High speed of fork progression induces DNA replication stress and genomic instability
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29950726
DOI
10.1038/s41586-018-0261-5
PII: 10.1038/s41586-018-0261-5
Knihovny.cz E-zdroje
- MeSH
- časové faktory MeSH
- ftalaziny farmakologie MeSH
- inhibitor p21 cyklin-dependentní kinasy metabolismus MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nádorový supresorový protein p53 metabolismus MeSH
- nestabilita genomu * účinky léků MeSH
- PARP inhibitory farmakologie MeSH
- piperaziny farmakologie MeSH
- poly(ADP-ribosa)polymerasa 1 antagonisté a inhibitory metabolismus MeSH
- poškození DNA * účinky léků MeSH
- replikace DNA účinky léků fyziologie MeSH
- struktury chromozomu * účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- CDKN1A protein, human MeSH Prohlížeč
- ftalaziny MeSH
- inhibitor p21 cyklin-dependentní kinasy MeSH
- nádorový supresorový protein p53 MeSH
- olaparib MeSH Prohlížeč
- PARP inhibitory MeSH
- PARP1 protein, human MeSH Prohlížeč
- piperaziny MeSH
- poly(ADP-ribosa)polymerasa 1 MeSH
- TP53 protein, human MeSH Prohlížeč
Accurate replication of DNA requires stringent regulation to ensure genome integrity. In human cells, thousands of origins of replication are coordinately activated during S phase, and the velocity of replication forks is adjusted to fully replicate DNA in pace with the cell cycle1. Replication stress induces fork stalling and fuels genome instability2. The mechanistic basis of replication stress remains poorly understood despite its emerging role in promoting cancer2. Here we show that inhibition of poly(ADP-ribose) polymerase (PARP) increases the speed of fork elongation and does not cause fork stalling, which is in contrast to the accepted model in which inhibitors of PARP induce fork stalling and collapse3. Aberrant acceleration of fork progression by 40% above the normal velocity leads to DNA damage. Depletion of the treslin or MTBP proteins, which are involved in origin firing, also increases fork speed above the tolerated threshold, and induces the DNA damage response pathway. Mechanistically, we show that poly(ADP-ribosyl)ation (PARylation) and the PCNA interactor p21Cip1 (p21) are crucial modulators of fork progression. PARylation and p21 act as suppressors of fork speed in a coordinated regulatory network that is orchestrated by the PARP1 and p53 proteins. Moreover, at the fork level, PARylation acts as a sensor of replication stress. During PARP inhibition, DNA lesions that induce fork arrest and are normally resolved or repaired remain unrecognized by the replication machinery. Conceptually, our results show that accelerated replication fork progression represents a general mechanism that triggers replication stress and the DNA damage response. Our findings contribute to a better understanding of the mechanism of fork speed control, with implications for genomic (in)stability and rational cancer treatment.
Citace poskytuje Crossref.org
Emetine blocks DNA replication via proteosynthesis inhibition not by targeting Okazaki fragments
Human cytomegalovirus hijacks host stress response fueling replication stress and genome instability
PARP inhibition impedes the maturation of nascent DNA strands during DNA replication
RNA-interference screen for p53 regulators unveils a role of WDR75 in ribosome biogenesis
Autophagy role(s) in response to oncogenes and DNA replication stress
p21 limits S phase DNA damage caused by the Wee1 inhibitor MK1775