Non-Coding RNAs as Biomarkers of Tumor Progression and Metastatic Spread in Epithelial Ovarian Cancer
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
19-10543S
Grantová Agentura České Republiky
NU20-09-00174
Agentura Pro Zdravotnický Výzkum České Republiky
GAUK-1074120
Grantová Agentura, Univerzita Karlova
PROGRES Q28
Grantová Agentura, Univerzita Karlova
No. CZ.02.1.01/0.0/0.0/16_019/0000860
ERDF/ESF
PubMed
33921525
PubMed Central
PMC8069230
DOI
10.3390/cancers13081839
PII: cancers13081839
Knihovny.cz E-zdroje
- Klíčová slova
- biomarkers, epigenetics, lncRNA, metastasis, miRNA, ncRNA, ovarian cancer, progression,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Ovarian cancer is one of the most common causes of death among gynecological malignancies. Molecular changes occurring in the primary tumor lead to metastatic spread into the peritoneum and the formation of distant metastases. Identification of these changes helps to reveal the nature of metastases development and decipher early biomarkers of prognosis and disease progression. Comparing differences in gene expression profiles between primary tumors and metastases, together with disclosing their epigenetic regulation, provides interesting associations with progression and metastasizing. Regulatory elements from the non-coding RNA families such as microRNAs and long non-coding RNAs seem to participate in these processes and represent potential molecular biomarkers of patient prognosis. Progress in therapy individualization and its proper targeting also rely upon a better understanding of interactions among the above-listed factors. This review aims to summarize currently available findings of microRNAs and long non-coding RNAs linked with tumor progression and metastatic process in ovarian cancer. These biomolecules provide promising tools for monitoring the patient's response to treatment, and further they serve as potential therapeutic targets of this deadly disease.
Biomedical Center Faculty of Medicine in Pilsen Charles University 323 00 Pilsen Czech Republic
Institute of Experimental Medicine CAS 142 20 Prague Czech Republic
Toxicogenomics Unit National Institute of Public Health 100 42 Prague Czech Republic
Zobrazit více v PubMed
Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018;68:394–424. doi: 10.3322/caac.21492. PubMed DOI
Prat J., FIGO Committee on Gynecologic Oncology Abridged Republication of FIGO’s Staging Classification for Cancer of the Ovary, Fallopian Tube, and Peritoneum. Cancer. 2015;121:3452–3454. doi: 10.1002/cncr.29524. PubMed DOI
Rojas V., Hirshfield K.M., Ganesan S., Rodriguez-Rodriguez L. Molecular Characterization of Epithelial Ovarian Cancer: Implications for Diagnosis and Treatment. Int. J. Mol. Sci. 2016;17:2113. doi: 10.3390/ijms17122113. PubMed DOI PMC
Matz M., Coleman M.P., Carreira H., Salmerón D., Chirlaque M.D., Allemani C., CONCORD Working Group Worldwide Comparison of Ovarian Cancer Survival: Histological Group and Stage at Diagnosis (CONCORD-2) Gynecol. Oncol. 2017;144:396–404. doi: 10.1016/j.ygyno.2016.11.019. PubMed DOI PMC
Ovarian Cancer Survival Rates. Ovarian Cancer Prognosis. [(accessed on 9 August 2020)]; Available online: https://www.cancer.org/cancer/ovarian-cancer/detection-diagnosis-staging/survival-rates.html.
Kim A., Ueda Y., Naka T., Enomoto T. Therapeutic Strategies in Epithelial Ovarian Cancer. J. Exp. Clin. Cancer Res. 2012;31:14. doi: 10.1186/1756-9966-31-14. PubMed DOI PMC
Cortez A.J., Tudrej P., Kujawa K.A., Lisowska K.M. Advances in Ovarian Cancer Therapy. Cancer Chemother. Pharmacol. 2018;81:17–38. doi: 10.1007/s00280-017-3501-8. PubMed DOI PMC
Lisio M.-A., Fu L., Goyeneche A., Gao Z.-H., Telleria C. High-Grade Serous Ovarian Cancer: Basic Sciences, Clinical and Therapeutic Standpoints. Int. J. Mol. Sci. 2019;20:952. doi: 10.3390/ijms20040952. PubMed DOI PMC
Luvero D., Milani A., Ledermann J.A. Treatment Options in Recurrent Ovarian Cancer: Latest Evidence and Clinical Potential. Ther. Adv. Med. Oncol. 2014;6:229–239. doi: 10.1177/1758834014544121. PubMed DOI PMC
Matulonis U.A., Sood A.K., Fallowfield L., Howitt B.E., Sehouli J., Karlan B.Y. Ovarian Cancer. Nat. Rev. Dis. Primer. 2016;2:16061. doi: 10.1038/nrdp.2016.61. PubMed DOI PMC
Kurman R.J., Shih I.-M. The Dualistic Model of Ovarian Carcinogenesis: Revisited, Revised, and Expanded. Am. J. Pathol. 2016;186:733–747. doi: 10.1016/j.ajpath.2015.11.011. PubMed DOI PMC
Tomasova K., Cumova A., Seborova K., Horak J., Koucka K., Vodickova L., Vaclavikova R., Vodicka P. DNA Repair and Ovarian Carcinogenesis: Impact on Risk, Prognosis and Therapy Outcome. Cancers. 2020;12:1713. doi: 10.3390/cancers12071713. PubMed DOI PMC
Anastasiadou E., Jacob L.S., Slack F.J. Non-Coding RNA Networks in Cancer. Nat. Rev. Cancer. 2018;18:5–18. doi: 10.1038/nrc.2017.99. PubMed DOI PMC
Nakayama K., Nakayama N., Katagiri H., Miyazaki K. Mechanisms of Ovarian Cancer Metastasis: Biochemical Pathways. Int. J. Mol. Sci. 2012;13:11705–11717. doi: 10.3390/ijms130911705. PubMed DOI PMC
Lengyel E. Ovarian Cancer Development and Metastasis. Am. J. Pathol. 2010;177:1053–1064. doi: 10.2353/ajpath.2010.100105. PubMed DOI PMC
Yeung T.-L., Leung C.S., Yip K.-P., Au Yeung C.L., Wong S.T.C., Mok S.C. Cellular and Molecular Processes in Ovarian Cancer Metastasis. A Review in the Theme: Cell and Molecular Processes in Cancer Metastasis. Am. J. Physiol. Cell Physiol. 2015;309:C444–C456. doi: 10.1152/ajpcell.00188.2015. PubMed DOI PMC
Deng K., Yang C., Tan Q., Song W., Lu M., Zhao W., Lou G., Li Z., Li K., Hou Y. Sites of Distant Metastases and Overall Survival in Ovarian Cancer: A Study of 1481 Patients. Gynecol. Oncol. 2018;150:460–465. doi: 10.1016/j.ygyno.2018.06.022. PubMed DOI
Klymenko Y., Johnson J., Bos B., Lombard R., Campbell L., Loughran E., Stack M.S. Heterogeneous Cadherin Expression and Multicellular Aggregate Dynamics in Ovarian Cancer Dissemination. Neoplasia. 2017;19:549–563. doi: 10.1016/j.neo.2017.04.002. PubMed DOI PMC
Madsen C.D., Ferraris G.M.S., Andolfo A., Cunningham O., Sidenius N. UPAR-Induced Cell Adhesion and Migration: Vitronectin Provides the Key. J. Cell Biol. 2007;177:927–939. doi: 10.1083/jcb.200612058. PubMed DOI PMC
Vergara D., Merlot B., Lucot J.-P., Collinet P., Vinatier D., Fournier I., Salzet M. Epithelial–Mesenchymal Transition in Ovarian Cancer. Cancer Lett. 2010;291:59–66. doi: 10.1016/j.canlet.2009.09.017. PubMed DOI
Nakatsuka E., Sawada K., Nakamura K., Yoshimura A., Kinose Y., Kodama M., Hashimoto K., Mabuchi S., Makino H., Morii E., et al. Plasminogen Activator Inhibitor-1 Is an Independent Prognostic Factor of Ovarian Cancer and IMD-4482, a Novel Plasminogen Activator Inhibitor-1 Inhibitor, Inhibits Ovarian Cancer Peritoneal Dissemination. Oncotarget. 2017;8:89887–89902. doi: 10.18632/oncotarget.20834. PubMed DOI PMC
Zhou H.Y., Pon Y.L., Wong A.S.T. Synergistic Effects of Epidermal Growth Factor and Hepatocyte Growth Factor on Human Ovarian Cancer Cell Invasion and Migration: Role of Extracellular Signal-Regulated Kinase 1/2 and P38 Mitogen-Activated Protein Kinase. Endocrinology. 2007;148:5195–5208. doi: 10.1210/en.2007-0361. PubMed DOI
Belotti D., Paganoni P., Manenti L., Garofalo A., Marchini S., Taraboletti G., Giavazzi R. Matrix Metalloproteinases (MMP9 and MMP2) Induce the Release of Vascular Endothelial Growth Factor (VEGF) by Ovarian Carcinoma Cells: Implications for Ascites Formation. Cancer Res. 2003;63:5224–5229. PubMed
Liu Y., Ren C.-C., Yang L., Xu Y.-M., Chen Y.-N. Role of CXCL12-CXCR4 Axis in Ovarian Cancer Metastasis and CXCL12-CXCR4 Blockade with AMD3100 Suppresses Tumor Cell Migration and Invasion in Vitro: LIU et al. J. Cell. Physiol. 2019;234:3897–3909. doi: 10.1002/jcp.27163. PubMed DOI
Zhou J., Du Y., Lu Y., Luan B., Xu C., Yu Y., Zhao H. CD44 Expression Predicts Prognosis of Ovarian Cancer Patients Through Promoting Epithelial-Mesenchymal Transition (EMT) by Regulating Snail, ZEB1, and Caveolin-1. Front. Oncol. 2019;9:802. doi: 10.3389/fonc.2019.00802. PubMed DOI PMC
Cheng K.W., Lahad J.P., Kuo W.-L., Lapuk A., Yamada K., Auersperg N., Liu J., Smith-McCune K., Lu K.H., Fishman D., et al. The RAB25 Small GTPase Determines Aggressiveness of Ovarian and Breast Cancers. Nat. Med. 2004;10:1251–1256. doi: 10.1038/nm1125. PubMed DOI
Kamat A.A., Fletcher M., Gruman L.M., Mueller P., Lopez A., Landen C.N., Han L., Gershenson D.M., Sood A.K. The Clinical Relevance of Stromal Matrix Metalloproteinase Expression in Ovarian Cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2006;12:1707–1714. doi: 10.1158/1078-0432.CCR-05-2338. PubMed DOI PMC
Sawada K., Mitra A.K., Radjabi A.R., Bhaskar V., Kistner E.O., Tretiakova M., Jagadeeswaran S., Montag A., Becker A., Kenny H.A., et al. Loss of E-Cadherin Promotes Ovarian Cancer Metastasis via α 5 -Integrin, Which Is a Therapeutic Target. Cancer Res. 2008;68:2329–2339. doi: 10.1158/0008-5472.CAN-07-5167. PubMed DOI PMC
Bian D., Su S., Mahanivong C., Cheng R.K., Han Q., Pan Z.K., Sun P., Huang S. Lysophosphatidic Acid Stimulates Ovarian Cancer Cell Migration via a Ras-MEK Kinase 1 Pathway. Cancer Res. 2004;64:4209–4217. doi: 10.1158/0008-5472.CAN-04-0060. PubMed DOI
Cai S., Zhang P., Dong S., Li L., Cai J., Xu M. Downregulation of SPINK13 Promotes Metastasis by Regulating UPA in Ovarian Cancer Cells. Cell. Physiol. Biochem. 2018;45:1061–1071. doi: 10.1159/000487348. PubMed DOI
Mitra A.K., Chiang C.Y., Tiwari P., Tomar S., Watters K.M., Peter M.E., Lengyel E. Microenvironment-Induced Downregulation of MiR-193b Drives Ovarian Cancer Metastasis. Oncogene. 2015;34:5923–5932. doi: 10.1038/onc.2015.43. PubMed DOI PMC
Tomar S., Plotnik J.P., Haley J., Scantland J., Dasari S., Sheikh Z., Emerson R., Lenz D., Hollenhorst P.C., Mitra A.K. ETS1 Induction by the Microenvironment Promotes Ovarian Cancer Metastasis through Focal Adhesion Kinase. Cancer Lett. 2018;414:190–204. doi: 10.1016/j.canlet.2017.11.012. PubMed DOI
Huang S.-P., Wu M.-S., Shun C.-T., Wang H.-P., Lin M.-T., Kuo M.-L., Lin J.-T. Interleukin-6 Increases Vascular Endothelial Growth Factor and Angiogenesis in Gastric Carcinoma. J. Biomed. Sci. 2004;11:517–527. doi: 10.1007/BF02256101. PubMed DOI
Watanabe T., Hashimoto T., Sugino T., Soeda S., Nishiyama H., Morimura Y., Yamada H., Goodison S., Fujimori K. Production of IL1-Beta by Ovarian Cancer Cells Induces Mesothelial Cell Beta1-Integrin Expression Facilitating Peritoneal Dissemination. J. Ovarian Res. 2012;5:7. doi: 10.1186/1757-2215-5-7. PubMed DOI PMC
Pradeep S., Kim S.W., Wu S.Y., Nishimura M., Chaluvally-Raghavan P., Miyake T., Pecot C.V., Kim S.-J., Choi H.J., Bischoff F.Z., et al. Hematogenous Metastasis of Ovarian Cancer: Rethinking Mode of Spread. Cancer Cell. 2014;26:77–91. doi: 10.1016/j.ccr.2014.05.002. PubMed DOI PMC
Kalluri R., Weinberg R.A. The Basics of Epithelial-Mesenchymal Transition. J. Clin. Investig. 2009;119:1420–1428. doi: 10.1172/JCI39104. PubMed DOI PMC
Battaglia R.A., Delic S., Herrmann H., Snider N.T. Vimentin on the Move: New Developments in Cell Migration. F1000Research. 2018;7 doi: 10.12688/f1000research.15967.1. PubMed DOI PMC
Liu C.-Y., Lin H.-H., Tang M.-J., Wang Y.-K. Vimentin Contributes to Epithelial-Mesenchymal Transition Cancer Cell Mechanics by Mediating Cytoskeletal Organization and Focal Adhesion Maturation. Oncotarget. 2015;6:15966–15983. doi: 10.18632/oncotarget.3862. PubMed DOI PMC
Maître J.-L., Heisenberg C.-P. Three Functions of Cadherins in Cell Adhesion. Curr. Biol. 2013;23:R626–R633. doi: 10.1016/j.cub.2013.06.019. PubMed DOI PMC
Wu D., Liu L., Ren C., Kong D., Zhang P., Jin X., Wang T., Zhang G. Epithelial-Mesenchymal Interconversions and the Regulatory Function of the ZEB Family during the Development and Progression of Ovarian Cancer. Oncol. Lett. 2016;11:1463–1468. doi: 10.3892/ol.2016.4092. PubMed DOI PMC
Sánchez-Tilló E., Lázaro A., Torrent R., Cuatrecasas M., Vaquero E.C., Castells A., Engel P., Postigo A. ZEB1 Represses E-Cadherin and Induces an EMT by Recruiting the SWI/SNF Chromatin-Remodeling Protein BRG1. Oncogene. 2010;29:3490–3500. doi: 10.1038/onc.2010.102. PubMed DOI
Batlle E., Sancho E., Francí C., Domínguez D., Monfar M., Baulida J., García de Herreros A. The Transcription Factor Snail Is a Repressor of E-Cadherin Gene Expression in Epithelial Tumour Cells. Nat. Cell Biol. 2000;2:84–89. doi: 10.1038/35000034. PubMed DOI
Kurrey N.K., K A., Bapat S.A. Snail and Slug Are Major Determinants of Ovarian Cancer Invasiveness at the Transcription Level. Gynecol. Oncol. 2005;97:155–165. doi: 10.1016/j.ygyno.2004.12.043. PubMed DOI
Li Y., Zhou J., Wang J., Chen X., Zhu Y., Chen Y. Mir-30b-3p Affects the Migration and Invasion Function of Ovarian Cancer Cells by Targeting the CTHRC1 Gene. Biol. Res. 2020;53:10. doi: 10.1186/s40659-020-00277-4. PubMed DOI PMC
Chen D., Zhang Y., Wang J., Chen J., Yang C., Cai K., Wang X., Shi F., Dou J. MicroRNA-200c Overexpression Inhibits Tumorigenicity and Metastasis of CD117+CD44+ Ovarian Cancer Stem Cells by Regulating Epithelial-Mesenchymal Transition. J. Ovarian Res. 2013;6:50. doi: 10.1186/1757-2215-6-50. PubMed DOI PMC
Wang B., Liu M., Zhuang R., Jiang J., Gao J., Wang H., Chen H., Zhang Z., Kuang Y., Li P. Long Non-Coding RNA CCAT2 Promotes Epithelial-Mesenchymal Transition Involving Wnt/β-Catenin Pathway in Epithelial Ovarian Carcinoma Cells. Oncol. Lett. 2018;15:3369–3375. doi: 10.3892/ol.2017.7669. PubMed DOI PMC
Yim G.W., Kim H.J., Kim L.K., Kim S.W., Kim S., Nam E.J., Kim Y.T. Long Non-Coding RNA HOXA11 Antisense Promotes Cell Proliferation and Invasion and Predicts Patient Prognosis in Serous Ovarian Cancer. Cancer Res. Treat. Off. J. Korean Cancer Assoc. 2017;49:656–668. doi: 10.4143/crt.2016.263. PubMed DOI PMC
Lombaerts M., van Wezel T., Philippo K., Dierssen J.W.F., Zimmerman R.M.E., Oosting J., van Eijk R., Eilers P.H., van de Water B., Cornelisse C.J., et al. E-Cadherin Transcriptional Downregulation by Promoter Methylation but Not Mutation Is Related to Epithelial-to-Mesenchymal Transition in Breast Cancer Cell Lines. Br. J. Cancer. 2006;94:661–671. doi: 10.1038/sj.bjc.6602996. PubMed DOI PMC
Peixoto P., Etcheverry A., Aubry M., Missey A., Lachat C., Perrard J., Hendrick E., Delage-Mourroux R., Mosser J., Borg C., et al. EMT Is Associated with an Epigenetic Signature of ECM Remodeling Genes. Cell Death Dis. 2019;10:205. doi: 10.1038/s41419-019-1397-4. PubMed DOI PMC
Zhang Y., Tang H., Cai J., Zhang T., Guo J., Feng D., Wang Z. Ovarian Cancer-Associated Fibroblasts Contribute to Epithelial Ovarian Carcinoma Metastasis by Promoting Angiogenesis, Lymphangiogenesis and Tumor Cell Invasion. Cancer Lett. 2011;303:47–55. doi: 10.1016/j.canlet.2011.01.011. PubMed DOI
Bekes I., Friedl T.W.P., Köhler T., Möbus V., Janni W., Wöckel A., Wulff C. Does VEGF Facilitate Local Tumor Growth and Spread into the Abdominal Cavity by Suppressing Endothelial Cell Adhesion, Thus Increasing Vascular Peritoneal Permeability Followed by Ascites Production in Ovarian Cancer? Mol. Cancer. 2016;15:13. doi: 10.1186/s12943-016-0497-3. PubMed DOI PMC
Yang X., Zhang Y., Hosaka K., Andersson P., Wang J., Tholander F., Cao Z., Morikawa H., Tegnér J., Yang Y., et al. VEGF-B Promotes Cancer Metastasis through a VEGF-A–Independent Mechanism and Serves as a Marker of Poor Prognosis for Cancer Patients. Proc. Natl. Acad. Sci. USA. 2015;112:E2900–E2909. doi: 10.1073/pnas.1503500112. PubMed DOI PMC
Wang S., Jia J., Liu D., Wang M., Wang Z., Li X., Wang H., Rui Y., Liu Z., Guo W., et al. Matrix Metalloproteinase Expressions Play Important Role in Prediction of Ovarian Cancer Outcome. Sci. Rep. 2019;9:11677. doi: 10.1038/s41598-019-47871-5. PubMed DOI PMC
Imai T., Horiuchi A., Wang C., Oka K., Ohira S., Nikaido T., Konishi I. Hypoxia Attenuates the Expression of E-Cadherin via Up-Regulation of SNAIL in Ovarian Carcinoma Cells. Am. J. Pathol. 2003;163:1437–1447. doi: 10.1016/S0002-9440(10)63501-8. PubMed DOI PMC
Zhang H., Yang Q., Lian X., Jiang P., Cui J. Hypoxia-Inducible Factor-1α (HIF-1α) Promotes Hypoxia-Induced Invasion and Metastasis in Ovarian Cancer by Targeting Matrix Metallopeptidase 13 (MMP13) Med. Sci. Monit. 2019;25:7202–7208. doi: 10.12659/MSM.916886. PubMed DOI PMC
Wang Y., Ma J., Shen H., Wang C., Sun Y., Howell S.B., Lin X. Reactive Oxygen Species Promote Ovarian Cancer Progression via the HIF-1α/LOX/E-Cadherin Pathway. Oncol. Rep. 2014;32:2150–2158. doi: 10.3892/or.2014.3448. PubMed DOI PMC
Iyer M.K., Niknafs Y.S., Malik R., Singhal U., Sahu A., Hosono Y., Barrette T.R., Prensner J.R., Evans J.R., Zhao S., et al. The Landscape of Long Noncoding RNAs in the Human Transcriptome. Nat. Genet. 2015;47:199–208. doi: 10.1038/ng.3192. PubMed DOI PMC
Hon C.-C., Ramilowski J.A., Harshbarger J., Bertin N., Rackham O.J.L., Gough J., Denisenko E., Schmeier S., Poulsen T.M., Severin J., et al. An Atlas of Human Long Non-Coding RNAs with Accurate 5’ Ends. Nature. 2017;543:199–204. doi: 10.1038/nature21374. PubMed DOI PMC
Zhou X.-Y., Luo B., Jiang Z.-K., Xie Y.-K., Wu F.-C., Huang J.-Q., Chen J.-S. Non-Coding RNAS and Colorectal Cancer Liver Metastasis. Mol. Cell. Biochem. 2020 doi: 10.1007/s11010-020-03867-8. PubMed DOI
Forterre A., Komuro H., Aminova S., Harada M. A Comprehensive Review of Cancer MicroRNA Therapeutic Delivery Strategies. Cancers. 2020;12:1852. doi: 10.3390/cancers12071852. PubMed DOI PMC
GUO F., COGDELL D., HU L., YANG D., SOOD A.K., XUE F., ZHANG W. MiR-101 Suppresses the Epithelial-to-Mesenchymal Transition by Targeting ZEB1 and ZEB2 in Ovarian Carcinoma. Oncol. Rep. 2014;31:2021–2028. doi: 10.3892/or.2014.3106. PubMed DOI PMC
Wei C., Zhang X., He S., Liu B., Han H., Sun X. MicroRNA-219-5p Inhibits the Proliferation, Migration, and Invasion of Epithelial Ovarian Cancer Cells by Targeting the Twist/Wnt/β-Catenin Signaling Pathway. Gene. 2017;637:25–32. doi: 10.1016/j.gene.2017.09.012. PubMed DOI
Sun Y., Hu L., Zheng H., Bagnoli M., Guo Y., Rupaimoole R., Rodriguez-Aguayo C., Lopez-Berestein G., Ji P., Chen K., et al. MiR-506 Inhibits Multiple Targets in the Epithelial-to-Mesenchymal Transition Network and Is Associated with Good Prognosis in Epithelial Ovarian Cancer. J. Pathol. 2015;235:25–36. doi: 10.1002/path.4443. PubMed DOI PMC
Shu C., Yan D., Mo Y., Gu J., Shah N., He J. Long Noncoding RNA LncARSR Promotes Epithelial Ovarian Cancer Cell Proliferation and Invasion by Association with HuR and MiR-200 Family. Am. J. Cancer Res. 2018;8:981–992. PubMed PMC
Cao Y., Shi H., Ren F., Jia Y., Zhang R. Long Non-Coding RNA CCAT1 Promotes Metastasis and Poor Prognosis in Epithelial Ovarian Cancer. Exp. Cell Res. 2017;359:185–194. doi: 10.1016/j.yexcr.2017.07.030. PubMed DOI
Jin Y., Feng S.-J., Qiu S., Shao N., Zheng J.-H. LncRNA MALAT1 Promotes Proliferation and Metastasis in Epithelial Ovarian Cancer via the PI3K-AKT Pathway. Eur. Rev. Med. Pharmacol. Sci. 2017;21:3176–3184. PubMed
Liang H., Zhao X., Wang C., Sun J., Chen Y., Wang G., Fang L., Yang R., Yu M., Gu Y., et al. Systematic Analyses Reveal Long Non-Coding RNA (PTAF)-Mediated Promotion of EMT and Invasion-Metastasis in Serous Ovarian Cancer. Mol. Cancer. 2018;17:96. doi: 10.1186/s12943-018-0844-7. PubMed DOI PMC
Katz B., Tropé C.G., Reich R., Davidson B. MicroRNAs in Ovarian Cancer. Hum. Pathol. 2015;46:1245–1256. doi: 10.1016/j.humpath.2015.06.013. PubMed DOI
Deb B., Uddin A., Chakraborty S. MiRNAs and Ovarian Cancer: An Overview. J. Cell. Physiol. 2018;233:3846–3854. doi: 10.1002/jcp.26095. PubMed DOI
Pei Y., Li K., Lou X., Wu Y., Dong X., Wang W., Li N., Zhang D., Cui W. MiR-1299/NOTCH3/TUG1 Feedback Loop Contributes to the Malignant Proliferation of Ovarian Cancer. Oncol. Rep. 2020;44:438–448. doi: 10.3892/or.2020.7623. PubMed DOI PMC
Peng Y., Croce C.M. The Role of MicroRNAs in Human Cancer. Signal Transduct. Target. Ther. 2016;1:15004. doi: 10.1038/sigtrans.2015.4. PubMed DOI PMC
Le M.T.N., Teh C., Shyh-Chang N., Xie H., Zhou B., Korzh V., Lodish H.F., Lim B. MicroRNA-125b Is a Novel Negative Regulator of P53. Genes Dev. 2009;23:862–876. doi: 10.1101/gad.1767609. PubMed DOI PMC
Vaksman O., Stavnes H.T., Kaern J., Trope C.G., Davidson B., Reich R. MiRNA Profiling along Tumour Progression in Ovarian Carcinoma. J. Cell. Mol. Med. 2011;15:1593–1602. doi: 10.1111/j.1582-4934.2010.01148.x. PubMed DOI PMC
Koutsaki M., Libra M., Spandidos D.A., Zaravinos A. The MiR-200 Family in Ovarian Cancer. Oncotarget. 2017;8:66629–66640. doi: 10.18632/oncotarget.18343. PubMed DOI PMC
Suo H.-B., Zhang K.-C., Zhao J. MiR-200a Promotes Cell Invasion and Migration of Ovarian Carcinoma by Targeting PTEN. Eur. Rev. Med. Pharmacol. Sci. 2018;22:4080–4089. doi: 10.26355/eurrev_201807_15398. PubMed DOI
Yang D., Sun Y., Hu L., Zheng H., Ji P., Pecot C.V., Zhao Y., Reynolds S., Cheng H., Rupaimoole R., et al. Integrated Analyses Identify a Master MicroRNA Regulatory Network for the Mesenchymal Subtype in Serous Ovarian Cancer. Cancer Cell. 2013;23:186–199. doi: 10.1016/j.ccr.2012.12.020. PubMed DOI PMC
Duan Y., Dong Y., Dang R., Hu Z., Yang Y., Hu Y., Cheng J. MiR-122 Inhibits Epithelial Mesenchymal Transition by Regulating P4HA1 in Ovarian Cancer Cells. Cell Biol. Int. 2018;42:1564–1574. doi: 10.1002/cbin.11052. PubMed DOI
Vang S., Wu H.-T., Fischer A., Miller D.H., MacLaughlan S., Douglass E., Comisar L., Steinhoff M., Collins C., Smith P.J.S., et al. Identification of Ovarian Cancer Metastatic MiRNAs. PLoS ONE. 2013;8:e58226. doi: 10.1371/journal.pone.0058226. PubMed DOI PMC
Bachmayr-Heyda A., Auer K., Sukhbaatar N., Aust S., Deycmar S., Reiner A.T., Polterauer S., Dekan S., Pils D. Small RNAs and the Competing Endogenous RNA Network in High Grade Serous Ovarian Cancer Tumor Spread. Oncotarget. 2016;7:39640–39653. doi: 10.18632/oncotarget.9243. PubMed DOI PMC
Salem M., O’Brien J.A., Bernaudo S., Shawer H., Ye G., Brkić J., Amleh A., Vanderhyden B.C., Refky B., Yang B.B., et al. MiR-590-3p Promotes Ovarian Cancer Growth and Metastasis via a Novel FOXA2–Versican Pathway. Cancer Res. 2018;78:4175–4190. doi: 10.1158/0008-5472.CAN-17-3014. PubMed DOI
Zuberi M., Mir R., Khan I., Javid J., Guru S.A., Bhat M., Sumi M.P., Ahmad I., Masroor M., Yadav P., et al. The Promising Signatures of Circulating MicroRNA-145 in Epithelial Ovarian Cancer Patients. MicroRNA. 2020;9:49–57. doi: 10.2174/2211536608666190225111234. PubMed DOI
Zuberi M., Khan I., Mir R., Gandhi G., Ray P.C., Saxena A. Utility of Serum MiR-125b as a Diagnostic and Prognostic Indicator and Its Alliance with a Panel of Tumor Suppressor Genes in Epithelial Ovarian Cancer. PLoS ONE. 2016;11:e0153902. doi: 10.1371/journal.pone.0153902. PubMed DOI PMC
Wynendaele J., Böhnke A., Leucci E., Nielsen S.J., Lambertz I., Hammer S., Sbrzesny N., Kubitza D., Wolf A., Gradhand E., et al. An Illegitimate MicroRNA Target Site within the 3’ UTR of MDM4 Affects Ovarian Cancer Progression and Chemosensitivity. Cancer Res. 2010;70:9641–9649. doi: 10.1158/0008-5472.CAN-10-0527. PubMed DOI
Song Z.-S., Wu Y., Zhao H.-G., Liu C.-X., Cai H.-Y., Guo B.-Z., Xie Y.A., Shi H.-R. Association between the Rs11614913 Variant of MiRNA-196a-2 and the Risk of Epithelial Ovarian Cancer. Oncol. Lett. 2016;11:194–200. doi: 10.3892/ol.2015.3877. PubMed DOI PMC
Permuth-Wey J., Chen Z., Tsai Y.-Y., Lin H.-Y., Chen Y.A., Barnholtz-Sloan J., Birrer M.J., Chanock S.J., Cramer D.W., Cunningham J.M., et al. MicroRNA Processing and Binding Site Polymorphisms Are Not Replicated in the Ovarian Cancer Association Consortium. Cancer Epidemiol. Prev. Biomark. 2011;20:1793–1797. doi: 10.1158/1055-9965.EPI-11-0397. PubMed DOI PMC
Li J., Shao W., Feng H. MiR-542-3p, a MicroRNA Targeting CDK14, Suppresses Cell Proliferation, Invasiveness, and Tumorigenesis of Epithelial Ovarian Cancer. Biomed. Pharmacother. 2019;110:850–856. doi: 10.1016/j.biopha.2018.11.104. PubMed DOI
Xing F., Song Z., He Y. MiR-219-5p Inhibits Growth and Metastasis of Ovarian Cancer Cells by Targeting HMGA2. Biol. Res. 2018;51:50. doi: 10.1186/s40659-018-0199-y. PubMed DOI PMC
Bai L., Wang H., Wang A.-H., Zhang L.-Y., Bai J. MicroRNA-532 and MicroRNA-3064 Inhibit Cell Proliferation and Invasion by Acting as Direct Regulators of Human Telomerase Reverse Transcriptase in Ovarian Cancer. PLoS ONE. 2017;12:0173912. doi: 10.1371/journal.pone.0173912. PubMed DOI PMC
Gong L., Zhang W., Yuan Y., Xing X., Li H., Zhao G. MiR-222 Promotes Invasion and Migration of Ovarian Carcinoma by Targeting PTEN. Oncol. Lett. 2018;16:984–990. doi: 10.3892/ol.2018.8743. PubMed DOI PMC
Li J., Hu K., Gong G., Zhu D., Wang Y., Liu H., Wu X. Upregulation of MiR-205 Transcriptionally Suppresses SMAD4 and PTEN and Contributes to Human Ovarian Cancer Progression. Sci. Rep. 2017;7:41330. doi: 10.1038/srep41330. PubMed DOI PMC
Yang L., Wei Q.-M., Zhang X.-W., Sheng Q., Yan X.-T. MiR-376a Promotion of Proliferation and Metastases in Ovarian Cancer: Potential Role as a Biomarker. Life Sci. 2017;173:62–67. doi: 10.1016/j.lfs.2016.12.007. PubMed DOI
Chen L., Zhang F., Sheng X., Zhang S., Chen Y., Liu B. MicroRNA-106a Regulates Phosphatase and Tensin Homologue Expression and Promotes the Proliferation and Invasion of Ovarian Cancer Cells. Oncol. Rep. 2016;36:2135–2141. doi: 10.3892/or.2016.5010. PubMed DOI
Dong R., Liu X., Zhang Q., Jiang Z., Li Y., Wei Y., Li Y., Yang Q., Liu J., Wei J.-J., et al. MiR-145 Inhibits Tumor Growth and Metastasis by Targeting Metadherin in High-Grade Serous Ovarian Carcinoma. Oncotarget. 2014;5:10816–10829. doi: 10.18632/oncotarget.2522. PubMed DOI PMC
Guo L.-M., Pu Y., Han Z., Liu T., Li Y.-X., Liu M., Li X., Tang H. MicroRNA-9 Inhibits Ovarian Cancer Cell Growth through Regulation of NF-KappaB1. FEBS J. 2009;276:5537–5546. doi: 10.1111/j.1742-4658.2009.07237.x. PubMed DOI
Li W., Liu Z., Chen L., Zhou L., Yao Y. MicroRNA-23b Is an Independent Prognostic Marker and Suppresses Ovarian Cancer Progression by Targeting Runt-Related Transcription Factor-2. FEBS Lett. 2014;588:1608–1615. doi: 10.1016/j.febslet.2014.02.055. PubMed DOI
Chen S., Chen X., Xiu Y.-L., Sun K.-X., Zhao Y. Inhibition of Ovarian Epithelial Carcinoma Tumorigenesis and Progression by MicroRNA 106b Mediated through the RhoC Pathway. PLoS ONE. 2015;10:e0125714. doi: 10.1371/journal.pone.0125714. PubMed DOI PMC
Yeh Y.-M., Chuang C.-M., Chao K.-C., Wang L.-H. MicroRNA-138 Suppresses Ovarian Cancer Cell Invasion and Metastasis by Targeting SOX4 and HIF-1α. Int. J. Cancer. 2013;133:867–878. doi: 10.1002/ijc.28086. PubMed DOI
Mak C.S.L., Yung M.M.H., Hui L.M.N., Leung L.L., Liang R., Chen K., Liu S.S., Qin Y., Leung T.H.Y., Lee K.-F., et al. MicroRNA-141 Enhances Anoikis Resistance in Metastatic Progression of Ovarian Cancer through Targeting KLF12/Sp1/Survivin Axis. Mol. Cancer. 2017;16:11. doi: 10.1186/s12943-017-0582-2. PubMed DOI PMC
Liu X., Yao B., Wu Z. MiRNA-199a-5p Suppresses Proliferation and Invasion by Directly Targeting NF-ΚB1 in Human Ovarian Cancer Cells. Oncol. Lett. 2018;16:4543–4550. doi: 10.3892/ol.2018.9170. PubMed DOI PMC
Yang C., Li H., Zhang T., Chu Y., Chen D., Zuo J. MiR-200c Overexpression Inhibits the Invasion and Tumorigenicity of Epithelial Ovarian Cancer Cells by Suppressing LncRNA HOTAIR in Mice. J. Cell. Biochem. 2020;121:1514–1523. doi: 10.1002/jcb.29387. PubMed DOI
Imam J.S., Plyler J.R., Bansal H., Prajapati S., Bansal S., Rebeles J., Chen H.-I.H., Chang Y.-F., Panneerdoss S., Zoghi B., et al. Genomic Loss of Tumor Suppressor MiRNA-204 Promotes Cancer Cell Migration and Invasion by Activating AKT/MTOR/Rac1 Signaling and Actin Reorganization. PLoS ONE. 2012;7:e52397. doi: 10.1371/journal.pone.0052397. PubMed DOI PMC
Zhang Z., Zhang L., Wang B., Wei R., Wang Y., Wan J., Zhang C., Zhao L., Zhu X., Zhang Y., et al. MiR-337–3p Suppresses Proliferation of Epithelial Ovarian Cancer by Targeting PIK3CA and PIK3CB. Cancer Lett. 2020;469:54–67. doi: 10.1016/j.canlet.2019.10.021. PubMed DOI
Leng R., Zha L., Tang L. MiR-718 Represses VEGF and Inhibits Ovarian Cancer Cell Progression. FEBS Lett. 2014;588:2078–2086. doi: 10.1016/j.febslet.2014.04.040. PubMed DOI
Ebrahimi S.O., Reiisi S. Downregulation of MiR-4443 and MiR-5195-3p in Ovarian Cancer Tissue Contributes to Metastasis and Tumorigenesis. Arch. Gynecol. Obstet. 2019;299:1453–1458. doi: 10.1007/s00404-019-05107-x. PubMed DOI
Schmitt A.M., Chang H.Y. Long Noncoding RNAs in Cancer Pathways. Cancer Cell. 2016;29:452–463. doi: 10.1016/j.ccell.2016.03.010. PubMed DOI PMC
Fang Y., Fullwood M.J. Roles, Functions, and Mechanisms of Long Non-Coding RNAs in Cancer. Genom. Proteom. Bioinform. 2016;14:42–54. doi: 10.1016/j.gpb.2015.09.006. PubMed DOI PMC
Morlando M., Fatica A. Alteration of Epigenetic Regulation by Long Noncoding RNAs in Cancer. Int. J. Mol. Sci. 2018;19:570. doi: 10.3390/ijms19020570. PubMed DOI PMC
Marchese F.P., Raimondi I., Huarte M. The Multidimensional Mechanisms of Long Noncoding RNA Function. Genome Biol. 2017;18:206. doi: 10.1186/s13059-017-1348-2. PubMed DOI PMC
Rinn J.L., Chang H.Y. Genome Regulation by Long Noncoding RNAs. Annu. Rev. Biochem. 2012;81:145–166. doi: 10.1146/annurev-biochem-051410-092902. PubMed DOI PMC
Sun B., Liu C., Li H., Zhang L., Luo G., Liang S., Lü M. Research Progress on the Interactions between Long Non-coding RNAs and MicroRNAs in Human Cancer (Review) Oncol. Lett. 2020;19:595–605. doi: 10.3892/ol.2019.11182. PubMed DOI PMC
Zhu L., Guo Q., Lu X., Zhao J., Shi J., Wang Z., Zhou X. CTD-2020K17.1, a Novel Long Non-Coding RNA, Promotes Migration, Invasion, and Proliferation of Serous Ovarian Cancer Cells In Vitro. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2018;24:1329–1339. doi: 10.12659/MSM.908456. PubMed DOI PMC
Zhang Y., Ruan F. LncRNA LEF1-AS1 Promotes Ovarian Cancer Development Through Interacting with MiR-1285-3p. Cancer Manag. Res. 2020;12:687–694. doi: 10.2147/CMAR.S227652. PubMed DOI PMC
Xiu Y.-L., Sun K.-X., Chen X., Chen S., Zhao Y., Guo Q.-G., Zong Z.-H. Upregulation of the LncRNA Meg3 Induces Autophagy to Inhibit Tumorigenesis and Progression of Epithelial Ovarian Carcinoma by Regulating Activity of ATG3. Oncotarget. 2017;8:31714–31725. doi: 10.18632/oncotarget.15955. PubMed DOI PMC
Liu S.-P., Yang J.-X., Cao D.-Y., Shen K. Identification of Differentially Expressed Long Non-Coding RNAs in Human Ovarian Cancer Cells with Different Metastatic Potentials. Cancer Biol. Med. 2013;10:138–141. doi: 10.7497/j.issn.2095-3941.2013.03.003. PubMed DOI PMC
Guo Q., Cheng Y., Liang T., He Y., Ren C., Sun L., Zhang G. Comprehensive Analysis of LncRNA-MRNA Co-Expression Patterns Identifies Immune-Associated LncRNA Biomarkers in Ovarian Cancer Malignant Progression. Sci. Rep. 2015;5:17683. doi: 10.1038/srep17683. PubMed DOI PMC
Chen Q., Su Y., He X., Zhao W., Wu C., Zhang W., Si X., Dong B., Zhao L., Gao Y., et al. Plasma Long Non-Coding RNA MALAT1 Is Associated with Distant Metastasis in Patients with Epithelial Ovarian Cancer. Oncol. Lett. 2016;12:1361–1366. doi: 10.3892/ol.2016.4800. PubMed DOI PMC
Zhang H., Yao B., Tang S., Chen Y. LINK-A Long Non-Coding RNA (LncRNA) Participates in Metastasis of Ovarian Carcinoma and Upregulates Hypoxia-Inducible Factor 1 (HIF1α) Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2019;25:2221–2227. doi: 10.12659/MSM.913609. PubMed DOI PMC
Ma J., Xue M. LINK-A LncRNA Promotes Migration and Invasion of Ovarian Carcinoma Cells by Activating TGF-β Pathway. Biosci. Rep. 2018;38:BSR20180936. doi: 10.1042/BSR20180936. PubMed DOI PMC
Non-Coding RNA in the Exosome of the Epithelial Ovarian Cancer. [(accessed on 4 August 2020)]; Available online: https://clinicaltrials.gov/ct2/show/NCT03738319.
Reid B.M., Permuth J.B., Chen Y.A., Teer J.K., Monteiro A.N.A., Chen Z., Tyrer J., Berchuck A., Chenevix-Trench G., Doherty J.A., et al. Integration of Population-Level Genotype Data with Functional Annotation Reveals over-Representation of Long Non-Coding RNAs at Ovarian Cancer Susceptibility Loci. Cancer Epidemiol. Prev. Biomark. 2017;26:116–125. doi: 10.1158/1055-9965.EPI-16-0341. PubMed DOI PMC
Richards E.J., Permuth-Wey J., Li Y., Chen Y.A., Coppola D., Reid B.M., Lin H.-Y., Teer J.K., Berchuck A., Birrer M.J., et al. A Functional Variant in HOXA11-AS, a Novel Long Non-Coding RNA, Inhibits the Oncogenic Phenotype of Epithelial Ovarian Cancer. Oncotarget. 2015;6:34745–34757. doi: 10.18632/oncotarget.5784. PubMed DOI PMC
Qiu H., Wang X., Guo R., Liu Q., Wang Y., Yuan Z., Li J., Shi H. HOTAIR Rs920778 Polymorphism Is Associated with Ovarian Cancer Susceptibility and Poor Prognosis in a Chinese Population. Future Oncol. Lond. Engl. 2017;13:347–355. doi: 10.2217/fon-2016-0290. PubMed DOI
Wu H., Shang X., Shi Y., Yang Z., Zhao J., Yang M., Li Y., Xu S. Genetic Variants of LncRNA HOTAIR and Risk of Epithelial Ovarian Cancer among Chinese Women. Oncotarget. 2016;7:41047–41052. doi: 10.18632/oncotarget.8535. PubMed DOI PMC
Wang X., Yang B., She Y., Ye Y. The LncRNA TP73-AS1 Promotes Ovarian Cancer Cell Proliferation and Metastasis via Modulation of MMP2 and MMP9. J. Cell. Biochem. 2018;119:7790–7799. doi: 10.1002/jcb.27158. PubMed DOI
Qiu J.-J., Lin Y.-Y., Ding J.-X., Feng W.-W., Jin H.-Y., Hua K.-Q. Long Non-Coding RNA ANRIL Predicts Poor Prognosis and Promotes Invasion/Metastasis in Serous Ovarian Cancer. Int. J. Oncol. 2015;46:2497–2505. doi: 10.3892/ijo.2015.2943. PubMed DOI
Yang Y., Jiang Y., Wan Y., Zhang L., Qiu J., Zhou S., Cheng W. UCA1 Functions as a Competing Endogenous RNA to Suppress Epithelial Ovarian Cancer Metastasis. Tumour Biol. J. Int. Soc. Oncodev. Biol. Med. 2016;37:10633–10641. doi: 10.1007/s13277-016-4917-1. PubMed DOI
Liang H., Yu T., Han Y., Jiang H., Wang C., You T., Zhao X., Shan H., Yang R., Yang L., et al. LncRNA PTAR Promotes EMT and Invasion-Metastasis in Serous Ovarian Cancer by Competitively Binding MiR-101-3p to Regulate ZEB1 Expression. Mol. Cancer. 2018;17:119. doi: 10.1186/s12943-018-0870-5. PubMed DOI PMC
Mu Y., Li N., Cui Y.-L. The LncRNA CCAT1 Upregulates TGFβR1 via Sponging MiR-490-3p to Promote TGFβ1-Induced EMT of Ovarian Cancer Cells. Cancer Cell Int. 2018;18:145. doi: 10.1186/s12935-018-0604-1. PubMed DOI PMC
Lai X.-J., Cheng H.-F. LncRNA Colon Cancer-Associated Transcript 1 (CCAT1) Promotes Proliferation and Metastasis of Ovarian Cancer via MiR-1290. Eur. Rev. Med. Pharmacol. Sci. 2018;22:322–328. doi: 10.26355/eurrev_201801_14175. PubMed DOI
Lei R., Xue M., Zhang L., Lin Z. Long Noncoding RNA MALAT1-Regulated MicroRNA 506 Modulates Ovarian Cancer Growth by Targeting IASPP. OncoTargets Ther. 2016;10:35–46. doi: 10.2147/OTT.S112686. PubMed DOI PMC
Yong W., Yu D., Jun Z., Yachen D., Weiwei W., Midie X., Xingzhu J., Xiaohua W. Long Noncoding RNA NEAT1, Regulated by LIN28B, Promotes Cell Proliferation and Migration through Sponging MiR-506 in High-Grade Serous Ovarian Cancer. Cell Death Dis. 2018;9:861. doi: 10.1038/s41419-018-0908-z. PubMed DOI PMC
Yan H., Silva M.A., Li H., Zhu L., Li P., Li X., Wang X., Gao J., Wang P., Zhang Z. Long Noncoding RNA DQ786243 Interacts with MiR-506 and Promotes Progression of Ovarian Cancer through Targeting CAMP Responsive Element Binding Protein 1. J. Cell. Biochem. 2018;119:9764–9780. doi: 10.1002/jcb.27295. PubMed DOI
He S., Zhao Y., Wang X., Deng Y., Wan Z., Yao S., Shen H. Up-Regulation of Long Non-Coding RNA SNHG20 Promotes Ovarian Cancer Progression via Wnt/β-Catenin Signaling. Biosci. Rep. 2018;38:BSR20170681. doi: 10.1042/BSR20170681. PubMed DOI PMC
Guo C., Wang X., Chen L.-P., Li M., Li M., Hu Y.-H., Ding W.-H., Wang X. Long Non-Coding RNA MALAT1 Regulates Ovarian Cancer Cell Proliferation, Migration and Apoptosis through Wnt/β-Catenin Signaling Pathway. Eur. Rev. Med. Pharmacol. Sci. 2018;22:3703–3712. doi: 10.26355/eurrev_201806_15249. PubMed DOI
Zhang Y., Dun Y., Zhou S., Huang X.-H. LncRNA HOXD-AS1 Promotes Epithelial Ovarian Cancer Cells Proliferation and Invasion by Targeting MiR-133a-3p and Activating Wnt/β-Catenin Signaling Pathway. Biomed. Pharmacother. 2017;96:1216–1221. doi: 10.1016/j.biopha.2017.11.096. PubMed DOI
Lou Y., Jiang H., Cui Z., Wang L., Wang X., Tian T. Linc-ROR Induces Epithelial-to-Mesenchymal Transition in Ovarian Cancer by Increasing Wnt/β-Catenin Signaling. Oncotarget. 2017;8:69983–69994. doi: 10.18632/oncotarget.19545. PubMed DOI PMC
Li J., Yang S., Su N., Wang Y., Yu J., Qiu H., He X. Overexpression of Long Non-Coding RNA HOTAIR Leads to Chemoresistance by Activating the Wnt/β-Catenin Pathway in Human Ovarian Cancer. Tumour Biol. J. Int. Soc. Oncodev. Biol. Med. 2016;37:2057–2065. doi: 10.1007/s13277-015-3998-6. PubMed DOI
Li J., Feng L., Tian C., Tang Y.-L., Tang Y., Hu F.-Q. Long Noncoding RNA-JPX Predicts the Poor Prognosis of Ovarian Cancer Patients and Promotes Tumor Cell Proliferation, Invasion and Migration by the PI3K/Akt/MTOR Signaling Pathway. Eur. Rev. Med. Pharmacol. Sci. 2018;22:8135–8144. doi: 10.26355/eurrev_201812_16505. PubMed DOI
Benetatos L., Vartholomatos G., Hatzimichael E. MEG3 Imprinted Gene Contribution in Tumorigenesis. Int. J. Cancer. 2011;129:773–779. doi: 10.1002/ijc.26052. PubMed DOI
Wang A., Jin C., Li H., Qin Q., Li L. LncRNA ADAMTS9-AS2 Regulates Ovarian Cancer Progression by Targeting MiR-182-5p/FOXF2 Signaling Pathway. Int. J. Biol. Macromol. 2018;120:1705–1713. doi: 10.1016/j.ijbiomac.2018.09.179. PubMed DOI
Qiu J.-J., Wang Y., Liu Y.-L., Zhang Y., Ding J.-X., Hua K.-Q. The Long Non-Coding RNA ANRIL Promotes Proliferation and Cell Cycle Progression and Inhibits Apoptosis and Senescence in Epithelial Ovarian Cancer. Oncotarget. 2016;7:32478–32492. doi: 10.18632/oncotarget.8744. PubMed DOI PMC
Lin X., Tang X., Zheng T., Qiu J., Hua K. Long Non-Coding RNA AOC4P Suppresses Epithelial Ovarian Cancer Metastasis by Regulating Epithelial-Mesenchymal Transition. J. Ovarian Res. 2020;13:45. doi: 10.1186/s13048-020-00644-5. PubMed DOI PMC
Fu Y., Biglia N., Wang Z., Shen Y., Risch H.A., Lu L., Canuto E.M., Jia W., Katsaros D., Yu H. Long Non-Coding RNAs, ASAP1-IT1, FAM215A, and LINC00472, in Epithelial Ovarian Cancer. Gynecol. Oncol. 2016;143:642–649. doi: 10.1016/j.ygyno.2016.09.021. PubMed DOI PMC
Yang H., Qi Y., Wang X., Gu J., Shi T. Down-Regulation of LncRNA BLACAT1 Inhibits Ovarian Cancer Progression by Suppressing the Wnt/β-Catenin Signaling Pathway via Regulating MiR-519d-3p. Mol. Cell. Biochem. 2020;467:95–105. doi: 10.1007/s11010-020-03704-y. PubMed DOI
Hu X., Li Y., Kong D., Hu L., Liu D., Wu J. Long Noncoding RNA CASC9 Promotes LIN7A Expression via MiR-758-3p to Facilitate the Malignancy of Ovarian Cancer. J. Cell. Physiol. 2019;234:10800–10808. doi: 10.1002/jcp.27903. PubMed DOI
Huang S., Qing C., Huang Z., Zhu Y. The Long Non-Coding RNA CCAT2 Is up-Regulated in Ovarian Cancer and Associated with Poor Prognosis. Diagn. Pathol. 2016;11:49. doi: 10.1186/s13000-016-0499-x. PubMed DOI PMC
Wang H.-M., Shen S.-L., Li N.-M., Su H.-F., Li W.-Y. LncRNA CDKN2BAS Aggravates the Progression of Ovarian Cancer by Positively Interacting with GAS6. Eur. Rev. Med. Pharmacol. Sci. 2020;24:5946–5952. doi: 10.26355/eurrev_202006_21487. PubMed DOI
Lin X., Yang F., Qi X., Li Q., Wang D., Yi T., Yin R., Zhao X., Zhong X., Bian C. LncRNA DANCR Promotes Tumor Growth and Angiogenesis in Ovarian Cancer through Direct Targeting of MiR-145. Mol. Carcinog. 2019;58:2286–2296. doi: 10.1002/mc.23117. PubMed DOI
Mitra R., Chen X., Greenawalt E.J., Maulik U., Jiang W., Zhao Z., Eischen C.M. Decoding Critical Long Non-Coding RNA in Ovarian Cancer Epithelial-to-Mesenchymal Transition. Nat. Commun. 2017;8:1604. doi: 10.1038/s41467-017-01781-0. PubMed DOI PMC
You Q., Yao Y., Wu J., Cheng C., Li Y., Yuan H. YY1-Induced LncRNA DSCR8 Promotes the Progression of Ovarian Cancer via MiR-3192-5p/YY1 Axis. Biomed. Pharmacother. 2020;129:110339. doi: 10.1016/j.biopha.2020.110339. PubMed DOI
Xu Q.-F., Tang Y.-X., Wang X. LncRNA EBIC Promoted Proliferation, Metastasis and Cisplatin Resistance of Ovarian Cancer Cells and Predicted Poor Survival in Ovarian Cancer Patients. Eur. Rev. Med. Pharmacol. Sci. 2018;22:4440–4447. doi: 10.26355/eurrev_201807_15495. PubMed DOI
Sun T., Yang P., Gao Y. Long Non-Coding RNA EPB41L4A-AS2 Suppresses Progression of Ovarian Cancer by Sequestering MicroRNA-103a to Upregulate Transcription Factor RUNX1T1. Exp. Physiol. 2020;105:75–87. doi: 10.1113/EP087847. PubMed DOI
Zhang Q., Len T.-Y., Zhang S.-X., Zhao Q.-H., Yang L.-H. Exosomes Transferring Long Non-Coding RNA FAL1 to Regulate Ovarian Cancer Metastasis through the PTEN/AKT Signaling Pathway. Eur. Rev. Med. Pharmacol. Sci. 2020;24:43–54. doi: 10.26355/eurrev_202001_19894. PubMed DOI
Gong Y.-B., Zou Y.-F. Clinical Significance of LncRNA FAM83H-AS1 in Ovarian Cancer. Eur. Rev. Med. Pharmacol. Sci. 2019;23:4656–4662. doi: 10.26355/eurrev_201906_18045. PubMed DOI
Dou Q., Xu Y., Zhu Y., Hu Y., Yan Y., Yan H. LncRNA FAM83H-AS1 Contributes to the Radioresistance, Proliferation, and Metastasis in Ovarian Cancer through Stabilizing HuR Protein. Eur. J. Pharmacol. 2019;852:134–141. doi: 10.1016/j.ejphar.2019.03.002. PubMed DOI
Sun Z., Gao S., Xuan L., Liu X. Long Non-Coding RNA FEZF1-AS1 Induced Progression of Ovarian Cancer via Regulating MiR-130a-5p/SOX4 Axis. J. Cell. Mol. Med. 2020;24:4275–4285. doi: 10.1111/jcmm.15088. PubMed DOI PMC
Yan H., Li H., Silva M.A., Guan Y., Yang L., Zhu L., Zhang Z., Li G., Ren C. LncRNA FLVCR1-AS1 Mediates MiR-513/YAP1 Signaling to Promote Cell Progression, Migration, Invasion and EMT Process in Ovarian Cancer. J. Exp. Clin. Cancer Res. 2019;38:356. doi: 10.1186/s13046-019-1356-z. PubMed DOI PMC
Li J., Huang Y., Deng X., Luo M., Wang X., Hu H., Liu C., Zhong M. Long Noncoding RNA H19 Promotes Transforming Growth Factor-β-Induced Epithelial–Mesenchymal Transition by Acting as a Competing Endogenous RNA of MiR-370-3p in Ovarian Cancer Cells. OncoTargets Ther. 2018;11:427–440. doi: 10.2147/OTT.S149908. PubMed DOI PMC
Wu K., Li L., Li L., Wang D. Long Non-Coding RNA HAL Suppresses the Migration and Invasion of Serous Ovarian Cancer by Inhibiting EMT Signaling Pathway. Biosci. Rep. 2020;40:BSR20194496. doi: 10.1042/BSR20194496. PubMed DOI PMC
Gokulnath P., de Cristofaro T., Manipur I., Di Palma T., Soriano A.A., Guarracino M.R., Zannini M. Long Non-Coding RNA HAND2-AS1 Acts as a Tumor Suppressor in High-Grade Serous Ovarian Carcinoma. Int. J. Mol. Sci. 2020;21:4059. doi: 10.3390/ijms21114059. PubMed DOI PMC
Wang L., He M., Fu L., Jin Y. Role of LncRNAHCP5/MicroRNA-525–5p/PRC1 Crosstalk in the Malignant Behaviors of Ovarian Cancer Cells. Exp. Cell Res. 2020;394:112129. doi: 10.1016/j.yexcr.2020.112129. PubMed DOI
Dong L., Hu L. HOTAIR Promotes Proliferation, Migration, and Invasion of Ovarian Cancer SKOV3 Cells Through Regulating PIK3R3. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2016;22:325–331. doi: 10.12659/MSM.894913. PubMed DOI PMC
Qiu J., Lin Y., Ye L., Ding J., Feng W., Jin H., Zhang Y., Li Q., Hua K. Overexpression of Long Non-Coding RNA HOTAIR Predicts Poor Patient Prognosis and Promotes Tumor Metastasis in Epithelial Ovarian Cancer. Gynecol. Oncol. 2014;134:121–128. doi: 10.1016/j.ygyno.2014.03.556. PubMed DOI
Chao H., Zhang M., Hou H., Zhang Z., Li N. HOTAIRM1 Suppresses Cell Proliferation and Invasion in Ovarian Cancer through Facilitating ARHGAP24 Expression by Sponging MiR-106a-5p. Life Sci. 2020;243:117296. doi: 10.1016/j.lfs.2020.117296. PubMed DOI
Zou T., Wang P.L., Gao Y., Liang W.T. Long Noncoding RNA HOTTIP Is a Significant Indicator of Ovarian Cancer Prognosis and Enhances Cell Proliferation and Invasion. Cancer Biomark. Sect. Dis. Markers. 2019;25:133–139. doi: 10.3233/CBM-181727. PubMed DOI
Dong S., Wang R., Wang H., Ding Q., Zhou X., Wang J., Zhang K., Long Y., Lu S., Hong T., et al. HOXD-AS1 Promotes the Epithelial to Mesenchymal Transition of Ovarian Cancer Cells by Regulating MiR-186-5p and PIK3R3. J. Exp. Clin. Cancer Res. 2019;38:110. doi: 10.1186/s13046-019-1103-5. PubMed DOI PMC
Liu H., Chen R., Kang F., Lai H., Wang Y. KCNQ1OT1 Promotes Ovarian Cancer Progression via Modulating MIR-142-5p/CAPN10 Axis. Mol. Genet. Genom. Med. 2020;8:e1077. doi: 10.1002/mgg3.1077. PubMed DOI PMC
Lu X., Wang F., Fu M., Li Y., Wang L. Long Noncoding RNA KCNQ1OT1 Accelerates the Progression of Ovarian Cancer via MicroRNA-212-3/LCN2 Axis. Oncol. Res. 2020;28:135–146. doi: 10.3727/096504019X15719983040135. PubMed DOI PMC
Zhao L., Ji G., Le X., Wang C., Xu L., Feng M., Zhang Y., Yang H., Xuan Y., Yang Y., et al. Long Noncoding RNA LINC00092 Acts in Cancer-Associated Fibroblasts to Drive Glycolysis and Progression of Ovarian Cancer. Cancer Res. 2017;77:1369–1382. doi: 10.1158/0008-5472.CAN-16-1615. PubMed DOI
Dai L., Niu J., Feng Y. Knockdown of Long Non-Coding RNA LINC00176 Suppresses Ovarian Cancer Progression by BCL3-Mediated down-Regulation of Ceruloplasmin. J. Cell. Mol. Med. 2020;24:202–213. doi: 10.1111/jcmm.14701. PubMed DOI PMC
Pan L., Meng Q., Li H., Liang K., Li B. LINC00339 Promotes Cell Proliferation, Migration, and Invasion of Ovarian Cancer Cells via MiR-148a-3p/ROCK1 Axes. Biomed. Pharmacother. 2019;120:109423. doi: 10.1016/j.biopha.2019.109423. PubMed DOI
Liu X., Wen J., Wang H., Wang Y. Long Non-Coding RNA LINC00460 Promotes Epithelial Ovarian Cancer Progression by Regulating MicroRNA-338-3p. Biomed. Pharmacother. 2018;108:1022–1028. doi: 10.1016/j.biopha.2018.09.103. PubMed DOI
Liu Y., He X., Chen Y., Cao D. Long Non-Coding RNA LINC00504 Regulates the Warburg Effect in Ovarian Cancer through Inhibition of MiR-1244. Mol. Cell. Biochem. 2020;464:39–50. doi: 10.1007/s11010-019-03647-z. PubMed DOI
Gong M., Luo C., Meng H., Li S., Nie S., Jiang Y., Wan Y., Li H., Cheng W. Upregulated LINC00565 Accelerates Ovarian Cancer Progression By Targeting GAS6. OncoTargets Ther. 2019;12:10011–10022. doi: 10.2147/OTT.S227758. PubMed DOI PMC
Liu W., Yang Y.-J., An Q. LINC00963 Promotes Ovarian Cancer Proliferation, Migration and EMT via the MiR-378g /CHI3L1 Axis. Cancer Manag. Res. 2020;12:463–473. doi: 10.2147/CMAR.S229083. PubMed DOI PMC
Yuan D., Qian H., Guo T., Ye J., Jin C., Liu X., Jiang L., Wang X., Lin M., Yu H. LncRNA-ATB Promotes the Tumorigenesis of Ovarian Cancer via Targeting MiR-204-3p. OncoTargets Ther. 2020;13:573–583. doi: 10.2147/OTT.S230552. PubMed DOI PMC
Yuan D., Zhang X., Zhao Y., Qian H., Wang H., He C., Liu X., Guo T., Lin M., Yu H., et al. Role of LncRNA-ATB in Ovarian Cancer and Its Mechanisms of Action. Exp. Ther. Med. 2020;19:965–971. doi: 10.3892/etm.2019.8282. PubMed DOI PMC
Liu Y., Wang Y., Yao D., Cui D. LncSOX4 Serves an Oncogenic Role in the Tumorigenesis of Epithelial Ovarian Cancer by Promoting Cell Proliferation and Inhibiting Apoptosis. Mol. Med. Rep. 2018;17:8282–8288. doi: 10.3892/mmr.2018.8892. PubMed DOI PMC
Tao F., Tian X., Lu M., Zhang Z. A Novel LncRNA, Lnc-OC1, Promotes Ovarian Cancer Cell Proliferation and Migration by Sponging MiR-34a and MiR-34c. J. Genet. Genom. Yi Chuan Xue Bao. 2018;45:137–145. doi: 10.1016/j.jgg.2018.03.001. PubMed DOI
Xue F., Xu Y.H., Shen C.C., Qin Z.L., Zhou H.B. Non-Coding RNA LOXL1-AS1 Exhibits Oncogenic Activity in Ovarian Cancer via Regulation of MiR-18b-5p/VMA21 Axis. Biomed. Pharmacother. 2020;125:109568. doi: 10.1016/j.biopha.2019.109568. PubMed DOI
Liu H.-Z., Liu G.-Y., Pang W.-W., Zhang H., Zeng Z.-J., Wang H.-J. LncRNA LUCAT1 Promotes Proliferation of Ovarian Cancer Cells by Regulating MiR-199a-5p Expression. Eur. Rev. Med. Pharmacol. Sci. 2020;24:1682–1687. doi: 10.26355/eurrev_202002_20342. PubMed DOI
Wu X., Wang Y., Zhong W., Cheng H., Tian Z. The Long Non-Coding RNA MALAT1 Enhances Ovarian Cancer Cell Stemness by Inhibiting YAP Translocation from Nucleus to Cytoplasm. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2020;26:e922012. doi: 10.12659/MSM.922012. PubMed DOI PMC
Qiu J.-J., Lin X.-J., Tang X.-Y., Zheng T.-T., Lin Y.-Y., Hua K.-Q. Exosomal Metastasis-Associated Lung Adenocarcinoma Transcript 1 Promotes Angiogenesis and Predicts Poor Prognosis in Epithelial Ovarian Cancer. Int. J. Biol. Sci. 2018;14:1960–1973. doi: 10.7150/ijbs.28048. PubMed DOI PMC
Zhou Y., Xu X., Lv H., Wen Q., Li J., Tan L., Li J., Sheng X. The Long Noncoding RNA MALAT-1 Is Highly Expressed in Ovarian Cancer and Induces Cell Growth and Migration. PLoS ONE. 2016;11:e0155250. doi: 10.1371/journal.pone.0155250. PubMed DOI PMC
Pa M., Naizaer G., Seyiti A., Kuerbang G. Long Noncoding RNA MALAT1 Functions as a Sponge of MiR-200c in Ovarian Cancer. Oncol. Res. 2017 doi: 10.3727/096504017X15049198963076. PubMed DOI
Buttarelli M., De Donato M., Raspaglio G., Babini G., Ciucci A., Martinelli E., Baccaro P., Pasciuto T., Fagotti A., Scambia G., et al. Clinical Value of LncRNA MEG3 in High-Grade Serous Ovarian Cancer. Cancers. 2020;12:966. doi: 10.3390/cancers12040966. PubMed DOI PMC
Liu Y., Xu Y., Ding L., Yu L., Zhang B., Wei D. LncRNA MEG3 Suppressed the Progression of Ovarian Cancer via Sponging MiR-30e-3p and Regulating LAMA4 Expression. Cancer Cell Int. 2020;20:181. doi: 10.1186/s12935-020-01259-y. PubMed DOI PMC
Wang J., Xu W., He Y., Xia Q., Liu S. LncRNA MEG3 Impacts Proliferation, Invasion, and Migration of Ovarian Cancer Cells through Regulating PTEN. Inflamm. Res. Off. J. Eur. Histamine Res. Soc. Al. 2018;67:927–936. doi: 10.1007/s00011-018-1186-z. PubMed DOI
Tao P., Yang B., Zhang H., Sun L., Wang Y., Zheng W. The Overexpression of LncRNA MEG3 Inhibits Cell Viability and Invasion and Promotes Apoptosis in Ovarian Cancer by Sponging MiR-205-5p. 11. Int. J. Clin. Exp. Pathol. 2020;13:869–879. PubMed PMC
Fan Y., Wang L., Han X.-C., Ma H.-Y., Zhang N., Zhe L. LncRNA MIF-AS1 Aggravates the Progression of Ovarian Cancer by Sponging MiRNA-31-5p. Eur. Rev. Med. Pharmacol. Sci. 2020;24:2248–2255. doi: 10.26355/eurrev_202003_20490. PubMed DOI
Zhu L., Wang A., Gao M., Duan X., Li Z. LncRNA MIR4435-2HG Triggers Ovarian Cancer Progression by Regulating MiR-128-3p/CKD14 Axis. Cancer Cell Int. 2020;20:145. doi: 10.1186/s12935-020-01227-6. PubMed DOI PMC
Hu J., Wang L., Zhao W., Huang Y., Wang Z., Shen H. Mi-R4435-2HG Promotes Proliferation and Inhibits Apoptosis of Cancer Cells in Ovarian Carcinoma by Upregulating ROCK2. Oncol. Lett. 2020;19:1305–1309. doi: 10.3892/ol.2019.11204. PubMed DOI PMC
Zhang L., Yang S., Wang Y., Fang Q., Chen X., Lu H., Zhao L. Long Noncoding RNA MIR4697HG Promotes Cell Growth and Metastasis in Human Ovarian Cancer. Anal. Cell. Pathol. Amst. 2017;2017:8267863. doi: 10.1155/2017/8267863. PubMed DOI PMC
Liu Y., Wang Y., Fu X., Lu Z. Long Non-Coding RNA NEAT1 Promoted Ovarian Cancer Cells’ Metastasis through Regulation of MiR-382-3p/ROCK1 Axial. Cancer Sci. 2018;109:2188–2198. doi: 10.1111/cas.13647. PubMed DOI PMC
Lin X., Tang X., Zheng T., Qiu J., Hua K. Long Non-Coding RNA NONHSAT076754 Promotes Invasion and Metastasis in Epithelial Ovarian Cancer. J. Cancer. 2019;10:1930–1940. doi: 10.7150/jca.29057. PubMed DOI PMC
Liu Y., Zong Z.-H., Guan X., Wang L., Zhao Y. The Role of Long Non-Coding RNA PCA3 in Epithelial Ovarian Carcinoma Tumorigenesis and Progression. Gene. 2017;633:42–47. doi: 10.1016/j.gene.2017.08.027. PubMed DOI
Min F., Chu G. Long Noncoding RNA PCAT-1 Knockdown Prevents the Development of Ovarian Cancer Cells via MicroRNA-124-3p. J. Cell. Biochem. 2020;121:1963–1972. doi: 10.1002/jcb.29431. PubMed DOI
Chen S., Wang L.-L., Sun K.-X., Liu Y., Guan X., Zong Z.-H., Zhao Y. LncRNA PCGEM1 Induces Ovarian Carcinoma Tumorigenesis and Progression Through RhoA Pathway. Cell. Physiol. Biochem. 2018;47:1578–1588. doi: 10.1159/000490931. PubMed DOI
Chen Y., Du H., Bao L., Liu W. LncRNA PVT1 Promotes Ovarian Cancer Progression by Silencing MiR-214. Cancer Biol. Med. 2018;15:238–250. doi: 10.20892/j.issn.2095-3941.2017.0174. PubMed DOI PMC
Yang Q., Yu Y., Sun Z., Pan Y. Long Non-Coding RNA PVT1 Promotes Cell Proliferation and Invasion through Regulating MiR-133a in Ovarian Cancer. Biomed. Pharmacother. 2018;106:61–67. doi: 10.1016/j.biopha.2018.06.112. PubMed DOI
Wang J., Ding W., Xu Y., Tao E., Mo M., Xu W., Cai X., Chen X., Yuan J., Wu X. Long Non-Coding RNA RHPN1-AS1 Promotes Tumorigenesis and Metastasis of Ovarian Cancer by Acting as a CeRNA against MiR-596 and Upregulating LETM1. Aging. 2020;12:4558–4572. doi: 10.18632/aging.102911. PubMed DOI PMC
Zhao L., Liu T., Zhang X., Zuo D., Liu C. LncRNA RHPN1-AS1 Promotes Ovarian Cancer Growth and Invasiveness Through Inhibiting MiR-1299. OncoTargets Ther. 2020;13:5337–5344. doi: 10.2147/OTT.S248050. PubMed DOI PMC
Ge J., Wu X.-M., Yang X.-T., Gao J.-M., Wang F., Ye K.-F. Role of Long Non-Coding RNA SNHG1 in Occurrence and Progression of Ovarian Carcinoma. Eur. Rev. Med. Pharmacol. Sci. 2018;22:329–335. doi: 10.26355/eurrev_201801_14176. PubMed DOI
Hong L., Chen W., Wu D., Wang Y. Upregulation of SNHG3 Expression Associated with Poor Prognosis and Enhances Malignant Progression of Ovarian Cancer. Cancer Biomark. Sect. Dis. Markers. 2018;22:367–374. doi: 10.3233/CBM-170710. PubMed DOI
Yang X.-S., Wang G.-X., Luo L. Long Non-Coding RNA SNHG16 Promotes Cell Growth and Metastasis in Ovarian Cancer. Eur. Rev. Med. Pharmacol. Sci. 2018;22:616–622. doi: 10.26355/eurrev_201802_14284. PubMed DOI
Guo Q., Wang L., Zhu L., Lu X., Song Y., Sun J., Wu Z., Shi J., Wang Z., Zhou X. The Clinical Significance and Biological Function of LncRNA SOCAR in Serous Ovarian Carcinoma. Gene. 2019;713:143969. doi: 10.1016/j.gene.2019.143969. PubMed DOI
Yu J., Han Q., Cui Y. Decreased Long Non-Coding RNA SPRY4-IT1 Contributes to Ovarian Cancer Cell Metastasis Partly via Affecting Epithelial–Mesenchymal Transition. Tumor Biol. 2017;39:1010428317709129. doi: 10.1177/1010428317709129. PubMed DOI
Qiu J.-J., Lin X.-J., Tang X.-Y., Zheng T.-T., Zhang X.-Y., Hua K.-Q. Long Noncoding RNA TC0101441 Induces Epithelial-Mesenchymal Transition in Epithelial Ovarian Cancer Metastasis by Downregulating KiSS1. Int. J. Cancer. 2020;146:2588–2598. doi: 10.1002/ijc.32692. PubMed DOI
Chen S., Wang L.-L., Sun K.-X., Xiu Y.-L., Zong Z.-H., Chen X., Zhao Y. The Role of the Long Non-Coding RNA TDRG1 in Epithelial Ovarian Carcinoma Tumorigenesis and Progression through MiR-93/RhoC Pathway. Mol. Carcinog. 2018;57:225–234. doi: 10.1002/mc.22749. PubMed DOI
Ge J., Han T., Shan L., Na J., Li Y., Wang J. Long Non-Coding RNA THOR Promotes Ovarian Cancer Cells Progression via IL-6/STAT3 Pathway. J. Ovarian Res. 2020;13:72. doi: 10.1186/s13048-020-00672-1. PubMed DOI PMC
Xu Q., Lin Y.-B., Li L., Liu J. LncRNA TLR8-AS1 Promotes Metastasis and Chemoresistance of Ovarian Cancer through Enhancing TLR8 MRNA Stability. Biochem. Biophys. Res. Commun. 2020;526:857–864. doi: 10.1016/j.bbrc.2020.03.087. PubMed DOI
Liu Y., Li L., Wang X., Wang P., Wang Z. LncRNA TONSL-AS1 Regulates MiR-490-3p/CDK1 to Affect Ovarian Epithelial Carcinoma Cell Proliferation. J. Ovarian Res. 2020;13:60. doi: 10.1186/s13048-020-00657-0. PubMed DOI PMC
Wu W., Gao H., Li X., Zhu Y., Peng S., Yu J., Zhan G., Wang J., Liu N., Guo X. LncRNA TPT1-AS1 Promotes Tumorigenesis and Metastasis in Epithelial Ovarian Cancer by Inducing TPT1 Expression. Cancer Sci. 2019;110:1587–1598. doi: 10.1111/cas.14009. PubMed DOI PMC
Liu X., Li Y., Wen J., Qi T., Wang Y. Long Non-Coding RNA TTN-AS1 Promotes Tumorigenesis of Ovarian Cancer through Modulating the MiR-139-5p/ROCK2 Axis. Biomed. Pharmacother. 2020;125:109882. doi: 10.1016/j.biopha.2020.109882. PubMed DOI
Miao S., Wang J., Xuan L., Liu X. LncRNA TTN-AS1 Acts as Sponge for MiR-15b-5p to Regulate FBXW7 Expression in Ovarian Cancer. BioFactors. 2020;46:600–607. doi: 10.1002/biof.1622. PubMed DOI
Kuang D., Zhang X., Hua S., Dong W., Li Z. Long Non-Coding RNA TUG1 Regulates Ovarian Cancer Proliferation and Metastasis via Affecting Epithelial-Mesenchymal Transition. Exp. Mol. Pathol. 2016;101:267–273. doi: 10.1016/j.yexmp.2016.09.008. PubMed DOI
Yang X., Xin N., Qu H.-J., Wei L., Han Z. Long Noncoding RNA TUG1 Facilitates Cell Ovarian Cancer Progression through Targeting MiR-29b-3p/MDM2 Axis. Anat. Rec. 2020;303:3024–3034. doi: 10.1002/ar.24367. PubMed DOI
Wang H., Su H., Tan Y. UNC5B-AS1 Promoted Ovarian Cancer Progression by Regulating the H3K27me on NDRG2 via EZH2. Cell Biol. Int. 2020;44:1028–1036. doi: 10.1002/cbin.11300. PubMed DOI
Li W., Ma S., Bai X., Pan W., Ai L., Tan W. Long Noncoding RNA WDFY3-AS2 Suppresses Tumor Progression by Acting as a Competing Endogenous RNA of MicroRNA-18a in Ovarian Cancer. J. Cell. Physiol. 2020;235:1141–1154. doi: 10.1002/jcp.29028. PubMed DOI
Zuo K., Zhao Y., Zheng Y., Chen D., Liu X., Du S., Liu Q. Long Non-Coding RNA XIST Promotes Malignant Behavior of Epithelial Ovarian Cancer. OncoTargets Ther. 2019;12:7261–7267. doi: 10.2147/OTT.S204369. PubMed DOI PMC
Kulis M., Esteller M. 2-DNA Methylation and Cancer. In: Herceg Z., Ushijima T., editors. Advances in Genetics. Volume 70. Academic Press; Cambridge, MA, USA: 2010. pp. 27–56. Epigenetics and Cancer, Part A. PubMed
Pfeifer G.P. Defining Driver DNA Methylation Changes in Human Cancer. Int. J. Mol. Sci. 2018;19:1166. doi: 10.3390/ijms19041166. PubMed DOI PMC
Wang S., Wu W., Claret F.X. Mutual Regulation of MicroRNAs and DNA Methylation in Human Cancers. Epigenetics. 2017;12:187–197. doi: 10.1080/15592294.2016.1273308. PubMed DOI PMC
Glaich O., Parikh S., Bell R.E., Mekahel K., Donyo M., Leader Y., Shayevitch R., Sheinboim D., Yannai S., Hollander D., et al. DNA Methylation Directs MicroRNA Biogenesis in Mammalian Cells. Nat. Commun. 2019;10:5657. doi: 10.1038/s41467-019-13527-1. PubMed DOI PMC
Chen K., Liu M.X., Mak C.S.-L., Yung M.M.-H., Leung T.H.-Y., Xu D., Ngu S.-F., Chan K.K.-L., Yang H., Ngan H.Y.-S., et al. Methylation-Associated Silencing of MiR-193a-3p Promotes Ovarian Cancer Aggressiveness by Targeting GRB7 and MAPK/ERK Pathways. Theranostics. 2018;8:423–436. doi: 10.7150/thno.22377. PubMed DOI PMC
Loginov V.I., Pronina I.V., Burdennyy A.M., Filippova E.A., Kazubskaya T.P., Kushlinsky D.N., Utkin D.O., Khodyrev D.S., Kushlinskii N.E., Dmitriev A.A., et al. Novel MiRNA Genes Deregulated by Aberrant Methylation in Ovarian Carcinoma Are Involved in Metastasis. Gene. 2018;662:28–36. doi: 10.1016/j.gene.2018.04.005. PubMed DOI
Deng Y., Zhao F., Hui L., Li X., Zhang D., Lin W., Chen Z., Ning Y. Suppressing MiR-199a-3p by Promoter Methylation Contributes to Tumor Aggressiveness and Cisplatin Resistance of Ovarian Cancer through Promoting DDR1 Expression. J. Ovarian Res. 2017;10:50. doi: 10.1186/s13048-017-0333-4. PubMed DOI PMC
Braga E.A., Loginov V.I., Burdennyi A.M., Filippova E.A., Pronina I.V., Kurevlev S.V., Kazubskaya T.P., Kushlinskii D.N., Utkin D.O., Ermilova V.D., et al. Five Hypermethylated MicroRNA Genes as Potential Markers of Ovarian Cancer. Bull. Exp. Biol. Med. 2018;164:351–355. doi: 10.1007/s10517-018-3988-y. PubMed DOI
Ye Z., Li J., Han X., Hou H., Chen H., Zheng X., Lu J., Wang L., Chen W., Li X., et al. TET3 Inhibits TGF-Β1-Induced Epithelial-Mesenchymal Transition by Demethylating MiR-30d Precursor Gene in Ovarian Cancer Cells. J. Exp. Clin. Cancer Res. 2016;35:72. doi: 10.1186/s13046-016-0350-y. PubMed DOI PMC
Teng Y., Zuo X., Hou M., Zhang Y., Li C., Luo W., Li X. A Double-Negative Feedback Interaction between MicroRNA-29b and DNMT3A/3B Contributes to Ovarian Cancer Progression. Cell. Physiol. Biochem. 2016;39:2341–2352. doi: 10.1159/000447926. PubMed DOI
Li T., Li Y., Gan Y., Tian R., Wu Q., Shu G., Yin G. Methylation-Mediated Repression of MiR-424/503 Cluster Promotes Proliferation and Migration of Ovarian Cancer Cells through Targeting the Hub Gene KIF23. Cell Cycle. 2019;18:1601–1618. doi: 10.1080/15384101.2019.1624112. PubMed DOI PMC
Lu L., Katsaros D., de la Longrais I.A.R., Sochirca O., Yu H. Hypermethylation of Let-7a-3 in Epithelial Ovarian Cancer Is Associated with Low Insulin-like Growth Factor-II Expression and Favorable Prognosis. Cancer Res. 2007;67:10117–10122. doi: 10.1158/0008-5472.CAN-07-2544. PubMed DOI
Iorio M.V., Visone R., Leva G.D., Donati V., Petrocca F., Casalini P., Taccioli C., Volinia S., Liu C.-G., Alder H., et al. MicroRNA Signatures in Human Ovarian Cancer. Cancer Res. 2007;67:8699–8707. doi: 10.1158/0008-5472.CAN-07-1936. PubMed DOI
Lujambio A., Calin G.A., Villanueva A., Ropero S., Sánchez-Céspedes M., Blanco D., Montuenga L.M., Rossi S., Nicoloso M.S., Faller W.J., et al. A MicroRNA DNA Methylation Signature for Human Cancer Metastasis. Proc. Natl. Acad. Sci. USA. 2008;105:13556–13561. doi: 10.1073/pnas.0803055105. PubMed DOI PMC
Özeş A.R., Miller D.F., Özeş O.N., Fang F., Liu Y., Matei D., Huang T., Nephew K.P. NF-ΚB-HOTAIR Axis Links DNA Damage Response, Chemoresistance and Cellular Senescence in Ovarian Cancer. Oncogene. 2016;35:5350–5361. doi: 10.1038/onc.2016.75. PubMed DOI PMC
Teschendorff A., Lee S.-H., Jones A., Fiegl H., Kalwa M., Wagner W., Chindera K., Evans I., Dubeau L., Orjalo A., et al. HOTAIR and Its Surrogate DNA Methylation Signature Indicate Carboplatin Resistance in Ovarian Cancer. Genome Med. 2015;7:108. doi: 10.1186/s13073-015-0233-4. PubMed DOI PMC
Zhou J., Yang L., Zhong T., Mueller M., Men Y., Zhang N., Xie J., Giang K., Chung H., Sun X., et al. H19 LncRNA Alters DNA Methylation Genome Wide by Regulating S-Adenosylhomocysteine Hydrolase. Nat. Commun. 2015;6:10221. doi: 10.1038/ncomms10221. PubMed DOI PMC
Gloss B.S., Patterson K.I., Barton C.A., Gonzalez M., Scurry J.P., Hacker N.F., Sutherland R.L., O’Brien P.M., Clark S.J. Integrative Genome-Wide Expression and Promoter DNA Methylation Profiling Identifies a Potential Novel Panel of Ovarian Cancer Epigenetic Biomarkers. Cancer Lett. 2012;318:76–85. doi: 10.1016/j.canlet.2011.12.003. PubMed DOI
Gloss B., Moran-Jones K., Lin V., Gonzalez M., Scurry J., Hacker N.F., Sutherland R.L., Clark S.J., Samimi G. ZNF300P1 Encodes a LincRNA That Regulates Cell Polarity and Is Epigenetically Silenced in Type II Epithelial Ovarian Cancer. Mol. Cancer. 2014;13:3. doi: 10.1186/1476-4598-13-3. PubMed DOI PMC
Vrba L., Futscher B.W. Epigenetic Silencing of LncRNA MORT in 16 TCGA Cancer Types. F1000Research. 2018;7:211. doi: 10.12688/f1000research.13944.1. PubMed DOI PMC
Vera O., Rodriguez-Antolin C., de Castro J., Karreth F.A., Sellers T.A., Caceres I.I. de An Epigenomic Approach to Identifying Differential Overlapping and Cis-Acting LncRNAs in Cisplatin-Resistant Cancer Cells. Epigenetics. 2018;13:251–263. doi: 10.1080/15592294.2018.1436364. PubMed DOI PMC
Pilié P.G., Gay C.M., Byers L.A., O’Connor M.J., Yap T.A. PARP Inhibitors: Extending Benefit Beyond BRCA-Mutant Cancers. Clin. Cancer Res. 2019;25:3759–3771. doi: 10.1158/1078-0432.CCR-18-0968. PubMed DOI
A Multi-Omics Study on the Invasiveness of Epithelial Ovarian Cancer. [(accessed on 4 August 2020)]; Available online: https://clinicaltrials.gov/ct2/show/NCT03742856.
Whole-exome sequencing of epithelial ovarian carcinomas differing in resistance to platinum therapy