Human cytomegalovirus hijacks host stress response fueling replication stress and genome instability
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35194187
PubMed Central
PMC9346009
DOI
10.1038/s41418-022-00953-w
PII: 10.1038/s41418-022-00953-w
Knihovny.cz E-zdroje
- MeSH
- Cytomegalovirus * genetika metabolismus MeSH
- karcinogeneze genetika MeSH
- lidé MeSH
- nestabilita genomu MeSH
- poškození DNA * MeSH
- promotorové oblasti (genetika) MeSH
- replikace viru MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Viral infections enhance cancer risk and threaten host genome integrity. Although human cytomegalovirus (HCMV) proteins have been detected in a wide spectrum of human malignancies and HCMV infections have been implicated in tumorigenesis, the underlying mechanisms remain poorly understood. Here, we employed a range of experimental approaches, including single-molecule DNA fiber analysis, and showed that infection by any of the four commonly used HCMV strains: AD169, Towne, TB40E or VR1814 induced replication stress (RS), as documented by host-cell replication fork asymmetry and formation of 53BP1 foci. The HCMV-evoked RS triggered an ensuing host DNA damage response (DDR) and chromosomal instability in both permissive and non-permissive human cells, the latter being particularly relevant in the context of tumorigenesis, as such cells can survive and proliferate after HCMV infection. The viral major immediate early enhancer and promoter (MIEP) that controls expression of the viral genes IE72 (IE-1) and IE86 (IE-2), contains transcription-factor binding sites shared by promoters of cellular stress-response genes. We found that DNA damaging insults, including those relevant for cancer therapy, enhanced IE72/86 expression. Thus, MIEP has been evolutionary shaped to exploit host DDR. Ectopically expressed IE72 and IE86 also induced RS and increased genomic instability. Of clinical relevance, we show that undergoing standard-of-care genotoxic radio-chemotherapy in patients with HCMV-positive glioblastomas correlated with elevated HCMV protein markers after tumor recurrence. Collectively, these results are consistent with our proposed concept of HCMV hijacking transcription-factor binding sites shared with host stress-response genes. We present a model to explain the potential oncomodulatory effects of HCMV infections through enhanced replication stress, subverted DNA damage response and induced genomic instability.
Department of Biochemistry and Biophysics Stockholm University Stockholm Sweden
Department of Medicine Unit of Microbial Pathogenesis Karolinska Institutet Stockholm Sweden
Department of Neurology Karolinska University Hospital Stockholm Sweden
Department of Neurosurgery Copenhagen University Hospital Rigshospitalet Copenhagen Denmark
Department of Neurosurgery Karolinska University Hospital Stockholm Sweden
Department of Pathology Copenhagen University Hospital Rigshospitalet Copenhagen Denmark
DNA Replication and Cancer Group Danish Cancer Society Research Center Copenhagen Denmark
Genome Integrity Danish Cancer Society Research Center Copenhagen Denmark
Genome Integrity Laboratory Institute of Molecular Genetics Prague Czech Republic
Institute of Biomedicine University of Turku Turku Finland
MediCity Research Laboratory University of Turku Turku Finland
Zobrazit více v PubMed
de Martel C, Georges D, Bray F, Ferlay J, Clifford GM. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob Health. 2020;8:e180–e90. PubMed
Zuhair M, Smit GSA, Wallis G, Jabbar F, Smith C, Devleesschauwer B, et al. Estimation of the worldwide seroprevalence of cytomegalovirus: a systematic review and meta-analysis. Rev Med Virol. 2019;29:e2034. PubMed
Rawlinson WD, Hamilton ST, van Zuylen WJ. Update on treatment of cytomegalovirus infection in pregnancy and of the newborn with congenital cytomegalovirus. Curr Opin Infect Dis. 2016;29:615–24. PubMed
Harkins LE, Matlaf LA, Soroceanu L, Klemm K, Britt WJ, Wang W, et al. Detection of human cytomegalovirus in normal and neoplastic breast epithelium. Herpesviridae. 2010;1:8. PubMed PMC
Boldogh I, Baskar JF, Mar EC, Huang ES. Human cytomegalovirus and herpes simplex type 2 virus in normal and adenocarcinomatous prostate glands. J Natl Cancer Inst. 1983;70:819–26. PubMed
Soroceanu L, Matlaf L, Bezrookove V, Harkins L, Martinez R, Greene M, et al. Human cytomegalovirus US28 found in glioblastoma promotes an invasive and angiogenic phenotype. Cancer Res. 2011;71:6643–53. PubMed PMC
Bhattacharjee B, Renzette N, Kowalik TF. Genetic analysis of cytomegalovirus in malignant gliomas. J Virol. 2012;86:6815–24. PubMed PMC
Cobbs CS, Harkins L, Samanta M, Gillespie GY, Bharara S, King PH, et al. Human cytomegalovirus infection and expression in human malignant glioma. Cancer Res. 2002;62:3347–50. PubMed
Soderberg-Naucler C, Rahbar A, Stragliotto G. Survival in patients with glioblastoma receiving valganciclovir. N Engl J Med. 2013;369:985–6. PubMed
Schuessler A, Smith C, Beagley L, Boyle GM, Rehan S, Matthews K, et al. Autologous T-cell therapy for cytomegalovirus as a consolidative treatment for recurrent glioblastoma. Cancer Res. 2014;74:3466–76. PubMed
Goerig NL, Frey B, Korn K, Fleckenstein B, Uberla K, Schmidt MA, et al. Frequent occurrence of therapeutically reversible CMV-associated encephalopathy during radiotherapy of the brain. Neuro Oncol. 2016;18:1664–72. PubMed PMC
Goerig NL, Frey B, Korn K, Fleckenstein B, Uberla K, Schmidt MA, et al. Early mortality of brain cancer patients and its connection to cytomegalovirus reactivation during radiochemotherapy. Clin Cancer Res. 2020;26:3259–70. PubMed
Luo MH, Rosenke K, Czornak K, Fortunato EA. Human cytomegalovirus disrupts both ataxia telangiectasia mutated protein (ATM)- and ATM-Rad3-related kinase-mediated DNA damage responses during lytic infection. J Virol. 2007;81:1934–50. PubMed PMC
Xiaofei E, Kowalik TF. The DNA damage response induced by infection with human cytomegalovirus and other viruses. Viruses. 2014;6:2155–85. PubMed PMC
E X, Pickering MT, Debatis M, Castillo J, Lagadinos A, Wang S, et al. An E2F1-mediated DNA damage response contributes to the replication of human cytomegalovirus. PLoS Pathog. 2011;7:e1001342. PubMed PMC
E X, Savidis G, Chin CR, Wang S, Lu S, Brass AL, et al. A novel DDB2-ATM feedback loop regulates human cytomegalovirus replication. J Virol. 2014;88:2279–90. PubMed PMC
Zavala AG, O’Dowd JM, Fortunato EA. Infection of a single cell line with distinct strains of human cytomegalovirus can result in large variations in virion production and facilitate efficient screening of virus protein function. J Virol. 2015;90:2523–35. PubMed PMC
Gaspar M, Shenk T. Human cytomegalovirus inhibits a DNA damage response by mislocalizing checkpoint proteins. Proc Natl Acad Sci USA. 2006;103:2821–6. PubMed PMC
O’Dowd JM, Zavala AG, Brown CJ, Mori T, Fortunato EA. HCMV-infected cells maintain efficient nucleotide excision repair of the viral genome while abrogating repair of the host genome. PLoS Pathog. 2012;8:e1003038. PubMed PMC
Maya-Mendoza A, Ostrakova J, Kosar M, Hall A, Duskova P, Mistrik M, et al. Myc and Ras oncogenes engage different energy metabolism programs and evoke distinct patterns of oxidative and DNA replication stress. Mol Oncol. 2015;9:601–16. PubMed PMC
Bartkova J, Bakkenist CJ, Rajpert-De Meyts E, Skakkebaek NE, Sehested M, Lukas J, et al. ATM activation in normal human tissues and testicular cancer. Cell Cycle. 2005;4:838–45. PubMed
Ma AN, Wang H, Guo R, Wang YX, Li W, Cui J, et al. Targeted gene suppression by inducing de novo DNA methylation in the gene promoter. Epigenetics Chromatin. 2014;7:20. PubMed PMC
Jackson JG, Pereira-Smith OM. p53 is preferentially recruited to the promoters of growth arrest genes p21 and GADD45 during replicative senescence of normal human fibroblasts. Cancer Res. 2006;66:8356–60. PubMed
Maya-Mendoza A, Olivares-Chauvet P, Kohlmeier F, Jackson DA. Visualising chromosomal replication sites and replicons in mammalian cells. Methods. 2012;57:140–8. PubMed
Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, 3rd, Smith HO. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods. 2009;6:343–5. PubMed
Bartek J, Jr. Fornara O, Merchut-Maya JM, Maya-Mendoza A, Rahbar A, Stragliotto G, et al. Replication stress, DNA damage signalling, and cytomegalovirus infection in human medulloblastomas. Mol Oncol. 2017;11:945–64. PubMed PMC
Brandes AA, Basso U, Reni M, Vastola F, Tosoni A, Cavallo G, et al. First-line chemotherapy with cisplatin plus fractionated temozolomide in recurrent glioblastoma multiforme: a phase II study of the Gruppo Italiano Cooperativo di Neuro-Oncologia. J Clin Oncol. 2004;22:1598–604. PubMed
Uemura S, Matsukado Y, Kuratsu J, Sonoda H, Ohtsuka T, Yoshioka S, et al. [Local chemotherapy of malignant glioma. Intra-tumoral administration of neocarzinostatin] Neurol Med Chir (Tokyo) 1986;26:468–74. PubMed
Soderberg-Naucler C, Fish KN, Nelson JA. Reactivation of latent human cytomegalovirus by allogeneic stimulation of blood cells from healthy donors. Cell. 1997;91:119–26. PubMed
Reeves M, Sissons P, Sinclair J. Reactivation of human cytomegalovirus in dendritic cells. Disco Med. 2005;5:170–4. PubMed
Reeves MB, Compton T. Inhibition of inflammatory interleukin-6 activity via extracellular signal-regulated kinase-mitogen-activated protein kinase signaling antagonizes human cytomegalovirus reactivation from dendritic cells. J Virol. 2011;85:12750–8. PubMed PMC
Stein J, Volk HD, Liebenthal C, Kruger DH, Prosch S. Tumour necrosis factor alpha stimulates the activity of the human cytomegalovirus major immediate early enhancer/promoter in immature monocytic cells. J Gen Virol. 1993;74:2333–8. PubMed
Martin C, Chen S, Maya-Mendoza A, Lovric J, Sims PF, Jackson DA. Lamin B1 maintains the functional plasticity of nucleoli. J Cell Sci. 2009;122:1551–62. PubMed PMC
Kwiatkowski N, Zhang T, Rahl PB, Abraham BJ, Reddy J, Ficarro SB, et al. Targeting transcription regulation in cancer with a covalent CDK7 inhibitor. Nature. 2014;511:616–20. PubMed PMC
Stinski MF, Isomura H. Role of the cytomegalovirus major immediate early enhancer in acute infection and reactivation from latency. Med Microbiol Immunol. 2008;197:223–31. PubMed
Costantino L, Sotiriou SK, Rantala JK, Magin S, Mladenov E, Helleday T, et al. Break-induced replication repair of damaged forks induces genomic duplications in human cells. Science. 2014;343:88–91. PubMed PMC
DeMarchi JM, Kaplan AS. Replication of human cytomegalovirus DNA: lack of dependence on cell DNA synthesis. J Virol. 1976;18:1063–70. PubMed PMC
Yamanishi K, Fogel M, Rapp F. Effect of caffeine on the replication of nonirradiated and ultraviolet-irradiated cytomegalovirus. Intervirology. 1978;10:241–53. PubMed
Maya-Mendoza A, Moudry P, Merchut-Maya JM, Lee M, Strauss R, Bartek J. High speed of fork progression induces DNA replication stress and genomic instability. Nature. 2018;559:279–84. PubMed
Luo MH, Fortunato EA. Long-term infection and shedding of human cytomegalovirus in T98G glioblastoma cells. J Virol. 2007;81:10424–36. PubMed PMC
Halazonetis TD, Gorgoulis VG, Bartek J. An oncogene-induced DNA damage model for cancer development. Science. 2008;319:1352–5. PubMed
Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K, et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature. 2005;434:864–70. PubMed
Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, Liloglou T, et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature. 2005;434:907–13. PubMed
Burrell RA, McClelland SE, Endesfelder D, Groth P, Weller MC, Shaikh N, et al. Replication stress links structural and numerical cancer chromosomal instability. Nature. 2013;494:492–6. PubMed PMC
Maiani E, Milletti G, Nazio F, Holdgaard SG, Bartkova J, Rizza S, et al. AMBRA1 regulates cyclin D to guard S-phase entry and genomic integrity. Nature. 2021;592:799–803. PubMed PMC
Venkatesan S, Angelova M, Puttick C, Zhai H, Caswell DR, Lu WT, et al. Induction of APOBEC3 exacerbates DNA replication stress and chromosomal instability in early breast and lung cancer evolution. Cancer Disco. 2021;11:2456–73. PubMed PMC
Hertel L, Chou S, Mocarski ES. Viral and cell cycle-regulated kinases in cytomegalovirus-induced pseudomitosis and replication. PLoS Pathog. 2007;3:e6. PubMed PMC
Hertel L, Mocarski ES. Global analysis of host cell gene expression late during cytomegalovirus infection reveals extensive dysregulation of cell cycle gene expression and induction of Pseudomitosis independent of US28 function. J Virol. 2004;78:11988–2011. PubMed PMC
Tang J, Frascaroli G, Lebbink RJ, Ostermann E, Brune W. Human cytomegalovirus glycoprotein B variants affect viral entry, cell fusion, and genome stability. Proc Natl Acad Sci USA. 2019;116:18021–30. PubMed PMC
Wolmer-Solberg N, Baryawno N, Rahbar A, Fuchs D, Odeberg J, Taher C, et al. Frequent detection of human cytomegalovirus in neuroblastoma: a novel therapeutic target? Int J Cancer. 2013;133:2351–61. PubMed
Baryawno N, Rahbar A, Wolmer-Solberg N, Taher C, Odeberg J, Darabi A, et al. Detection of human cytomegalovirus in medulloblastomas reveals a potential therapeutic target. J Clin Invest. 2011;121:4043–55. PubMed PMC
Traylen CM, Patel HR, Fondaw W, Mahatme S, Williams JF, Walker LR, et al. Virus reactivation: a panoramic view in human infections. Future Virol. 2011;6:451–63. PubMed PMC
Macheret M, Halazonetis TD. DNA replication stress as a hallmark of cancer. Annu Rev Pathol. 2015;10:425–48. PubMed
Shen Y, Zhu H, Shenk T. Human cytomagalovirus IE1 and IE2 proteins are mutagenic and mediate “hit-and-run” oncogenic transformation in cooperation with the adenovirus E1A proteins. Proc Natl Acad Sci USA. 1997;94:3341–5. PubMed PMC
Doniger J, Muralidhar S, Rosenthal LJ. Human cytomegalovirus and human herpesvirus 6 genes that transform and transactivate. Clin Microbiol Rev. 1999;12:367–82. PubMed PMC
Stragliotto G, Pantalone MR, Rahbar A, Bartek J, Soderberg-Naucler C. Valganciclovir as Add-on to standard therapy in glioblastoma patients. Clin Cancer Res. 2020;26:4031–9. PubMed
Schuessler A, Walker DG, Khanna R. Cytomegalovirus as a novel target for immunotherapy of glioblastoma multiforme. Front Oncol. 2014;4:275. PubMed PMC
ClinicalTrials.gov
NCT04116411