H19 Noncoding RNA, an Independent Prognostic Factor, Regulates Essential Rb-E2F and CDK8-β-Catenin Signaling in Colorectal Cancer

. 2016 Nov ; 13 () : 113-124. [epub] 20161019

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27789274

Grantová podpora
P30 CA016672 NCI NIH HHS - United States
UH2 TR000943 NCATS NIH HHS - United States
UL1 TR001108 NCATS NIH HHS - United States
R01 CA181572 NCI NIH HHS - United States
R01 CA182905 NCI NIH HHS - United States
P50 CA127001 NCI NIH HHS - United States
P50 CA093459 NCI NIH HHS - United States

Odkazy

PubMed 27789274
PubMed Central PMC5264449
DOI 10.1016/j.ebiom.2016.10.026
PII: S2352-3964(16)30487-X
Knihovny.cz E-zdroje

The clinical significance of long noncoding RNAs (lncRNAs) in colorectal cancer (CRC) remains largely unexplored. Here, we analyzed a large panel of lncRNA candidates with The Cancer Genome Atlas (TCGA) CRC dataset, and identified H19 as the most significant lncRNA associated with CRC patient survival. We further validated such association in two independent CRC cohorts. H19 silencing blocked G1-S transition, reduced cell proliferation, and inhibited cell migration. We profiled gene expression changes to gain mechanism insight of H19 function. Transcriptome data analysis revealed not only previously identified mechanisms such as Let-7 regulation by H19, but also RB1-E2F1 function and β-catenin activity as essential upstream regulators mediating H19 function. Our experimental data showed that H19 affects phosphorylation of RB1 protein by regulating gene expression of CDK4 and CCND1. We further demonstrated that reduced CDK8 expression underlies changes of β-catenin activity, and identified that H19 interacts with macroH2A, an essential regulator of CDK8 gene transcription. However, the relevance of H19-macroH2A interaction in CDK8 regulation remains to be experimentally determined. We further explored the clinical relevance of above mechanisms in clinical samples, and showed that combined analysis of H19 with its targets improved prognostic value of H19 in CRC.

Center for Gastrointestinal Research Baylor Research Institute and Charles A Sammons Cancer Center Baylor University Medical Center Dallas TX USA

Center for RNA Interference and Non Coding RNAs The University of Texas MD Anderson Cancer Center Houston TX USA

Central European Institute of Technology Molecular Oncology 2 Masaryk University Brno Czech Republic

Department of Experimental Therapeutics The University of Texas MD Anderson Cancer Center Houston TX USA

Department of Experimental Therapeutics The University of Texas MD Anderson Cancer Center Houston TX USA; Center for RNA Interference and Non Coding RNAs The University of Texas MD Anderson Cancer Center Houston TX USA

Department of Experimental Therapeutics The University of Texas MD Anderson Cancer Center Houston TX USA; Research Unit for non coding RNA and genome editing Division of Oncology Medical University of Graz Austria

Department of Gastroenterological Surgery Graduate School of Medicine Osaka University Osaka Japan

Department of Gastrointestinal and Pediatric Surgery Division of Reparative Medicine Institute of Life Sciences Mie University Graduate School of Medicine Mie Japan

Department of Gastrointestinal Medical Oncology The University of Texas MD Anderson Cancer Center Houston TX USA

Department of Radiation Oncology Division of Radiation Oncology The University of Texas MD Anderson Cancer Center Houston TX USA

Department of Surgery Medical and Molecular Genetics Indiana University School of Medicine Indianapolis IN USA

Research Unit for non coding RNA and genome editing Division of Oncology Medical University of Graz Austria

Zobrazit více v PubMed

Abbasi O., Mashayekhi F., Mirzajani E., Fakhriyeh Asl S., Mahmoudi T., Saeedi Saedi H. Soluble VEGFR1 concentration in the serum of patients with colorectal cancer. Surg. Today. 2015;45:215–220. PubMed

Allen B.L., Taatjes D.J. The Mediator complex: a central integrator of transcription. Nat. Rev. Mol. Cell Biol. 2015;16:155–166. PubMed PMC

Anastas J.N., Moon R.T. WNT signalling pathways as therapeutic targets in cancer. Nat. Rev. Cancer. 2013;13:11–26. PubMed

Barsyte-Lovejoy D., Lau S.K., Boutros P.C. The c-Myc oncogene directly induces the H19 noncoding RNA by allele-specific binding to potentiate tumorigenesis. Cancer Res. 2006;66:5330–5337. PubMed

Cancer Genome Atlas Network Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–337. PubMed PMC

Cantarino N., Douet J., Buschbeck M. MacroH2A—an epigenetic regulator of cancer. Cancer Lett. 2013;336:247–252. PubMed

Chen H.Z., Tsai S.Y., Leone G. Emerging roles of E2Fs in cancer: an exit from cell cycle control. Nat. Rev. Cancer. 2009;9:785–797. PubMed PMC

Chen E.Y., Tan C.M., Kou Y. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinf. 2013;14:128. PubMed PMC

Dalerba P., Sahoo D., Paik S. CDX2 as a prognostic biomarker in stage II and stage III colon cancer. N. Engl. J. Med. 2016;374:211–222. PubMed PMC

Derrien T., Johnson R., Bussotti G. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 2012;22:1775–1789. PubMed PMC

Dick F.A., Rubin S.M. Molecular mechanisms underlying RB protein function. Nat. Rev. Mol. Cell Biol. 2013;14:297–306. PubMed PMC

Dyson N., Howley P.M., Munger K., Harlow E. The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science. 1989;243:934–937. PubMed

Firestein R., Bass A.J., Kim S.Y. CDK8 is a colorectal cancer oncogene that regulates beta-catenin activity. Nature. 2008;455:547–551. PubMed PMC

Firestein R., Shima K., Nosho K. CDK8 expression in 470 colorectal cancers in relation to beta-catenin activation, other molecular alterations and patient survival. Int. J. Cancer. 2010;126:2863–2873. PubMed PMC

Giovarelli M., Bucci G., Ramos A. H19 long noncoding RNA controls the mRNA decay promoting function of KSRP. Proc. Natl. Acad. Sci. U. S. A. 2014;111:E5023–E5028. PubMed PMC

Guinney J., Dienstmann R., Wang X. The consensus molecular subtypes of colorectal cancer. Nat. Med. 2015;21:1350–1356. PubMed PMC

Han D., Gao X., Wang M. Long noncoding RNA H19 indicates a poor prognosis of colorectal cancer and promotes tumor growth by recruiting and binding to eIF4A3. Oncotarget. 2016 PubMed PMC

Hao Y., Crenshaw T., Moulton T., Newcomb E., Tycko B. Tumour-suppressor activity of H19 RNA. Nature. 1993;365:764–767. PubMed

Hoffmann C., Mao X., Dieterle M. CRP2, a new invadopodia actin bundling factor critically promotes breast cancer cell invasion and metastasis. Oncotarget. 2016 PubMed PMC

Imig J., Brunschweiger A., Brummer A. miR-CLIP capture of a miRNA targetome uncovers a lincRNA H19-miR-106a interaction. Nat. Chem. Biol. 2015;11:107–114. PubMed

Juan V., Crain C., Wilson C. Evidence for evolutionarily conserved secondary structure in the H19 tumor suppressor RNA. Nucleic Acids Res. 2000;28:1221–1227. PubMed PMC

Kallen A.N., Zhou X.B., Xu J. The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol. Cell. 2013;52:101–112. PubMed PMC

Kapoor A., Goldberg M.S., Cumberland L.K. The histone variant macroH2A suppresses melanoma progression through regulation of CDK8. Nature. 2010;468:1105–1109. PubMed PMC

Keniry A., Oxley D., Monnier P. The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r. Nat. Cell Biol. 2012;14:659–665. PubMed PMC

Kuleshov M.V., Jones M.R., Rouillard A.D. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44:W90–W97. PubMed PMC

Lei S., Long J., Li J. MacroH2A suppresses the proliferation of the B16 melanoma cell line. Mol. Med. Rep. 2014;10:1845–1850. PubMed

Li J., Han L., Roebuck P. TANRIC: an interactive open platform to explore the function of lncRNAs in cancer. Cancer Res. 2015;75:3728–3737. PubMed PMC

Liang W.C., Fu W.M., Wong C.W. The lncRNA H19 promotes epithelial to mesenchymal transition by functioning as miRNA sponges in colorectal cancer. Oncotarget. 2015;6:22513–22525. PubMed PMC

Liang W.C., Fu W.M., Wang Y.B. H19 activates Wnt signaling and promotes osteoblast differentiation by functioning as a competing endogenous RNA. Sci. Rep. 2016;6:20121. PubMed PMC

Ling H., Vincent K., Pichler M. Junk DNA and the long non-coding RNA twist in cancer genetics. Oncogene. 2015;34:5003–5011. PubMed PMC

Luo M., Li Z., Wang W., Zeng Y., Liu Z., Qiu J. Long non-coding RNA H19 increases bladder cancer metastasis by associating with EZH2 and inhibiting E-cadherin expression. Cancer Lett. 2013;333:213–221. PubMed

Medrzycki M., Zhang Y., Zhang W. Histone h1.3 suppresses h19 noncoding RNA expression and cell growth of ovarian cancer cells. Cancer Res. 2014;74:6463–6473. PubMed PMC

Mokry M., Hatzis P., Schuijers J. Integrated genome-wide analysis of transcription factor occupancy, RNA polymerase II binding and steady-state RNA levels identify differentially regulated functional gene classes. Nucleic Acids Res. 2012;40:148–158. PubMed PMC

Monnier P., Martinet C., Pontis J., Stancheva I., Ait-Si-Ali S., Dandolo L. H19 lncRNA controls gene expression of the Imprinted Gene Network by recruiting MBD1. Proc. Natl. Acad. Sci. U. S. A. 2013;110:20693–20698. PubMed PMC

Morris K.V., Mattick J.S. The rise of regulatory RNA. Nat. Rev. Genet. 2014;15:423–437. PubMed PMC

Polager S., Ginsberg D. p53 and E2f: partners in life and death. Nat. Rev. Cancer. 2009;9:738–748. PubMed

Raveh E., Matouk I.J., Gilon M., Hochberg A. The H19 Long non-coding RNA in cancer initiation, progression and metastasis — a proposed unifying theory. Mol. Cancer. 2015;14:184. PubMed PMC

Rodilla V., Villanueva A., Obrador-Hevia A. Jagged1 is the pathological link between Wnt and Notch pathways in colorectal cancer. Proc. Natl. Acad. Sci. U. S. A. 2009;106:6315–6320. PubMed PMC

Roychowdhury S., Iyer M.K., Robinson D.R. Personalized oncology through integrative high-throughput sequencing: a pilot study. Sci. Transl. Med. 2011;3:111ra121. PubMed PMC

Shi Y., Wang Y., Luan W. Long non-coding RNA H19 promotes glioma cell invasion by deriving miR-675. PLoS One. 2014;9 PubMed PMC

Siboni R.B., Nakamori M., Wagner S.D. Actinomycin D specifically reduces expanded CUG repeat RNA in myotonic dystrophy models. Cell Rep. 2015;13:2386–2394. PubMed PMC

Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2015. CA Cancer J. Clin. 2015;65:5–29. PubMed

Spizzo R., Almeida M.I., Colombatti A., Calin G.A. Long non-coding RNAs and cancer: a new frontier of translational research? Oncogene. 2012;31:4577–4587. PubMed PMC

Toiyama Y., Tanaka K., Inoue Y., Mohri Y., Kusunoki M. Circulating cell-free microRNAs as biomarkers for colorectal cancer. Surg. Today. 2016;46:13–24. PubMed

Torre L.A., Bray F., Siegel R.L., Ferlay J., Lortet-Tieulent J., Jemal A. Global cancer statistics, 2012. CA Cancer J. Clin. 2015;65:87–108. PubMed

Tsai M.C., Spitale R.C., Chang H.Y. Long intergenic noncoding RNAs: new links in cancer progression. Cancer Res. 2011;71:3–7. PubMed PMC

Tsai K.L., Sato S., Tomomori-Sato C., Conaway R.C., Conaway J.W., Asturias F.J. A conserved Mediator-CDK8 kinase module association regulates Mediator-RNA polymerase II interaction. Nat. Struct. Mol. Biol. 2013;20:611–619. PubMed PMC

Tsang W.P., Ng E.K., Ng S.S. Oncofetal H19-derived miR-675 regulates tumor suppressor RB in human colorectal cancer. Carcinogenesis. 2010;31:350–358. PubMed

Venkatraman A., He X.C., Thorvaldsen J.L. Maternal imprinting at the H19-Igf2 locus maintains adult haematopoietic stem cell quiescence. Nature. 2013;500:345–349. PubMed PMC

Wang S., Wu X., Liu Y. Long noncoding RNA H19 inhibits the proliferation of fetal liver cells and the Wnt signaling pathway. FEBS Lett. 2016;590:559–570. PubMed

Xu D., Li C.F., Zhang X. Skp2-macroH2A1-CDK8 axis orchestrates G2/M transition and tumorigenesis. Nat. Commun. 2015;6:6641. PubMed PMC

Yan L., Zhou J., Gao Y. Regulation of tumor cell migration and invasion by the H19/let-7 axis is antagonized by metformin-induced DNA methylation. Oncogene. 2015;34:3076–3084. PubMed

Yang P., Yin K., Zhong D., Liao Q., Li K. Inhibition of osteosarcoma cell progression by MacroH2A via the downregulation of cyclin D and cyclindependent kinase genes. Mol. Med. Rep. 2015;11:1905–1910. PubMed

Zhou J., Yang L., Zhong T. H19 lncRNA alters DNA methylation genome wide by regulating S-adenosylhomocysteine hydrolase. Nat. Commun. 2015;6:10221. PubMed PMC

Zhu M., Chen Q., Liu X. lncRNA H19/miR-675 axis represses prostate cancer metastasis by targeting TGFBI. FEBS J. 2014;281:3766–3775. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...