Discovery of Long Non-Coding RNA MALAT1 Amplification in Precancerous Colorectal Lesions

. 2022 Jul 11 ; 23 (14) : . [epub] 20220711

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35887000

Grantová podpora
AZV NV18-03-00199 Grant Agency of the Ministry of Health of the Czech Republic
GACR 22-05942S Grant Agency of the Czech Republic
Oncology and Haematology Cooperatio Program
CZ.02.2.69/0.0/0.0/19_073 project n. START/MED/052 Grant Schemes project at UK

A colorectal adenoma, an aberrantly growing tissue, arises from the intestinal epithelium and is considered as precursor of colorectal cancer (CRC). In this study, we investigated structural and numerical chromosomal aberrations in adenomas, hypothesizing that chromosomal instability (CIN) occurs early in adenomas. We applied array comparative genomic hybridization (aCGH) to fresh frozen colorectal adenomas and their adjacent mucosa from 16 patients who underwent colonoscopy examination. In our study, histologically similar colorectal adenomas showed wide variability in chromosomal instability. Based on the obtained results, we further stratified patients into four distinct groups. The first group showed the gain of MALAT1 and TALAM1, long non-coding RNAs (lncRNAs). The second group involved patients with numerous microdeletions. The third group consisted of patients with a disrupted karyotype. The fourth group of patients did not show any CIN in adenomas. Overall, we identified frequent losses in genes, such as TSC2, COL1A1, NOTCH1, MIR4673, and GNAS, and gene gain containing MALAT1 and TALAM1. Since long non-coding RNA MALAT1 is associated with cancer cell metastasis and migration, its gene amplification represents an important event for adenoma development.

Zobrazit více v PubMed

Cernat L., Blaj C., Jackstadt R., Brandl L., Engel J., Hermeking H., Jung A., Kirchner T., Horst D. Colorectal Cancers Mimic Structural Organization of Normal Colonic Crypts. PLoS ONE. 2014;9:e104284. doi: 10.1371/journal.pone.0104284. PubMed DOI PMC

Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018;68:394–424. doi: 10.3322/caac.21492. PubMed DOI

Rawla P., Sunkara T., Barsouk A. Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors. Prz. Gastroenterol. 2019;14:89–103. doi: 10.5114/pg.2018.81072. PubMed DOI PMC

Loeve F., Boer R., Zauber A.G., Van Ballegooijen M., Van Oortmarssen G.J., Winawer S.J., Habbema J.D. National Polyp Study data: Evidence for regression of adenomas. Int. J. Cancer. 2004;111:633–639. doi: 10.1002/ijc.20277. PubMed DOI

Carvalho B., Sillars-Hardebol A.H., Postma C., Mongera S., Terhaar Sive Droste J., Obulkasim A., van de Wiel M., van Criekinge W., Ylstra B., Fijneman R.J., et al. Colorectal adenoma to carcinoma progression is accompanied by changes in gene expression associated with ageing, chromosomal instability, and fatty acid metabolism. Cell. Oncol. 2012;35:53–63. doi: 10.1007/s13402-011-0065-1. PubMed DOI PMC

Muller M.F., Ibrahim A.E., Arends M.J. Molecular pathological classification of colorectal cancer. Virchows Arch. 2016;469:125–134. doi: 10.1007/s00428-016-1956-3. PubMed DOI PMC

Kwong L.N., Dove W.F. APC and its modifiers in colon cancer. Adv. Exp. Med. Biol. 2009;656:85–106. doi: 10.1007/978-1-4419-1145-2_8. PubMed DOI PMC

Cross W., Kovac M., Mustonen V., Temko D., Davis H., Baker A.M., Biswas S., Arnold R., Chegwidden L., Gatenbee C., et al. The evolutionary landscape of colorectal tumorigenesis. Nat. Ecol. Evol. 2018;2:1661–1672. doi: 10.1038/s41559-018-0642-z. PubMed DOI PMC

Heald B., Mester J., Rybicki L., Orloff M.S., Burke C.A., Eng C. Frequent Gastrointestinal Polyps and Colorectal Adenocarcinomas in a Prospective Series of PTEN Mutation Carriers. Gastroenterology. 2010;139:1927–1933. doi: 10.1053/j.gastro.2010.06.061. PubMed DOI PMC

Tyagi A., Sharma A.K., Damodaran C. A Review on Notch Signaling and Colorectal Cancer. Cells. 2020;9:1549. doi: 10.3390/cells9061549. PubMed DOI PMC

Jungwirth J., Urbanova M., Boot A., Hosek P., Bendova P., Siskova A., Svec J., Kment M., Tumova D., Summerova S., et al. Mutational analysis of driver genes defines the colorectal adenoma: In situ carcinoma transition. Sci. Rep. 2022;12:2570. doi: 10.1038/s41598-022-06498-9. PubMed DOI PMC

Pino M.S., Chung D.C. The chromosomal instability pathway in colon cancer. Gastroenterology. 2010;138:2059–2072. doi: 10.1053/j.gastro.2009.12.065. PubMed DOI PMC

Siskova A., Cervena K., Kral J., Hucl T., Vodicka P., Vymetalkova V. Colorectal Adenomas-Genetics and Searching for New Molecular Screening Biomarkers. Int. J. Mol. Sci. 2020;21:3260. doi: 10.3390/ijms21093260. PubMed DOI PMC

Fernández L.C., Torres M., Real F.X. Somatic mosaicism: On the road to cancer. Nat. Rev. Cancer. 2016;16:43–55. doi: 10.1038/nrc.2015.1. PubMed DOI

Statello L., Guo C.-J., Chen L.-L., Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol. 2021;22:96–118. doi: 10.1038/s41580-020-00315-9. PubMed DOI PMC

Ji P., Diederichs S., Wang W., Böing S., Metzger R., Schneider P.M., Tidow N., Brandt B., Buerger H., Bulk E., et al. MALAT-1, a novel noncoding RNA, and thymosin β4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene. 2003;22:8031–8041. doi: 10.1038/sj.onc.1206928. PubMed DOI

Goyal B., Yadav S.R.M., Awasthee N., Gupta S., Kunnumakkara A.B., Gupta S.C. Diagnostic, prognostic, and therapeutic significance of long non-coding RNA MALAT1 in cancer. Biochim. Biophys. Acta Rev. Cancer. 2021;1875:188502. doi: 10.1016/j.bbcan.2021.188502. PubMed DOI

Shi Z.Z., Zhang Y.M., Shang L., Hao J.J., Zhang T.T., Wang B.S., Liang J.W., Chen X., Zhang Y., Wang G.Q., et al. Genomic profiling of rectal adenoma and carcinoma by array-based comparative genomic hybridization. BMC Med. Genom. 2012;5:52. doi: 10.1186/1755-8794-5-52. PubMed DOI PMC

Douglas E.J., Fiegler H., Rowan A., Halford S., Bicknell D.C., Bodmer W., Tomlinson I.P., Carter N.P. Array comparative genomic hybridization analysis of colorectal cancer cell lines and primary carcinomas. Cancer Res. 2004;64:4817–4825. doi: 10.1158/0008-5472.CAN-04-0328. PubMed DOI

Rosner M., Hanneder M., Siegel N., Valli A., Hengstschlager M. The tuberous sclerosis gene products hamartin and tuberin are multifunctional proteins with a wide spectrum of interacting partners. Mutat. Res. 2008;658:234–246. doi: 10.1016/j.mrrev.2008.01.001. PubMed DOI

Slattery M.L., Herrick J.S., Lundgreen A., Fitzpatrick F.A., Curtin K., Wolff R.K. Genetic variation in a metabolic signaling pathway and colon and rectal cancer risk: mTOR, PTEN, STK11, RPKAA1, PRKAG2, TSC1, TSC2, PI3K and Akt1. Carcinogenesis. 2010;31:1604–1611. doi: 10.1093/carcin/bgq142. PubMed DOI PMC

Jiang K., Liu H., Xie D., Xiao Q. Differentially expressed genes ASPN, COL1A1, FN1, VCAN and MUC5AC are potential prognostic biomarkers for gastric cancer. Oncol. Lett. 2019;17:3191–3202. doi: 10.3892/ol.2019.9952. PubMed DOI PMC

Lin P., Tian P., Pang J., Lai L., He G., Song Y., Zheng Y. Clinical significance of COL1A1 and COL1A2 expression levels in hypopharyngeal squamous cell carcinoma. Oncol. Lett. 2020;20:803–809. doi: 10.3892/ol.2020.11594. PubMed DOI PMC

Zou X., Feng B., Dong T., Yan G., Tan B., Shen H., Huang A., Zhang X., Zhang M., Yang P., et al. Up-regulation of type I collagen during tumorigenesis of colorectal cancer revealed by quantitative proteomic analysis. J. Proteom. 2013;94:473–485. doi: 10.1016/j.jprot.2013.10.020. PubMed DOI

Huang T., Zhou Y., Cheng A.S., Yu J., To K.F., Kang W. NOTCH receptors in gastric and other gastrointestinal cancers: Oncogenes or tumor suppressors? Mol. Cancer. 2016;15:80. doi: 10.1186/s12943-016-0566-7. PubMed DOI PMC

Arcaroli J.J., Tai W.M., McWilliams R., Bagby S., Blatchford P.J., Varella-Garcia M., Purkey A., Quackenbush K.S., Song E.-K., Pitts T.M., et al. A NOTCH1 gene copy number gain is a prognostic indicator of worse survival and a predictive biomarker to a Notch1 targeting antibody in colorectal cancer. Int. J. Cancer. 2016;138:195–205. doi: 10.1002/ijc.29676. PubMed DOI PMC

Dokumcu K., Simonian M., Farahani R.M. miR4673 improves fitness profile of neoplastic cells by induction of autophagy. Cell Death Dis. 2018;9:1068. doi: 10.1038/s41419-018-1088-6. PubMed DOI PMC

Thomis D.C., Berg L.J. The role of Jak3 in lymphoid development, activation, and signaling. Curr. Opin. Immunol. 1997;9:541–547. doi: 10.1016/S0952-7915(97)80108-2. PubMed DOI

Bastepe M., Juppner H. GNAS locus and pseudohypoparathyroidism. Horm. Res. 2005;63:65–74. doi: 10.1159/000083895. PubMed DOI

Liu C., McKeone D.M., Walker N.I., Bettington M.L., Leggett B.A., Whitehall V.L.J. GNAS mutations are present in colorectal traditional serrated adenomas, serrated tubulovillous adenomas and serrated adenocarcinomas with adverse prognostic features. Histopathology. 2017;70:1079–1088. doi: 10.1111/his.13180. PubMed DOI

Zauber P., Marotta S.P., Sabbath-Solitare M. GNAS gene mutation may be present only transiently during colorectal tumorigenesis. Int. J. Mol. Epidemiol. Genet. 2016;7:24–31. PubMed PMC

Vashisht A.A., Wohlschlegel J.A. Chapter 8—Role of Human Xeroderma Pigmentosum Group D (XPD) Helicase in Various Cellular Pathways. In: Tuteja R., editor. Helicases from All Domains of Life. Academic Press; Cambridge, MA, USA: 2019. pp. 125–139. DOI

Zhang X., Hamblin M.H., Yin K.J. The long noncoding RNA Malat1: Its physiological and pathophysiological functions. RNA Biol. 2017;14:1705–1714. doi: 10.1080/15476286.2017.1358347. PubMed DOI PMC

Gutschner T., Hammerle M., Diederichs S. MALAT1—a paradigm for long noncoding RNA function in cancer. J. Mol. Med. 2013;91:791–801. doi: 10.1007/s00109-013-1028-y. PubMed DOI

Biswas S., Thomas A.A., Chen S., Aref-Eshghi E., Feng B., Gonder J., Sadikovic B., Chakrabarti S. MALAT1: An Epigenetic Regulator of Inflammation in Diabetic Retinopathy. Sci. Rep. 2018;8:6526. doi: 10.1038/s41598-018-24907-w. PubMed DOI PMC

Gutschner T., Hämmerle M., Eißmann M., Hsu J., Kim Y., Hung G., Revenko A., Arun G., Stentrup M., Groß M., et al. The Noncoding RNA MALAT1 Is a Critical Regulator of the Metastasis Phenotype of Lung Cancer Cells. Cancer Res. 2013;73:1180–1189. doi: 10.1158/0008-5472.CAN-12-2850. PubMed DOI PMC

Meseure D., Vacher S., Lallemand F., Alsibai K.D., Hatem R., Chemlali W., Nicolas A., De Koning L., Pasmant E., Callens C., et al. Prognostic value of a newly identified MALAT1 alternatively spliced transcript in breast cancer. Br. J. Cancer. 2016;114:1395–1404. doi: 10.1038/bjc.2016.123. PubMed DOI PMC

Li C., Cui Y., Liu L.F., Ren W.B., Li Q.Q., Zhou X., Li Y.L., Li Y., Bai X.Y., Zu X.B. High Expression of Long Noncoding RNA MALAT1 Indicates a Poor Prognosis and Promotes Clinical Progression and Metastasis in Bladder Cancer. Clin. Genitourin. Cancer. 2017;15:570–576. doi: 10.1016/j.clgc.2017.05.001. PubMed DOI

Yang L., Bai H.S., Deng Y., Fan L. High MALAT1 expression predicts a poor prognosis of cervical cancer and promotes cancer cell growth and invasion. Eur. Rev. Med. Pharmacol. Sci. 2015;19:3187–3193. PubMed

Konishi H., Ichikawa D., Yamamoto Y., Arita T., Shoda K., Hiramoto H., Hamada J., Itoh H., Fujita Y., Komatsu S., et al. Plasma level of metastasis-associated lung adenocarcinoma transcript 1 is associated with liver damage and predicts development of hepatocellular carcinoma. Cancer Sci. 2016;107:149–154. doi: 10.1111/cas.12854. PubMed DOI PMC

Ji Q., Zhang L., Liu X., Zhou L., Wang W., Han Z., Sui H., Tang Y., Wang Y., Liu N., et al. Long non-coding RNA MALAT1 promotes tumour growth and metastasis in colorectal cancer through binding to SFPQ and releasing oncogene PTBP2 from SFPQ/PTBP2 complex. Br. J. Cancer. 2014;111:736–748. doi: 10.1038/bjc.2014.383. PubMed DOI PMC

Xiong M., Wu M., Dan P., Huang W., Chen Z., Ke H., Chen Z., Song W., Zhao Y., Xiang A.P., et al. LncRNA DANCR represses Doxorubicin-induced apoptosis through stabilizing MALAT1 expression in colorectal cancer cells. Cell Death Dis. 2021;12:24. doi: 10.1038/s41419-020-03318-8. PubMed DOI PMC

Xu C., Yang M., Tian J., Wang X., Li Z. MALAT-1: A long non-coding RNA and its important 3’ end functional motif in colorectal cancer metastasis. Int. J. Oncol. 2011;39:169–175. doi: 10.3892/ijo.2011.1007. PubMed DOI

Li J., Cui Z., Li H., Lv X., Gao M., Yang Z., Bi Y., Zhang Z., Wang S., Zhou B., et al. Clinicopathological and prognostic significance of long noncoding RNA MALAT1 in human cancers: A review and meta-analysis. Cancer Cell Int. 2018;18:109. doi: 10.1186/s12935-018-0606-z. PubMed DOI PMC

Peng Y., Croce C.M. The role of MicroRNAs in human cancer. Signal Transduct. Target. Ther. 2016;1:15004. doi: 10.1038/sigtrans.2015.4. PubMed DOI PMC

Feng C., Zhao Y., Li Y., Zhang T., Ma Y., Liu Y. LncRNA MALAT1 Promotes Lung Cancer Proliferation and Gefitinib Resistance by Acting as a miR-200a Sponge. Arch. De Bronconeumol. 2019;55:627–633. doi: 10.1016/j.arbres.2019.03.026. PubMed DOI

Xu Y., Zhang X., Hu X., Zhou W., Zhang P., Zhang J., Yang S., Liu Y. The effects of lncRNA MALAT1 on proliferation, invasion and migration in colorectal cancer through regulating SOX9. Mol. Med. 2018;24:52. doi: 10.1186/s10020-018-0050-5. PubMed DOI PMC

Su K., Wang N., Shao Q., Liu H., Zhao B., Ma S. The role of a ceRNA regulatory network based on lncRNA MALAT1 site in cancer progression. Biomed. Pharmacother. 2021;137:111389. doi: 10.1016/j.biopha.2021.111389. PubMed DOI

Ji Q., Cai G., Liu X., Zhang Y., Wang Y., Zhou L., Sui H., Li Q. MALAT1 regulates the transcriptional and translational levels of proto-oncogene RUNX2 in colorectal cancer metastasis. Cell Death Dis. 2019;10:378. doi: 10.1038/s41419-019-1598-x. PubMed DOI PMC

Chaleshi V., Irani S., Alebouyeh M., Mirfakhraie R., Aghdaei H.A. Association of lncRNA-p53 regulatory network (lincRNA-p21, lincRNA-ROR and MALAT1) and p53 with the clinicopathological features of colorectal primary lesions and tumors. Oncol. Lett. 2020;19:3937–3949. doi: 10.3892/ol.2020.11518. PubMed DOI PMC

Aisner D.L., Nguyen T.T., Paskulin D.D., Le A.T., Haney J., Schulte N., Chionh F., Hardingham J., Mariadason J., Tebbutt N., et al. ROS1 and ALK fusions in colorectal cancer, with evidence of intratumoral heterogeneity for molecular drivers. Mol. Cancer Res. 2014;12:111–118. doi: 10.1158/1541-7786.MCR-13-0479-T. PubMed DOI PMC

Oneyama C., Yoshikawa Y., Ninomiya Y., Iino T., Tsukita S., Okada M. Fer tyrosine kinase oligomer mediates and amplifies Src-induced tumor progression. Oncogene. 2016;35:501–512. doi: 10.1038/onc.2015.110. PubMed DOI

Medico E., Russo M., Picco G., Cancelliere C., Valtorta E., Corti G., Buscarino M., Isella C., Lamba S., Martinoglio B., et al. The molecular landscape of colorectal cancer cell lines unveils clinically actionable kinase targets. Nat. Commun. 2015;6:7002. doi: 10.1038/ncomms8002. PubMed DOI

Zhang L., Shay J.W. Multiple Roles of APC and its Therapeutic Implications in Colorectal Cancer. J. Natl. Cancer Inst. 2017;109:djw332. doi: 10.1093/jnci/djw332. PubMed DOI PMC

Kohonen-Corish M.R.J., Sigglekow N.D., Susanto J., Chapuis P.H., Bokey E.L., Dent O.F., Chan C., Lin B.P.C., Seng T.J., Laird P.W., et al. Promoter methylation of the mutated in colorectal cancer gene is a frequent early event in colorectal cancer. Oncogene. 2007;26:4435–4441. doi: 10.1038/sj.onc.1210210. PubMed DOI

Liu Y., Wang G., Liang Z., Mei Z., Wu T., Cui A., Liu C., Cui L. Lysyl oxidase: A colorectal cancer biomarker of lung and hepatic metastasis. Thorac. Cancer. 2018;9:785–793. doi: 10.1111/1759-7714.12645. PubMed DOI PMC

Hirsch D., Camps J., Varma S., Kemmerling R., Stapleton M., Ried T., Gaiser T. A new whole genome amplification method for studying clonal evolution patterns in malignant colorectal polyps. Genes. Chromosomes Cancer. 2012;51:490–500. doi: 10.1002/gcc.21937. PubMed DOI PMC

Hermsen M., Postma C., Baak J., Weiss M., Rapallo A., Sciutto A., Roemen G., Arends J.W., Williams R., Giaretti W., et al. Colorectal adenoma to carcinoma progression follows multiple pathways of chromosomal instability. Gastroenterology. 2002;123:1109–1119. doi: 10.1053/gast.2002.36051. PubMed DOI

Paraskeva C., Buckle B.G., Sheer D., Wigley C.B. The isolation and characterization of colorectal epithelial cell lines at different stages in malignant transformation from familial polyposis coli patients. Int. J. Cancer. 1984;34:49–56. doi: 10.1002/ijc.2910340109. PubMed DOI

Longy M., Saura R., Schouler L., Mauhin C., Goussot J.F., Grison O., Couzigou P. Chromosomal analysis of colonic adenomatous polyps. Cancer Genet. Cytogenet. 1990;49:249–257. doi: 10.1016/0165-4608(90)90149-5. PubMed DOI

Bomme L., Bardi G., Pandis N., Fenger C., Kronborg O., Heim S. Cytogenetic analysis of colorectal adenomas: Karyotypic comparisons of synchronous tumors. Cancer Genet. Cytogenet. 1998;106:66–71. doi: 10.1016/S0165-4608(98)00047-8. PubMed DOI

Ahnen D.J., Wade S.W., Jones W.F., Sifri R., Mendoza Silveiras J., Greenamyer J., Guiffre S., Axilbund J., Spiegel A., You Y.N. The increasing incidence of young-onset colorectal cancer: A call to action. Mayo. Clin. Proc. 2014;89:216–224. doi: 10.1016/j.mayocp.2013.09.006. PubMed DOI

Loomans-Kropp H.A., Umar A. Increasing Incidence of Colorectal Cancer in Young Adults. J. Cancer Epidemiol. 2019;2019:9841295. doi: 10.1155/2019/9841295. PubMed DOI PMC

Mieulet V., Lamb R.F. Tuberous sclerosis complex: Linking cancer to metabolism. Trends Mol. Med. 2010;16:329–335. doi: 10.1016/j.molmed.2010.05.001. PubMed DOI

Johnson C.E., Dunlop E.A., Seifan S., McCann H.D., Hay T., Parfitt G.J., Jones A.T., Giles P.J., Shen M.H., Sampson J.R., et al. Loss of tuberous sclerosis complex 2 sensitizes tumors to nelfinavir-bortezomib therapy to intensify endoplasmic reticulum stress-induced cell death. Oncogene. 2018;37:5913–5925. doi: 10.1038/s41388-018-0381-2. PubMed DOI

Huang Q., Li F., Hu H., Fang Z., Gao Z., Xia G., Ng W.L., Khodadadi-Jamayran A., Chen T., Deng J., et al. Loss of TSC1/TSC2 sensitizes immune checkpoint blockade in non-small cell lung cancer. Sci. Adv. 2022;8:eabi9533. doi: 10.1126/sciadv.abi9533. PubMed DOI PMC

Sansregret L., Vanhaesebroeck B., Swanton C. Determinants and clinical implications of chromosomal instability in cancer. Nat. Rev. Clin. Oncol. 2018;15:139–150. doi: 10.1038/nrclinonc.2017.198. PubMed DOI

Cheung S., Shaw C., Scott D., Patel A., Sahoo T., Bacino C., Pursley A., Li J., Erickson R., Gropman A., et al. Microarray-based CGH detects chromosomal mosaicism not revealed by conventional cytogenetics. Am. J. Med. Genetics. Part A. 2007;143A:1679–1686. doi: 10.1002/ajmg.a.31740. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...