Discovery of Long Non-Coding RNA MALAT1 Amplification in Precancerous Colorectal Lesions
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
AZV NV18-03-00199
Grant Agency of the Ministry of Health of the Czech Republic
GACR 22-05942S
Grant Agency of the Czech Republic
Oncology and Haematology
Cooperatio Program
CZ.02.2.69/0.0/0.0/19_073 project n. START/MED/052
Grant Schemes project at UK
PubMed
35887000
PubMed Central
PMC9318831
DOI
10.3390/ijms23147656
PII: ijms23147656
Knihovny.cz E-zdroje
- Klíčová slova
- MALAT1, adenomas, array comparative genomic hybridization, colorectal cancer, long non-coding RNA,
- MeSH
- adenom * genetika patologie MeSH
- chromozomální nestabilita MeSH
- kolorektální nádory * genetika patologie MeSH
- lidé MeSH
- prekancerózy * genetika patologie MeSH
- RNA dlouhá nekódující * genetika MeSH
- srovnávací genomová hybridizace MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- MALAT1 long non-coding RNA, human MeSH Prohlížeč
- RNA dlouhá nekódující * MeSH
A colorectal adenoma, an aberrantly growing tissue, arises from the intestinal epithelium and is considered as precursor of colorectal cancer (CRC). In this study, we investigated structural and numerical chromosomal aberrations in adenomas, hypothesizing that chromosomal instability (CIN) occurs early in adenomas. We applied array comparative genomic hybridization (aCGH) to fresh frozen colorectal adenomas and their adjacent mucosa from 16 patients who underwent colonoscopy examination. In our study, histologically similar colorectal adenomas showed wide variability in chromosomal instability. Based on the obtained results, we further stratified patients into four distinct groups. The first group showed the gain of MALAT1 and TALAM1, long non-coding RNAs (lncRNAs). The second group involved patients with numerous microdeletions. The third group consisted of patients with a disrupted karyotype. The fourth group of patients did not show any CIN in adenomas. Overall, we identified frequent losses in genes, such as TSC2, COL1A1, NOTCH1, MIR4673, and GNAS, and gene gain containing MALAT1 and TALAM1. Since long non-coding RNA MALAT1 is associated with cancer cell metastasis and migration, its gene amplification represents an important event for adenoma development.
Zobrazit více v PubMed
Cernat L., Blaj C., Jackstadt R., Brandl L., Engel J., Hermeking H., Jung A., Kirchner T., Horst D. Colorectal Cancers Mimic Structural Organization of Normal Colonic Crypts. PLoS ONE. 2014;9:e104284. doi: 10.1371/journal.pone.0104284. PubMed DOI PMC
Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018;68:394–424. doi: 10.3322/caac.21492. PubMed DOI
Rawla P., Sunkara T., Barsouk A. Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors. Prz. Gastroenterol. 2019;14:89–103. doi: 10.5114/pg.2018.81072. PubMed DOI PMC
Loeve F., Boer R., Zauber A.G., Van Ballegooijen M., Van Oortmarssen G.J., Winawer S.J., Habbema J.D. National Polyp Study data: Evidence for regression of adenomas. Int. J. Cancer. 2004;111:633–639. doi: 10.1002/ijc.20277. PubMed DOI
Carvalho B., Sillars-Hardebol A.H., Postma C., Mongera S., Terhaar Sive Droste J., Obulkasim A., van de Wiel M., van Criekinge W., Ylstra B., Fijneman R.J., et al. Colorectal adenoma to carcinoma progression is accompanied by changes in gene expression associated with ageing, chromosomal instability, and fatty acid metabolism. Cell. Oncol. 2012;35:53–63. doi: 10.1007/s13402-011-0065-1. PubMed DOI PMC
Muller M.F., Ibrahim A.E., Arends M.J. Molecular pathological classification of colorectal cancer. Virchows Arch. 2016;469:125–134. doi: 10.1007/s00428-016-1956-3. PubMed DOI PMC
Kwong L.N., Dove W.F. APC and its modifiers in colon cancer. Adv. Exp. Med. Biol. 2009;656:85–106. doi: 10.1007/978-1-4419-1145-2_8. PubMed DOI PMC
Cross W., Kovac M., Mustonen V., Temko D., Davis H., Baker A.M., Biswas S., Arnold R., Chegwidden L., Gatenbee C., et al. The evolutionary landscape of colorectal tumorigenesis. Nat. Ecol. Evol. 2018;2:1661–1672. doi: 10.1038/s41559-018-0642-z. PubMed DOI PMC
Heald B., Mester J., Rybicki L., Orloff M.S., Burke C.A., Eng C. Frequent Gastrointestinal Polyps and Colorectal Adenocarcinomas in a Prospective Series of PTEN Mutation Carriers. Gastroenterology. 2010;139:1927–1933. doi: 10.1053/j.gastro.2010.06.061. PubMed DOI PMC
Tyagi A., Sharma A.K., Damodaran C. A Review on Notch Signaling and Colorectal Cancer. Cells. 2020;9:1549. doi: 10.3390/cells9061549. PubMed DOI PMC
Jungwirth J., Urbanova M., Boot A., Hosek P., Bendova P., Siskova A., Svec J., Kment M., Tumova D., Summerova S., et al. Mutational analysis of driver genes defines the colorectal adenoma: In situ carcinoma transition. Sci. Rep. 2022;12:2570. doi: 10.1038/s41598-022-06498-9. PubMed DOI PMC
Pino M.S., Chung D.C. The chromosomal instability pathway in colon cancer. Gastroenterology. 2010;138:2059–2072. doi: 10.1053/j.gastro.2009.12.065. PubMed DOI PMC
Siskova A., Cervena K., Kral J., Hucl T., Vodicka P., Vymetalkova V. Colorectal Adenomas-Genetics and Searching for New Molecular Screening Biomarkers. Int. J. Mol. Sci. 2020;21:3260. doi: 10.3390/ijms21093260. PubMed DOI PMC
Fernández L.C., Torres M., Real F.X. Somatic mosaicism: On the road to cancer. Nat. Rev. Cancer. 2016;16:43–55. doi: 10.1038/nrc.2015.1. PubMed DOI
Statello L., Guo C.-J., Chen L.-L., Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol. 2021;22:96–118. doi: 10.1038/s41580-020-00315-9. PubMed DOI PMC
Ji P., Diederichs S., Wang W., Böing S., Metzger R., Schneider P.M., Tidow N., Brandt B., Buerger H., Bulk E., et al. MALAT-1, a novel noncoding RNA, and thymosin β4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene. 2003;22:8031–8041. doi: 10.1038/sj.onc.1206928. PubMed DOI
Goyal B., Yadav S.R.M., Awasthee N., Gupta S., Kunnumakkara A.B., Gupta S.C. Diagnostic, prognostic, and therapeutic significance of long non-coding RNA MALAT1 in cancer. Biochim. Biophys. Acta Rev. Cancer. 2021;1875:188502. doi: 10.1016/j.bbcan.2021.188502. PubMed DOI
Shi Z.Z., Zhang Y.M., Shang L., Hao J.J., Zhang T.T., Wang B.S., Liang J.W., Chen X., Zhang Y., Wang G.Q., et al. Genomic profiling of rectal adenoma and carcinoma by array-based comparative genomic hybridization. BMC Med. Genom. 2012;5:52. doi: 10.1186/1755-8794-5-52. PubMed DOI PMC
Douglas E.J., Fiegler H., Rowan A., Halford S., Bicknell D.C., Bodmer W., Tomlinson I.P., Carter N.P. Array comparative genomic hybridization analysis of colorectal cancer cell lines and primary carcinomas. Cancer Res. 2004;64:4817–4825. doi: 10.1158/0008-5472.CAN-04-0328. PubMed DOI
Rosner M., Hanneder M., Siegel N., Valli A., Hengstschlager M. The tuberous sclerosis gene products hamartin and tuberin are multifunctional proteins with a wide spectrum of interacting partners. Mutat. Res. 2008;658:234–246. doi: 10.1016/j.mrrev.2008.01.001. PubMed DOI
Slattery M.L., Herrick J.S., Lundgreen A., Fitzpatrick F.A., Curtin K., Wolff R.K. Genetic variation in a metabolic signaling pathway and colon and rectal cancer risk: mTOR, PTEN, STK11, RPKAA1, PRKAG2, TSC1, TSC2, PI3K and Akt1. Carcinogenesis. 2010;31:1604–1611. doi: 10.1093/carcin/bgq142. PubMed DOI PMC
Jiang K., Liu H., Xie D., Xiao Q. Differentially expressed genes ASPN, COL1A1, FN1, VCAN and MUC5AC are potential prognostic biomarkers for gastric cancer. Oncol. Lett. 2019;17:3191–3202. doi: 10.3892/ol.2019.9952. PubMed DOI PMC
Lin P., Tian P., Pang J., Lai L., He G., Song Y., Zheng Y. Clinical significance of COL1A1 and COL1A2 expression levels in hypopharyngeal squamous cell carcinoma. Oncol. Lett. 2020;20:803–809. doi: 10.3892/ol.2020.11594. PubMed DOI PMC
Zou X., Feng B., Dong T., Yan G., Tan B., Shen H., Huang A., Zhang X., Zhang M., Yang P., et al. Up-regulation of type I collagen during tumorigenesis of colorectal cancer revealed by quantitative proteomic analysis. J. Proteom. 2013;94:473–485. doi: 10.1016/j.jprot.2013.10.020. PubMed DOI
Huang T., Zhou Y., Cheng A.S., Yu J., To K.F., Kang W. NOTCH receptors in gastric and other gastrointestinal cancers: Oncogenes or tumor suppressors? Mol. Cancer. 2016;15:80. doi: 10.1186/s12943-016-0566-7. PubMed DOI PMC
Arcaroli J.J., Tai W.M., McWilliams R., Bagby S., Blatchford P.J., Varella-Garcia M., Purkey A., Quackenbush K.S., Song E.-K., Pitts T.M., et al. A NOTCH1 gene copy number gain is a prognostic indicator of worse survival and a predictive biomarker to a Notch1 targeting antibody in colorectal cancer. Int. J. Cancer. 2016;138:195–205. doi: 10.1002/ijc.29676. PubMed DOI PMC
Dokumcu K., Simonian M., Farahani R.M. miR4673 improves fitness profile of neoplastic cells by induction of autophagy. Cell Death Dis. 2018;9:1068. doi: 10.1038/s41419-018-1088-6. PubMed DOI PMC
Thomis D.C., Berg L.J. The role of Jak3 in lymphoid development, activation, and signaling. Curr. Opin. Immunol. 1997;9:541–547. doi: 10.1016/S0952-7915(97)80108-2. PubMed DOI
Bastepe M., Juppner H. GNAS locus and pseudohypoparathyroidism. Horm. Res. 2005;63:65–74. doi: 10.1159/000083895. PubMed DOI
Liu C., McKeone D.M., Walker N.I., Bettington M.L., Leggett B.A., Whitehall V.L.J. GNAS mutations are present in colorectal traditional serrated adenomas, serrated tubulovillous adenomas and serrated adenocarcinomas with adverse prognostic features. Histopathology. 2017;70:1079–1088. doi: 10.1111/his.13180. PubMed DOI
Zauber P., Marotta S.P., Sabbath-Solitare M. GNAS gene mutation may be present only transiently during colorectal tumorigenesis. Int. J. Mol. Epidemiol. Genet. 2016;7:24–31. PubMed PMC
Vashisht A.A., Wohlschlegel J.A. Chapter 8—Role of Human Xeroderma Pigmentosum Group D (XPD) Helicase in Various Cellular Pathways. In: Tuteja R., editor. Helicases from All Domains of Life. Academic Press; Cambridge, MA, USA: 2019. pp. 125–139. DOI
Zhang X., Hamblin M.H., Yin K.J. The long noncoding RNA Malat1: Its physiological and pathophysiological functions. RNA Biol. 2017;14:1705–1714. doi: 10.1080/15476286.2017.1358347. PubMed DOI PMC
Gutschner T., Hammerle M., Diederichs S. MALAT1—a paradigm for long noncoding RNA function in cancer. J. Mol. Med. 2013;91:791–801. doi: 10.1007/s00109-013-1028-y. PubMed DOI
Biswas S., Thomas A.A., Chen S., Aref-Eshghi E., Feng B., Gonder J., Sadikovic B., Chakrabarti S. MALAT1: An Epigenetic Regulator of Inflammation in Diabetic Retinopathy. Sci. Rep. 2018;8:6526. doi: 10.1038/s41598-018-24907-w. PubMed DOI PMC
Gutschner T., Hämmerle M., Eißmann M., Hsu J., Kim Y., Hung G., Revenko A., Arun G., Stentrup M., Groß M., et al. The Noncoding RNA MALAT1 Is a Critical Regulator of the Metastasis Phenotype of Lung Cancer Cells. Cancer Res. 2013;73:1180–1189. doi: 10.1158/0008-5472.CAN-12-2850. PubMed DOI PMC
Meseure D., Vacher S., Lallemand F., Alsibai K.D., Hatem R., Chemlali W., Nicolas A., De Koning L., Pasmant E., Callens C., et al. Prognostic value of a newly identified MALAT1 alternatively spliced transcript in breast cancer. Br. J. Cancer. 2016;114:1395–1404. doi: 10.1038/bjc.2016.123. PubMed DOI PMC
Li C., Cui Y., Liu L.F., Ren W.B., Li Q.Q., Zhou X., Li Y.L., Li Y., Bai X.Y., Zu X.B. High Expression of Long Noncoding RNA MALAT1 Indicates a Poor Prognosis and Promotes Clinical Progression and Metastasis in Bladder Cancer. Clin. Genitourin. Cancer. 2017;15:570–576. doi: 10.1016/j.clgc.2017.05.001. PubMed DOI
Yang L., Bai H.S., Deng Y., Fan L. High MALAT1 expression predicts a poor prognosis of cervical cancer and promotes cancer cell growth and invasion. Eur. Rev. Med. Pharmacol. Sci. 2015;19:3187–3193. PubMed
Konishi H., Ichikawa D., Yamamoto Y., Arita T., Shoda K., Hiramoto H., Hamada J., Itoh H., Fujita Y., Komatsu S., et al. Plasma level of metastasis-associated lung adenocarcinoma transcript 1 is associated with liver damage and predicts development of hepatocellular carcinoma. Cancer Sci. 2016;107:149–154. doi: 10.1111/cas.12854. PubMed DOI PMC
Ji Q., Zhang L., Liu X., Zhou L., Wang W., Han Z., Sui H., Tang Y., Wang Y., Liu N., et al. Long non-coding RNA MALAT1 promotes tumour growth and metastasis in colorectal cancer through binding to SFPQ and releasing oncogene PTBP2 from SFPQ/PTBP2 complex. Br. J. Cancer. 2014;111:736–748. doi: 10.1038/bjc.2014.383. PubMed DOI PMC
Xiong M., Wu M., Dan P., Huang W., Chen Z., Ke H., Chen Z., Song W., Zhao Y., Xiang A.P., et al. LncRNA DANCR represses Doxorubicin-induced apoptosis through stabilizing MALAT1 expression in colorectal cancer cells. Cell Death Dis. 2021;12:24. doi: 10.1038/s41419-020-03318-8. PubMed DOI PMC
Xu C., Yang M., Tian J., Wang X., Li Z. MALAT-1: A long non-coding RNA and its important 3’ end functional motif in colorectal cancer metastasis. Int. J. Oncol. 2011;39:169–175. doi: 10.3892/ijo.2011.1007. PubMed DOI
Li J., Cui Z., Li H., Lv X., Gao M., Yang Z., Bi Y., Zhang Z., Wang S., Zhou B., et al. Clinicopathological and prognostic significance of long noncoding RNA MALAT1 in human cancers: A review and meta-analysis. Cancer Cell Int. 2018;18:109. doi: 10.1186/s12935-018-0606-z. PubMed DOI PMC
Peng Y., Croce C.M. The role of MicroRNAs in human cancer. Signal Transduct. Target. Ther. 2016;1:15004. doi: 10.1038/sigtrans.2015.4. PubMed DOI PMC
Feng C., Zhao Y., Li Y., Zhang T., Ma Y., Liu Y. LncRNA MALAT1 Promotes Lung Cancer Proliferation and Gefitinib Resistance by Acting as a miR-200a Sponge. Arch. De Bronconeumol. 2019;55:627–633. doi: 10.1016/j.arbres.2019.03.026. PubMed DOI
Xu Y., Zhang X., Hu X., Zhou W., Zhang P., Zhang J., Yang S., Liu Y. The effects of lncRNA MALAT1 on proliferation, invasion and migration in colorectal cancer through regulating SOX9. Mol. Med. 2018;24:52. doi: 10.1186/s10020-018-0050-5. PubMed DOI PMC
Su K., Wang N., Shao Q., Liu H., Zhao B., Ma S. The role of a ceRNA regulatory network based on lncRNA MALAT1 site in cancer progression. Biomed. Pharmacother. 2021;137:111389. doi: 10.1016/j.biopha.2021.111389. PubMed DOI
Ji Q., Cai G., Liu X., Zhang Y., Wang Y., Zhou L., Sui H., Li Q. MALAT1 regulates the transcriptional and translational levels of proto-oncogene RUNX2 in colorectal cancer metastasis. Cell Death Dis. 2019;10:378. doi: 10.1038/s41419-019-1598-x. PubMed DOI PMC
Chaleshi V., Irani S., Alebouyeh M., Mirfakhraie R., Aghdaei H.A. Association of lncRNA-p53 regulatory network (lincRNA-p21, lincRNA-ROR and MALAT1) and p53 with the clinicopathological features of colorectal primary lesions and tumors. Oncol. Lett. 2020;19:3937–3949. doi: 10.3892/ol.2020.11518. PubMed DOI PMC
Aisner D.L., Nguyen T.T., Paskulin D.D., Le A.T., Haney J., Schulte N., Chionh F., Hardingham J., Mariadason J., Tebbutt N., et al. ROS1 and ALK fusions in colorectal cancer, with evidence of intratumoral heterogeneity for molecular drivers. Mol. Cancer Res. 2014;12:111–118. doi: 10.1158/1541-7786.MCR-13-0479-T. PubMed DOI PMC
Oneyama C., Yoshikawa Y., Ninomiya Y., Iino T., Tsukita S., Okada M. Fer tyrosine kinase oligomer mediates and amplifies Src-induced tumor progression. Oncogene. 2016;35:501–512. doi: 10.1038/onc.2015.110. PubMed DOI
Medico E., Russo M., Picco G., Cancelliere C., Valtorta E., Corti G., Buscarino M., Isella C., Lamba S., Martinoglio B., et al. The molecular landscape of colorectal cancer cell lines unveils clinically actionable kinase targets. Nat. Commun. 2015;6:7002. doi: 10.1038/ncomms8002. PubMed DOI
Zhang L., Shay J.W. Multiple Roles of APC and its Therapeutic Implications in Colorectal Cancer. J. Natl. Cancer Inst. 2017;109:djw332. doi: 10.1093/jnci/djw332. PubMed DOI PMC
Kohonen-Corish M.R.J., Sigglekow N.D., Susanto J., Chapuis P.H., Bokey E.L., Dent O.F., Chan C., Lin B.P.C., Seng T.J., Laird P.W., et al. Promoter methylation of the mutated in colorectal cancer gene is a frequent early event in colorectal cancer. Oncogene. 2007;26:4435–4441. doi: 10.1038/sj.onc.1210210. PubMed DOI
Liu Y., Wang G., Liang Z., Mei Z., Wu T., Cui A., Liu C., Cui L. Lysyl oxidase: A colorectal cancer biomarker of lung and hepatic metastasis. Thorac. Cancer. 2018;9:785–793. doi: 10.1111/1759-7714.12645. PubMed DOI PMC
Hirsch D., Camps J., Varma S., Kemmerling R., Stapleton M., Ried T., Gaiser T. A new whole genome amplification method for studying clonal evolution patterns in malignant colorectal polyps. Genes. Chromosomes Cancer. 2012;51:490–500. doi: 10.1002/gcc.21937. PubMed DOI PMC
Hermsen M., Postma C., Baak J., Weiss M., Rapallo A., Sciutto A., Roemen G., Arends J.W., Williams R., Giaretti W., et al. Colorectal adenoma to carcinoma progression follows multiple pathways of chromosomal instability. Gastroenterology. 2002;123:1109–1119. doi: 10.1053/gast.2002.36051. PubMed DOI
Paraskeva C., Buckle B.G., Sheer D., Wigley C.B. The isolation and characterization of colorectal epithelial cell lines at different stages in malignant transformation from familial polyposis coli patients. Int. J. Cancer. 1984;34:49–56. doi: 10.1002/ijc.2910340109. PubMed DOI
Longy M., Saura R., Schouler L., Mauhin C., Goussot J.F., Grison O., Couzigou P. Chromosomal analysis of colonic adenomatous polyps. Cancer Genet. Cytogenet. 1990;49:249–257. doi: 10.1016/0165-4608(90)90149-5. PubMed DOI
Bomme L., Bardi G., Pandis N., Fenger C., Kronborg O., Heim S. Cytogenetic analysis of colorectal adenomas: Karyotypic comparisons of synchronous tumors. Cancer Genet. Cytogenet. 1998;106:66–71. doi: 10.1016/S0165-4608(98)00047-8. PubMed DOI
Ahnen D.J., Wade S.W., Jones W.F., Sifri R., Mendoza Silveiras J., Greenamyer J., Guiffre S., Axilbund J., Spiegel A., You Y.N. The increasing incidence of young-onset colorectal cancer: A call to action. Mayo. Clin. Proc. 2014;89:216–224. doi: 10.1016/j.mayocp.2013.09.006. PubMed DOI
Loomans-Kropp H.A., Umar A. Increasing Incidence of Colorectal Cancer in Young Adults. J. Cancer Epidemiol. 2019;2019:9841295. doi: 10.1155/2019/9841295. PubMed DOI PMC
Mieulet V., Lamb R.F. Tuberous sclerosis complex: Linking cancer to metabolism. Trends Mol. Med. 2010;16:329–335. doi: 10.1016/j.molmed.2010.05.001. PubMed DOI
Johnson C.E., Dunlop E.A., Seifan S., McCann H.D., Hay T., Parfitt G.J., Jones A.T., Giles P.J., Shen M.H., Sampson J.R., et al. Loss of tuberous sclerosis complex 2 sensitizes tumors to nelfinavir-bortezomib therapy to intensify endoplasmic reticulum stress-induced cell death. Oncogene. 2018;37:5913–5925. doi: 10.1038/s41388-018-0381-2. PubMed DOI
Huang Q., Li F., Hu H., Fang Z., Gao Z., Xia G., Ng W.L., Khodadadi-Jamayran A., Chen T., Deng J., et al. Loss of TSC1/TSC2 sensitizes immune checkpoint blockade in non-small cell lung cancer. Sci. Adv. 2022;8:eabi9533. doi: 10.1126/sciadv.abi9533. PubMed DOI PMC
Sansregret L., Vanhaesebroeck B., Swanton C. Determinants and clinical implications of chromosomal instability in cancer. Nat. Rev. Clin. Oncol. 2018;15:139–150. doi: 10.1038/nrclinonc.2017.198. PubMed DOI
Cheung S., Shaw C., Scott D., Patel A., Sahoo T., Bacino C., Pursley A., Li J., Erickson R., Gropman A., et al. Microarray-based CGH detects chromosomal mosaicism not revealed by conventional cytogenetics. Am. J. Med. Genetics. Part A. 2007;143A:1679–1686. doi: 10.1002/ajmg.a.31740. PubMed DOI
MALAT1 in Liquid Biopsy: The Diagnostic and Prognostic Promise for Colorectal Cancer and Adenomas?