jozwicki W, Zurawski B. KRAS and BRAF mutation analysis in colorectal adenocarcinoma specimens with a low percentage of tumor cells. Mol. Diagn. Ther. 2013;17(3):193–203. doi: 10.1007/s40291-013-0025-8. PubMed DOI PMC
Wang JY, et al. Molecular mechanisms underlying the tumorigenesis of colorectal adenomas: Correlation to activated K-ras oncogene. Oncol. Rep. 2006;16(6):1245–1252. PubMed
Zauber P, Marotta S, Sabbath-Solitare M. KRAS gene mutations are more common in colorectal villous adenomas and in situ carcinomas than in carcinomas. Int. J. Mol. Epidemiol. Genet. 2013;4(1):1–10. PubMed PMC
Rayner E, et al. A panoply of errors: Polymerase proofreading domain mutations in cancer. Nat. Rev. Cancer. 2016;16(2):71–81. doi: 10.1038/nrc.2015.12. PubMed DOI
Palles C, et al. Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nat. Genet. 2013;45(2):136–144. doi: 10.1038/ng.2503. PubMed DOI PMC
Boot A, et al. Characterization of colibactin-associated mutational signature in an Asian oral squamous cell carcinoma and in other mucosal tumor types. Genome Res. 2020;30(6):803–813. doi: 10.1101/gr.255620.119. PubMed DOI PMC
Augert A, et al. Small cell lung cancer exhibits frequent inactivating mutations in the histone methyltransferase KMT2D/MLL2: CALGB 151111 (Alliance) J. Thorac. Oncol. 2017;12(4):704–713. doi: 10.1016/j.jtho.2016.12.011. PubMed DOI PMC
Poulos RC, Olivier J, Wong JWH. The interaction between cytosine methylation and processes of DNA replication and repair shape the mutational landscape of cancer genomes. Nucleic Acids Res. 2017;45(13):7786–7795. doi: 10.1093/nar/gkx463. PubMed DOI PMC
Chan TL, et al. BRAF and KRAS mutations in colorectal hyperplastic polyps and serrated adenomas. Cancer Res. 2003;63(16):4878–4881. PubMed
Yuen ST, et al. Similarity of the phenotypic patterns associated with BRAF and KRAS mutations in colorectal neoplasia. Cancer Res. 2002;62(22):6451–6455. PubMed
Velho S, et al. The prevalence of PIK3CA mutations in gastric and colon cancer. Eur. J. Cancer. 2005;41(11):1649–1654. doi: 10.1016/j.ejca.2005.04.022. PubMed DOI
Marcuello M, et al. Circulating biomarkers for early detection and clinical management of colorectal cancer. Mol. Aspects Med. 2019;69:107–122. doi: 10.1016/j.mam.2019.06.002. PubMed DOI
Cervena K, et al. Mutational landscape of plasma cell-free DNA identifies molecular features associated with therapeutic response in patients with colon cancer. A pilot study. Mutagenesis. 2021;36(5):358–368. doi: 10.1093/mutage/geab024. PubMed DOI
Cohen JD, et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science. 2018;359(6378):926–930. doi: 10.1126/science.aar3247. PubMed DOI PMC
Mazouji O, et al. Updates on clinical use of liquid biopsy in colorectal cancer screening, diagnosis, follow-up, and treatment guidance. Front Cell Dev Biol. 2021;9:660924. doi: 10.3389/fcell.2021.660924. PubMed DOI PMC
Schlemper RJ, et al. The Vienna classification of gastrointestinal epithelial neoplasia. Gut. 2000;47(2):251–255. doi: 10.1136/gut.47.2.251. PubMed DOI PMC
Migheli F, et al. Comparison study of MS-HRM and pyrosequencing techniques for quantification of APC and CDKN2A gene methylation. PLoS One. 2013;8(1):e52501. doi: 10.1371/journal.pone.0052501. PubMed DOI PMC
Vymetalkova VP, et al. Molecular characteristics of mismatch repair genes in sporadic colorectal tumors in Czech patients. BMC Med. Genet. 2014;15:17. doi: 10.1186/1471-2350-15-17. PubMed DOI PMC
Kroupa M, et al. Relationship of telomere length in colorectal cancer patients with cancer phenotype and patient prognosis. Br. J. Cancer. 2019;121(4):344–350. doi: 10.1038/s41416-019-0525-3. PubMed DOI PMC
Schubert SA, et al. Evidence for genetic association between chromosome 1q loci and predisposition to colorectal neoplasia. Br. J. Cancer. 2017;117(6):1215–1223. doi: 10.1038/bjc.2017.240. PubMed DOI PMC
Bardou P, et al. JVENN: An interactive Venn diagram viewer. BMC Bioinform. 2014;15:293. doi: 10.1186/1471-2105-15-293. PubMed DOI PMC
Agresti A, Coull BA. Approximate is Better than "exact" for interval estimation of binomial proportions. Am. Stat. 1998;52:119–126.
Discovery of Long Non-Coding RNA MALAT1 Amplification in Precancerous Colorectal Lesions