Myc and Ras oncogenes engage different energy metabolism programs and evoke distinct patterns of oxidative and DNA replication stress

. 2015 Mar ; 9 (3) : 601-16. [epub] 20141115

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25435281
Odkazy

PubMed 25435281
PubMed Central PMC5528704
DOI 10.1016/j.molonc.2014.11.001
PII: S1574-7891(14)00266-X
Knihovny.cz E-zdroje

Both Myc and Ras oncogenes impact cellular metabolism, deregulate redox homeostasis and trigger DNA replication stress (RS) that compromises genomic integrity. However, how are such oncogene-induced effects evoked and temporally related, to what extent are these kinetic parameters shared by Myc and Ras, and how are these cellular changes linked with oncogene-induced cellular senescence in different cell context(s) remain poorly understood. Here, we addressed the above-mentioned open questions by multifaceted comparative analyses of human cellular models with inducible expression of c-Myc and H-RasV12 (Ras), two commonly deregulated oncoproteins operating in a functionally connected signaling network. Our study of DNA replication parameters using the DNA fiber approach and time-course assessment of perturbations in glycolytic flux, oxygen consumption and production of reactive oxygen species (ROS) revealed the following results. First, overabundance of nuclear Myc triggered RS promptly, already after one day of Myc induction, causing slow replication fork progression and fork asymmetry, even before any metabolic changes occurred. In contrast, Ras overexpression initially induced a burst of cell proliferation and increased the speed of replication fork progression. However, after several days of induction Ras caused bioenergetic metabolic changes that correlated with slower DNA replication fork progression and the ensuing cell cycle arrest, gradually leading to senescence. Second, the observed oncogene-induced RS and metabolic alterations were cell-type/context dependent, as shown by comparative analyses of normal human BJ fibroblasts versus U2-OS sarcoma cells. Third, the energy metabolic reprogramming triggered by Ras was more robust compared to impact of Myc. Fourth, the detected oncogene-induced oxidative stress was due to ROS (superoxide) of non-mitochondrial origin and mitochondrial OXPHOS was reduced (Crabtree effect). Overall, our study provides novel insights into oncogene-evoked metabolic reprogramming, replication and oxidative stress, with implications for mechanisms of tumorigenesis and potential targeting of oncogene addiction.

Zobrazit více v PubMed

Aird, K.M. , Zhang, G. , Li, H. , Tu, Z. , Bitler, B.G. , Garipov, A. , Wu, H. , Wei, Z. , Wagner, S.N. , Herlyn, M. , Zhang, R. , 2013. Suppression of nucleotide metabolism underlies the establishment and maintenance of oncogene-induced senescence. Cell Rep. 3, 1252–1265. PubMed PMC

Alexandrova, A.Y. , Kopnin, P.B. , Vasiliev, J.M. , Kopnin, B.P. , 2006. ROS up-regulation mediates Ras-induced changes of cell morphology and motility. Exp. Cell Res. 312, 2066–2073. PubMed

Amati, B. , Land, H. , 1994. Myc-Max-Mad: a transcription factor network controlling cell cycle progression, differentiation and death. Curr. Opin. Genet. Dev. 4, 102–108. PubMed

Anglana, M. , Apiou, F. , Bensimon, A. , Debatisse, M. , 2003. Dynamics of DNA replication in mammalian somatic cells: nucleotide pool modulates origin choice and interorigin spacing. Cell. 114, 385–394. PubMed

Balaban, R.S. , Nemoto, S. , Finkel, T. , 2005. Mitochondria, oxidants, and aging. Cell. 120, 483–495. PubMed

Barbacid, M. , 1987. ras genes. Annu. Rev. Biochem. 56, 779–827. PubMed

Barger, J.F. , Plas, D.R. , 2010. Balancing biosynthesis and bioenergetics: metabolic programs in oncogenesis. Endocr. Relat. Cancer. 17, R287–R304. PubMed

Barlow, J.H. , Faryabi, R.B. , Callen, E. , Wong, N. , Malhowski, A. , Chen, H.T. , Gutierrez-Cruz, G. , Sun, H.W. , McKinnon, P. , Wright, G. , Casellas, R. , Robbiani, D.F. , Staudt, L. , Fernandez-Capetillo, O. , Nussenzweig, A. , 2013. Identification of early replicating fragile sites that contribute to genome instability. Cell. 152, 620–632. PubMed PMC

Bartek, J. , Mistrik, M. , Bartkova, J. , 2012. Thresholds of replication stress signaling in cancer development and treatment. Nat. Struct. Mol. Biol. 19, 5–7. PubMed

Bartkova, J. , Horejsi, Z. , Koed, K. , Kramer, A. , Tort, F. , Zieger, K. , Guldberg, P. , Sehested, M. , Nesland, J.M. , Lukas, C. , Orntoft, T. , Lukas, J. , Bartek, J. , 2005. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature. 434, 864–870. PubMed

Bartkova, J. , Rezaei, N. , Liontos, M. , Karakaidos, P. , Kletsas, D. , Issaeva, N. , Vassiliou, L.V. , Kolettas, E. , Niforou, K. , Zoumpourlis, V.C. , Takaoka, M. , Nakagawa, H. , Tort, F. , Fugger, K. , Johansson, F. , Sehested, M. , Andersen, C.L. , Dyrskjot, L. , Orntoft, T. , Lukas, J. , Kittas, C. , Helleday, T. , Halazonetis, T.D. , Bartek, J. , Gorgoulis, V.G. , 2006. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature. 444, 633–637. PubMed

Bartkova, J. , Tommiska, J. , Oplustilova, L. , Aaltonen, K. , Tamminen, A. , Heikkinen, T. , Mistrik, M. , Aittomaki, K. , Blomqvist, C. , Heikkila, P. , Lukas, J. , Nevanlinna, H. , Bartek, J. , 2008. Aberrations of the MRE11-RAD50-NBS1 DNA damage sensor complex in human breast cancer: MRE11 as a candidate familial cancer-predisposing gene. Mol. Oncol. 2, 296–316. PubMed PMC

Bedard, K. , Krause, K.H. , 2007. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev. 87, 245–313. PubMed

Bermejo, R. , Lai, M.S. , Foiani, M. , 2012. Preventing replication stress to maintain genome stability: resolving conflicts between replication and transcription. Mol. Cell. 45, 710–718. PubMed

Bester, A.C. , Roniger, M. , Oren, Y.S. , Im, M.M. , Sarni, D. , Chaoat, M. , Bensimon, A. , Zamir, G. , Shewach, D.S. , Kerem, B. , 2011. Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell. 145, 435–446. PubMed PMC

Blancato, J. , Singh, B. , Liu, A. , Liao, D.J. , Dickson, R.B. , 2004. Correlation of amplification and overexpression of the c-myc oncogene in high-grade breast cancer: FISH, in situ hybridisation and immunohistochemical analyses. Br. J. Cancer. 90, 1612–1619. PubMed PMC

Burrell, R.A. , McClelland, S.E. , Endesfelder, D. , Groth, P. , Weller, M.C. , Shaikh, N. , Domingo, E. , Kanu, N. , Dewhurst, S.M. , Gronroos, E. , Chew, S.K. , Rowan, A.J. , Schenk, A. , Sheffer, M. , Howell, M. , Kschischo, M. , Behrens, A. , Helleday, T. , Bartek, J. , Tomlinson, I.P. , Swanton, C. , 2013. Replication stress links structural and numerical cancer chromosomal instability. Nature. 494, 492–496. PubMed PMC

Burrell, R.A. , McGranahan, N. , Bartek, J. , Swanton, C. , 2013. The causes and consequences of genetic heterogeneity in cancer evolution. (Insight Review) Nature. 501, 338–345. PubMed

Campaner, S. , Doni, M. , Hydbring, P. , Verrecchia, A. , Bianchi, L. , Sardella, D. , Schleker, T. , Perna, D. , Tronnersjo, S. , Murga, M. , Fernandez-Capetillo, O. , Barbacid, M. , Larsson, L.G. , Amati, B. , 2010. Cdk2 suppresses cellular senescence induced by the c-myc oncogene. Nat. Cell Biol. 12, 54–59. PubMed

Chrzan, P. , Skokowski, J. , Karmolinski, A. , Pawelczyk, T. , 2001. Amplification of c-myc gene and overexpression of c-Myc protein in breast cancer and adjacent non-neoplastic tissue. Clin. Biochem. 34, 557–562. PubMed

Dang, C.V. , 2012. Links between metabolism and cancer. Genes Dev. 26, 877–890. PubMed PMC

Dang, C.V. , O'Donnell, K.A. , Zeller, K.I. , Nguyen, T. , Osthus, R.C. , Li, F. , 2006. The c-Myc target gene network. Semin. Cancer Biol. 16, 253–264. PubMed

Daugaard, M. , Nitsch, R. , Razaghi, B. , McDonald, L. , Jarrar, A. , Torrino, S. , Castillo-Lluva, S. , Rotblat, B. , Li, L. , Malliri, A. , Lemichez, E. , Mettouchi, A. , Berman, J.N. , Penninger, J.M. , Sorensen, P.H. , 2013. Hace1 controls ROS generation of vertebrate Rac1-dependent NADPH oxidase complexes. Nat. Commun. 4, 2180 PubMed PMC

Debatisse, M. , Le Tallec, B. , Letessier, A. , Dutrillaux, B. , Brison, O. , 2012. Common fragile sites: mechanisms of instability revisited. Trends Genet. 28, 22–32. PubMed

Di Micco, R. , Fumagalli, M. , Cicalese, A. , Piccinin, S. , Gasparini, P. , Luise, C. , Schurra, C. , Garre, M. , Nuciforo, P.G. , Bensimon, A. , Maestro, R. , Pelicci, P.G. , d'Adda di Fagagna, F. , 2006. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature. 444, 638–642. PubMed

Dominguez-Sola, D. , Ying, C.Y. , Grandori, C. , Ruggiero, L. , Chen, B. , Li, M. , Galloway, D.A. , Gu, W. , Gautier, J. , Dalla-Favera, R. , 2007. Non-transcriptional control of DNA replication by c-Myc. Nature. 448, 445–451. PubMed

Durkin, S.G. , Glover, T.W. , 2007. Chromosome fragile sites. Annu. Rev. Genet. 41, 169–192. PubMed

Eilers, M. , Schirm, S. , Bishop, J.M. , 1991. The MYC protein activates transcription of the alpha-prothymosin gene. EMBO J. 10, 133–141. PubMed PMC

Evangelou, K. , Bartkova, J. , Kotsinas, A. , Pateras, I.S. , Liontos, M. , Velimezi, G. , Kosar, M. , Liloglou, T. , Trougakos, I.P. , Dyrskjot, L. , Andersen, C.L. , Papaioannou, M. , Drosos, Y. , Papafotiou, G. , Hodny, Z. , Sosa-Pineda, B. , Wu, X.R. , Klinakis, A. , Orntoft, T. , Lukas, J. , Bartek, J. , Gorgoulis, V.G. , 2013. The DNA damage checkpoint precedes activation of ARF in response to escalating oncogenic stress during tumorigenesis. Cell Death Differ. 20, 1485–1497. PubMed PMC

Fan, Y. , Dickman, K.G. , Zong, W.X. , 2010. Akt and c-Myc differentially activate cellular metabolic programs and prime cells to bioenergetic inhibition. J. Biol. Chem. 285, 7324–7333. PubMed PMC

Ferraro, D. , Corso, S. , Fasano, E. , Panieri, E. , Santangelo, R. , Borrello, S. , Giordano, S. , Pani, G. , Galeotti, T. , 2006. Pro-metastatic signaling by c-Met through RAC-1 and reactive oxygen species (ROS). Oncogene. 25, 3689–3698. PubMed

Filipp, F.V. , Ratnikov, B. , De Ingeniis, J. , Smith, J.W. , Osterman, A.L. , Scott, D.A. , 2012. Glutamine-fueled mitochondrial metabolism is decoupled from glycolysis in melanoma. Pigment Cell Melanoma Res. 25, 732–739. PubMed PMC

Georgakilas, A.G. , Tsantoulis, P. , Kotsinas, A. , Michalopoulos, I. , Townsend, P. , Gorgoulis, V. , 2014. Are common fragile sites merely structural domains or highly organized “functional” units susceptible to oncogenic stress?. Cell. Mol. Life Sci. 71, 4519–4544. PubMed PMC

Gianni, D. , Bohl, B. , Courtneidge, S.A. , Bokoch, G.M. , 2008. The involvement of the tyrosine kinase c-Src in the regulation of reactive oxygen species generation mediated by NADPH oxidase-1. Mol. Biol. Cell. 19, 2984–2994. PubMed PMC

Goga, A. , Yang, D. , Tward, A.D. , Morgan, D.O. , Bishop, J.M. , 2007. Inhibition of CDK1 as a potential therapy for tumors over-expressing MYC. Nat. Med. 13, 820–827. PubMed

Gorgoulis, V.G. , Vassiliou, L.V. , Karakaidos, P. , Zacharatos, P. , Kotsinas, A. , Liloglou, T. , Venere, M. , Ditullio, R.A. , Kastrinakis, N.G. , Levy, B. , 2005. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature. 434, 907–913. PubMed

Hahn, W.C. , Dessain, S.K. , Brooks, M.W. , King, J.E. , Elenbaas, B. , Sabatini, D.M. , DeCaprio, J.A. , Weinberg, R.A. , 2002. Enumeration of the simian virus 40 early region elements necessary for human cell transformation. Mol. Cell Biol. 22, 2111–2123. PubMed PMC

Halazonetis, T.D. , Gorgoulis, V.G. , Bartek, J. , 2008. An oncogene-induced DNA damage model for cancer development. Science. 319, 1352–1355. PubMed

Haq, R. , Shoag, J. , Andreu-Perez, P. , Yokoyama, S. , Edelman, H. , Rowe, G.C. , Frederick, D.T. , Hurley, A.D. , Nellore, A. , Kung, A.L. , 2013. Oncogenic BRAF regulates oxidative metabolism via PGC1alpha and MITF. Cancer Cell. 23, 302–315. PubMed PMC

Hall, A. , Meyle, K.D. , Lange, M.K. , Klima, M. , Sanderhoff, M. , Dahl, C. , Abildgaard, C. , Thorup, K. , Moghimi, S.M. , Jensen, P.B. , Bartek, J. , Guldberg, P. , Christensen, C. , 2013. Dysfunctional oxidative phosphorylation makes malignant melanoma cells addicted to glycolysis driven by the (V600E)BRAF oncogene. Oncotarget. 4, 584–599. PubMed PMC

Henry-Mowatt, J. , Jackson, D. , Masson, J.Y. , Johnson, P.A. , Clements, P.M. , Benson, F.E. , Thompson, L.H. , Takeda, S. , West, S.C. , Caldecott, K.W. , 2003. XRCC3 and Rad51 modulate replication fork progression on damaged vertebrate chromosomes. Mol. Cell. 11, 1109–1117. PubMed

Hubackova, S. , Krejcikova, K. , Bartek, J. , Hodny, Z. , 2012. IL1- and TGFbeta-Nox4 signaling, oxidative stress and DNA damage response are shared features of replicative, oncogene-induced, and drug-induced paracrine 'bystander senescence'. Aging (Albany NY). 4, 932–951. PubMed PMC

Irani, K. , Xia, Y. , Zweier, J.L. , Sollott, S.J. , Der, C.J. , Fearon, E.R. , Sundaresan, M. , Finkel, T. , Goldschmidt-Clermont, P.J. , 1997. Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science. 275, 1649–1652. PubMed

Isobe, T. , Hattori, T. , Kitagawa, K. , Uchida, C. , Kotake, Y. , Kosugi, I. , Oda, T. , Kitagawa, M. , 2009. Adenovirus E1A inhibits SCF(Fbw7) ubiquitin ligase. J. Biol. Chem. 284, 27766–27779. PubMed PMC

Jones, R.M. , Mortusewicz, O. , Afzal, I. , Lorvellec, M. , Garcia, P. , Helleday, T. , Petermann, E. , 2013. Increased replication initiation and conflicts with transcription underlie Cyclin E-induced replication stress. Oncogene. 32, 3744–3753. PubMed

Kosar, M. , Bartkova, J. , Hubackova, S. , Hodny, Z. , Lukas, J. , Bartek, J. , 2011. Senescence-associated heterochromatin foci are dispensable for cellular senescence, occur in a cell type- and insult-dependent manner and follow expression of p16(ink4a). Cell Cycle. 10, 457–468. PubMed

Land, H. , Parada, L.F. , Weinberg, R.A. , 1983. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature. 304, 596–602. PubMed

Le, A. , Lane, A.N. , Hamaker, M. , Bose, S. , Gouw, A. , Barbi, J. , Tsukamoto, T. , Rojas, C.J. , Slusher, B.S. , Zhang, H. , Zimmerman, L.J. , Liebler, D.C. , Slebos, R.J. , Lorkiewicz, P.K. , Higashi, R.M. , Fan, T.W. , Dang, C.V. , 2012. Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab. 15, 110–121. PubMed PMC

Lee, T. , Yao, G. , Nevins, J. , You, L. , 2008. Sensing and integration of Erk and PI3K signals by Myc. Plos Comput. Biol. 4, e1000013 PubMed PMC

Letessier, A. , Millot, G.A. , Koundrioukoff, S. , Lachages, A.M. , Vogt, N. , Hansen, R.S. , Malfoy, B. , Brison, O. , Debatisse, M. , 2011. Cell-type-specific replication initiation programs set fragility of the FRA3B fragile site. Nature. 470, 120–123. PubMed

Lewis, B.C. , Prescott, J.E. , Campbell, S.E. , Shim, H. , Orlowski, R.Z. , Dang, C.V. , 2000. Tumor induction by the c-Myc target genes rcl and lactate dehydrogenase A. Cancer Res. 60, 6178–6183. PubMed

Littlewood, T.D. , Hancock, D.C. , Danielian, P.S. , Parker, M.G. , Evan, G.I. , 1995. A modified oestrogen receptor ligand-binding domain as an improved switch for the regulation of heterologous proteins. Nucleic Acids Res. 23, 1686–1690. PubMed PMC

Machida, Y.J. , Hamlin, J.L. , Dutta, A. , 2005. Right place, right time, and only once: replication initiation in metazoans. Cell. 123, 13–24. PubMed

Maya-Mendoza, A. , Olivares-Chauvet, P. , Kohlmeier, F. , Jackson, D.A. , 2012. Visualising chromosomal replication sites and replicons in mammalian cells. Methods. 57, 140–148. PubMed

Maya-Mendoza, A. , Petermann, E. , Gillespie, D.A. , Caldecott, K.W. , Jackson, D.A. , 2007. Chk1 regulates the density of active replication origins during the vertebrate S phase. EMBO J. 26, 2719–2731. PubMed PMC

Mistrik, M. , Oplustilova, L. , Lukas, J. , Bartek, 2009. Low-dose DNA damage and replication stress responses quantified by optimized automated single-cell image analysis. Cell Cycle. 8, 2592–2599. PubMed

Mitsushita, J. , Lambeth, J.D. , Kamata, T. , 2004. The superoxide-generating oxidase Nox1 is functionally required for Ras oncogene transformation. Cancer Res. 64, 3580–3585. PubMed

Nesbit, C.E. , Tersak, J.M. , Prochownik, E.V. , 1999. MYC oncogenes and human neoplastic disease. Oncogene. 18, 3004–3016. PubMed

Ohtsubo, M. , Roberts, J.M. , 1993. Cyclin-dependent regulation of G1 in mammalian fibroblasts. Science. 259, 1908–1912. PubMed

Parks, S.K. , Chiche, J. , Pouyssegur, J. , 2013. Disrupting proton dynamics and energy metabolism for cancer therapy. Nat. Rev. Cancer. 13, 611–623. PubMed

Patel, J.H. , Loboda, A.P. , Showe, M.K. , Showe, L.C. , McMahon, S.B. , 2004. Analysis of genomic targets reveals complex functions of MYC. Nat. Rev. Cancer. 4, 562–568. PubMed

Pratilas, C.A. , Solit, D.B. , 2010. Targeting the mitogen-activated protein kinase pathway: physiological feedback and drug response. Clin. Cancer Res. 16, 3329–3334. PubMed PMC

Privat, M. , Radosevic-Robin, N. , Aubel, C. , Cayre, A. , Penault-Llorca, F. , Marceau, G. , Sapin, V. , Bignon, Y. , Marvan, D. , 2014. BRCA1 induces major energetic metabolism reprogramming in breast cancer cells. PlosOne. 9, e102438 PubMed PMC

Qiu, R.G. , Chen, J. , Kirn, D. , McCormick, F. , Symons, M. , 1995. An essential role for Rac in Ras transformation. Nature. 374, 457–459. PubMed

Rai, P. , Young, J.J. , Burton, D.G. , Giribaldi, M.G. , Onder, T.T. , Weinberg, R.A. , 2011. Enhanced elimination of oxidized guanine nucleotides inhibits oncogenic RAS-induced DNA damage and premature senescence. Oncogene. 30, 1489–1496. PubMed

Ranjan, P. , Anathy, V. , Burch, P.M. , Weirather, K. , Lambeth, J.D. , Heintz, N.H. , 2006. Redox-dependent expression of cyclin D1 and cell proliferation by Nox1 in mouse lung epithelial cells. Antioxid. Redox Signal. 8, 1447–1459. PubMed

Schuhmacher, M. , Staege, M.S. , Pajic, A. , Polack, A. , Weidle, U.H. , Bornkamm, G.W. , Eick, D. , Kohlhuber, F. , 1999. Control of cell growth by c-Myc in the absence of cell division. Curr. Biol. 9, 1255–1258. PubMed

Sears, R. , Nuckolls, F. , Haura, E. , Taya, Y. , Tamai, K. , Nevins, J.R. , 2000. Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev. 14, 2501–2514. PubMed PMC

Sears, R.C. , 2004. The life cycle of C-myc: from synthesis to degradation. Cell Cycle. 3, 1133–1137. PubMed

Seger, Y.R. , Garcia-Cao, M. , Piccinin, S. , Cunsolo, C.L. , Doglioni, C. , Blasco, M.A. , Hannon, G.J. , Maestro, R. , 2002. Transformation of normal human cells in the absence of telomerase activation. Cancer Cell. 2, 401–413. PubMed

Smolkova, K. , Plecita-Hlavata, L. , Bellance, N. , Benard, G. , Rossignol, R. , Jezek, P. , 2011. Waves of gene regulation suppress and then restore oxidative phosphorylation in cancer cells. Int. J. Biochem. Cell Biol. 43, 950–968. PubMed

Srinivasan, S.V. , Dominguez-Sola, D. , Wang, L.C. , Hyrien, O. , Gautier, J. , 2013. Cdc45 is a critical effector of myc-dependent DNA replication stress. Cell Rep. 3, 1629–1639. PubMed PMC

Suh, Y.A. , Arnold, R.S. , Lassegue, B. , Shi, J. , Xu, X. , Sorescu, D. , Chung, A.B. , Griendling, K.K. , Lambeth, J.D. , 1999. Cell transformation by the superoxide-generating oxidase Mox1. Nature. 401, 79–82. PubMed

Takacova, S. , Slany, R. , Bartkova, J. , Stranecky, V. , Dolezel, P. , Luzna, P. , Bartek, J. , Divoky, V. , 2012. DNA damage response and inflammatory signaling limit the MLL-ENL-induced leukemogenesis in vivo. Cancer Cell. 21, 517–531. PubMed

Taub, R. , Kirsch, I. , Morton, C. , Lenoir, G. , Swan, D. , Tronick, S. , Aaronson, S. , Leder, P. , 1982. Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc. Natl. Acad. Sci. U S A. 79, 7837–7841. PubMed PMC

Toledo, L.I. , Altmeyer, M. , Rask, M.B. , Lukas, C. , Larsen, D.H. , Povlsen, L.K. , Bekker-Jensen, S. , Mailand, N. , Bartek, J. , Lukas, J. , 2013. ATR prohibits replication catastrophe by preventing global exhaustion of RPA. Cell. 155, 1088–1103. PubMed

Tong, X. , Zhao, F. , Thompson, C.B. , 2009. The molecular determinants of de novo nucleotide biosynthesis in cancer cells. Curr. Opin. Genet. Dev. 19, 32–37. PubMed PMC

Ueyama, T. , Geiszt, M. , Leto, T.L. , 2006. Involvement of Rac1 in activation of multicomponent Nox1- and Nox3-based NADPH oxidases. Mol. Cell Biol. 26, 2160–2174. PubMed PMC

Vafa, O. , Wade, M. , Kern, S. , Beeche, M. , Pandita, T.K. , Hampton, G.M. , Wahl, G.M. , 2002. c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol. Cell. 9, 1031–1044. PubMed

Vander Heiden, M.G. , Cantley, L.C. , Thompson, C.B. , 2009. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 324, 1029–1033. PubMed PMC

Vander Heiden, M.G. , 2011. Targeting cancer metabolism: a therapeutic window opens. Nat. Rev. Drug Disc. 10, 671–684. PubMed

Viale, A. , Pettazzoni, P. , Lyssiotis, C.A. , Ying, H. , Sanchez, N. , Marchesini, M. , Carugo, A. , Green, T. , Seth, S. , Giuliani, V. , 2014. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature. 514, 628–632. PubMed PMC

Welcker, M. , Clurman, B.E. , 2008. FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat. Rev. Cancer. 8, 83–93. PubMed

Weyemi, U. , Lagente-Chevallier, O. , Boufraqech, M. , Prenois, F. , Courtin, F. , Caillou, B. , Talbot, M. , Dardalhon, M. , Al Ghuzlan, A. , Bidart, J.M. , Schlumberger, M. , Dupuy, C. , 2012. ROS-generating NADPH oxidase NOX4 is a critical mediator in oncogenic H-Ras-induced DNA damage and subsequent senescence. Oncogene. 31, 1117–1129. PubMed PMC

Yeh, E. , Cunningham, M. , Arnold, H. , Chasse, D. , Monteith, T. , Ivaldi, G. , Hahn, W.C. , Stukenberg, P.T. , Shenolikar, S. , Uchida, T. , Counter, C.M. , Nevins, J.R. , Means, A.R. , Sears, R. , 2004. A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nat. Cell Biol. 6, 308–318. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...