Quantity and quality of minichromosome maintenance protein complexes couple replication licensing to genome integrity
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
Grantová podpora
22-20303M
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
22-20303M
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
PubMed
38336851
PubMed Central
PMC10858283
DOI
10.1038/s42003-024-05855-w
PII: 10.1038/s42003-024-05855-w
Knihovny.cz E-zdroje
- MeSH
- lidé MeSH
- MCM proteiny genetika metabolismus MeSH
- nádory * genetika MeSH
- replikace DNA * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- MCM proteiny MeSH
Accurate and complete replication of genetic information is a fundamental process of every cell division. The replication licensing is the first essential step that lays the foundation for error-free genome duplication. During licensing, minichromosome maintenance protein complexes, the molecular motors of DNA replication, are loaded to genomic sites called replication origins. The correct quantity and functioning of licensed origins are necessary to prevent genome instability associated with severe diseases, including cancer. Here, we delve into recent discoveries that shed light on the novel functions of licensed origins, the pathways necessary for their proper maintenance, and their implications for cancer therapies.
Zobrazit více v PubMed
Leipe DD, Aravind L, Koonin EV. Did DNA replication evolve twice independently? Nucleic Acids Res. 1999;27:3389–3401. doi: 10.1093/nar/27.17.3389. PubMed DOI PMC
Blow JJ, Gillespie PJ. Replication licensing and cancer—a fatal entanglement? Nat. Rev. Cancer. 2008;8:799–806. doi: 10.1038/nrc2500. PubMed DOI PMC
Deegan TD, Diffley JF. MCM: one ring to rule them all. Curr. Opin. Struct. Biol. 2016;37:145–151. doi: 10.1016/j.sbi.2016.01.014. PubMed DOI
Bell SP, Stillman B. ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. Nature. 1992;357:128–134. doi: 10.1038/357128a0. PubMed DOI
Diffley JF, Cocker JH. Protein-DNA interactions at a yeast replication origin. Nature. 1992;357:169–172. doi: 10.1038/357169a0. PubMed DOI
Siddiqui K, Stillman B. ATP-dependent assembly of the human origin recognition complex. J. Biol. Chem. 2007;282:32370–32383. doi: 10.1074/jbc.M705905200. PubMed DOI
Speck C, Chen Z, Li H, Stillman B. ATPase-dependent cooperative binding of ORC and Cdc6 to origin DNA. Nat. Struct. Mol. Biol. 2005;12:965–971. doi: 10.1038/nsmb1002. PubMed DOI PMC
Bleichert F, Botchan MR, Berger JM. Crystal structure of the eukaryotic origin recognition complex. Nature. 2015;519:321–326. doi: 10.1038/nature14239. PubMed DOI PMC
Cook JG, et al. Analysis of Cdc6 function in the assembly of mammalian prereplication complexes. Proc. Natl Acad. Sci. USA. 2002;99:1347–1352. doi: 10.1073/pnas.032677499. PubMed DOI PMC
Maiorano D, Moreau J, Mechali M. XCDT1 is required for the assembly of pre-replicative complexes in Xenopus laevis. Nature. 2000;404:622–625. doi: 10.1038/35007104. PubMed DOI
Nishitani H, Lygerou Z, Nishimoto T, Nurse P. The Cdt1 protein is required to license DNA for replication in fission yeast. Nature. 2000;404:625–628. doi: 10.1038/35007110. PubMed DOI
Nishitani H, Taraviras S, Lygerou Z, Nishimoto T. The human licensing factor for DNA replication Cdt1 accumulates in G1 and is destabilized after initiation of S-phase. J. Biol. Chem. 2001;276:44905–44911. doi: 10.1074/jbc.M105406200. PubMed DOI
Remus D, et al. Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing. Cell. 2009;139:719–730. doi: 10.1016/j.cell.2009.10.015. PubMed DOI PMC
Evrin C, et al. A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication. Proc. Natl Acad. Sci. USA. 2009;106:20240–20245. doi: 10.1073/pnas.0911500106. PubMed DOI PMC
Miller TCR, Locke J, Greiwe JF, Diffley JFX, Costa A. Mechanism of head-to-head MCM double-hexamer formation revealed by cryo-EM. Nature. 2019;575:704–710. doi: 10.1038/s41586-019-1768-0. PubMed DOI PMC
Li J, et al. The human pre-replication complex is an open complex. Cell. 2023;186:98–111.e121. doi: 10.1016/j.cell.2022.12.008. PubMed DOI
Tanaka S, et al. CDK-dependent phosphorylation of Sld2 and Sld3 initiates DNA replication in budding yeast. Nature. 2007;445:328–332. doi: 10.1038/nature05465. PubMed DOI
Zegerman P, Diffley JF. Phosphorylation of Sld2 and Sld3 by cyclin-dependent kinases promotes DNA replication in budding yeast. Nature. 2007;445:281–285. doi: 10.1038/nature05432. PubMed DOI
Sengupta S, van Deursen F, de Piccoli G, Labib K. Dpb2 integrates the leading-strand DNA polymerase into the eukaryotic replisome. Curr. Biol. 2013;23:543–552. doi: 10.1016/j.cub.2013.02.011. PubMed DOI
Kumagai A, Shevchenko A, Shevchenko A, Dunphy WG. Treslin collaborates with TopBP1 in triggering the initiation of DNA replication. Cell. 2010;140:349–359. doi: 10.1016/j.cell.2009.12.049. PubMed DOI PMC
Kumagai A, Shevchenko A, Shevchenko A, Dunphy WG. Direct regulation of Treslin by cyclin-dependent kinase is essential for the onset of DNA replication. J. Cell Biol. 2011;193:995–1007. doi: 10.1083/jcb.201102003. PubMed DOI PMC
Boos D, Yekezare M, Diffley JF. Identification of a heteromeric complex that promotes DNA replication origin firing in human cells. Science. 2013;340:981–984. doi: 10.1126/science.1237448. PubMed DOI
Sangrithi MN, et al. Initiation of DNA replication requires the RECQL4 protein mutated in Rothmund-Thomson syndrome. Cell. 2005;121:887–898. doi: 10.1016/j.cell.2005.05.015. PubMed DOI
Kliszczak M, et al. Interaction of RECQ4 and MCM10 is important for efficient DNA replication origin firing in human cells. Oncotarget. 2015;6:40464–40479. doi: 10.18632/oncotarget.6342. PubMed DOI PMC
Hashimoto Y, Sadano K, Miyata N, Ito H, Tanaka H. Novel role of DONSON in CMG helicase assembly during vertebrate DNA replication initiation. EMBO J. 2023;42:e114131. doi: 10.15252/embj.2023114131. PubMed DOI PMC
Kingsley G, et al. DONSON facilitates Cdc45 and GINS chromatin association and is essential for DNA replication initiation. Nucleic Acids Res. 2023;51:9748–9763. doi: 10.1093/nar/gkad694. PubMed DOI PMC
Lim Y, et al. In silico protein interaction screening uncovers DONSON’s role in replication initiation. Science. 2023;381:eadi3448. doi: 10.1126/science.adi3448. PubMed DOI PMC
Xia Y, et al. DNSN-1 recruits GINS for CMG helicase assembly during DNA replication initiation in Caenorhabditis elegans. Science. 2023;381:eadi4932. doi: 10.1126/science.adi4932. PubMed DOI PMC
Evrin C, et al. DONSON is required for CMG helicase assembly in the mammalian cell cycle. EMBO Rep. 2023;24:e57677. doi: 10.15252/embr.202357677. PubMed DOI PMC
Cvetkovic MA, et al. The structural mechanism of dimeric DONSON in replicative helicase activation. Mol. Cell. 2023;83:4017–4031.e19. doi: 10.1016/j.molcel.2023.09.029. PubMed DOI
Pacek M, Walter JC. A requirement for MCM7 and Cdc45 in chromosome unwinding during eukaryotic DNA replication. EMBO J. 2004;23:3667–3676. doi: 10.1038/sj.emboj.7600369. PubMed DOI PMC
Jones ML, Baris Y, Taylor MRG, Yeeles JTP. Structure of a human replisome shows the organisation and interactions of a DNA replication machine. EMBO J. 2021;40:e108819. doi: 10.15252/embj.2021108819. PubMed DOI PMC
Baris Y, Taylor MRG, Aria V, Yeeles JTP. Fast and efficient DNA replication with purified human proteins. Nature. 2022;606:204–210. doi: 10.1038/s41586-022-04759-1. PubMed DOI PMC
Hu Y, Stillman B. Origins of DNA replication in eukaryotes. Mol. Cell. 2023;83:352–372. doi: 10.1016/j.molcel.2022.12.024. PubMed DOI PMC
Bleichert F. Mechanisms of replication origin licensing: a structural perspective. Curr. Opin. Struct. Biol. 2019;59:195–204. doi: 10.1016/j.sbi.2019.08.007. PubMed DOI
Costa A, Diffley JFX. The initiation of eukaryotic DNA replication. Annu. Rev. Biochem. 2022;91:107–131. doi: 10.1146/annurev-biochem-072321-110228. PubMed DOI
Hook SS, Lin JJ, Dutta A. Mechanisms to control rereplication and implications for cancer. Curr. Opin. Cell Biol. 2007;19:663–671. doi: 10.1016/j.ceb.2007.10.007. PubMed DOI PMC
Pozo PN, Cook JG. Regulation and function of Cdt1; a key factor in cell proliferation and genome stability. Genes. 2016;8:2. doi: 10.3390/genes8010002. PubMed DOI PMC
Kapuy O, et al. System-level feedbacks control cell cycle progression. FEBS Lett. 2009;583:3992–3998. doi: 10.1016/j.febslet.2009.08.023. PubMed DOI PMC
Hein MY, et al. A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell. 2015;163:712–723. doi: 10.1016/j.cell.2015.09.053. PubMed DOI
Ohtani K, et al. Cell growth-regulated expression of mammalian MCM5 and MCM6 genes mediated by the transcription factor E2F. Oncogene. 1999;18:2299–2309. doi: 10.1038/sj.onc.1202544. PubMed DOI
Leone G, et al. E2F3 activity is regulated during the cell cycle and is required for the induction of S phase. Genes Dev. 1998;12:2120–2130. doi: 10.1101/gad.12.14.2120. PubMed DOI PMC
Grant GD, et al. Identification of cell cycle-regulated genes periodically expressed in U2OS cells and their regulation by FOXM1 and E2F transcription factors. Mol. Biol. Cell. 2013;24:3634–3650. doi: 10.1091/mbc.e13-05-0264. PubMed DOI PMC
Sedlackova H, et al. Equilibrium between nascent and parental MCM proteins protects replicating genomes. Nature. 2020;587:297–302. doi: 10.1038/s41586-020-2842-3. PubMed DOI
Petrosius, V. et al. Evaluating the capabilities of the Astral mass analyzer for single-cell proteomics. bioRxiv10.1101/2023.06.06.543943 (2023).
Mendez J, Stillman B. Chromatin association of human origin recognition complex, cdc6, and minichromosome maintenance proteins during the cell cycle: assembly of prereplication complexes in late mitosis. Mol. Cell Biol. 2000;20:8602–8612. doi: 10.1128/MCB.20.22.8602-8612.2000. PubMed DOI PMC
Kuipers MA, et al. Highly stable loading of Mcm proteins onto chromatin in living cells requires replication to unload. J. Cell Biol. 2011;192:29–41. doi: 10.1083/jcb.201007111. PubMed DOI PMC
Mei L, Kedziora KM, Song EA, Purvis JE, Cook JG. The consequences of differential origin licensing dynamics in distinct chromatin environments. Nucleic Acids Res. 2022;50:9601–9620. doi: 10.1093/nar/gkac003. PubMed DOI PMC
Todorov IT, Attaran A, Kearsey SE. BM28, a human member of the MCM2-3-5 family, is displaced from chromatin during DNA replication. J. Cell Biol. 1995;129:1433–1445. doi: 10.1083/jcb.129.6.1433. PubMed DOI PMC
Ochs F, et al. Stabilization of chromatin topology safeguards genome integrity. Nature. 2019;574:571–574. doi: 10.1038/s41586-019-1659-4. PubMed DOI
Zonderland G, et al. The TRESLIN-MTBP complex couples completion of DNA replication with S/G2 transition. Mol. Cell. 2022;82:3350–3365.e7. doi: 10.1016/j.molcel.2022.08.006. PubMed DOI PMC
Tsuruga H, et al. Expression, nuclear localization and interactions of human MCM/P1 proteins. Biochem. Biophys. Res. Commun. 1997;236:118–125. doi: 10.1006/bbrc.1997.6865. PubMed DOI
Hennessy KM, Clark CD, Botstein D. Subcellular localization of yeast CDC46 varies with the cell cycle. Genes Dev. 1990;4:2252–2263. doi: 10.1101/gad.4.12b.2252. PubMed DOI
Young MR, Tye BK. Mcm2 and Mcm3 are constitutive nuclear proteins that exhibit distinct isoforms and bind chromatin during specific cell cycle stages of Saccharomyces cerevisiae. Mol. Biol. Cell. 1997;8:1587–1601. doi: 10.1091/mbc.8.8.1587. PubMed DOI PMC
Dalton S, Whitbread L. Cell cycle-regulated nuclear import and export of Cdc47, a protein essential for initiation of DNA replication in budding yeast. Proc. Natl Acad. Sci. USA. 1995;92:2514–2518. doi: 10.1073/pnas.92.7.2514. PubMed DOI PMC
Fujita M, Kiyono T, Hayashi Y, Ishibashi M. hCDC47, a human member of the MCM family. Dissociation of the nucleus-bound form during S phase. J. Biol. Chem. 1996;271:4349–4354. doi: 10.1074/jbc.271.8.4349. PubMed DOI
Pasion SG, Forsburg SL. Nuclear localization of Schizosaccharomyces pombe Mcm2/Cdc19p requires MCM complex assembly. Mol. Biol. Cell. 1999;10:4043–4057. doi: 10.1091/mbc.10.12.4043. PubMed DOI PMC
Su TT, O’Farrell PH. Chromosome association of minichromosome maintenance proteins in Drosophila mitotic cycles. J. Cell Biol. 1997;139:13–21. doi: 10.1083/jcb.139.1.13. PubMed DOI PMC
Todorov IT, et al. A human nuclear protein with sequence homology to a family of early S phase proteins is required for entry into S phase and for cell division. J. Cell Sci. 1994;107:253–265. doi: 10.1242/jcs.107.1.253. PubMed DOI
Young MR, Suzuki K, Yan H, Gibson S, Tye BK. Nuclear accumulation of Saccharomyces cerevisiae Mcm3 is dependent on its nuclear localization sequence. Genes Cells. 1997;2:631–643. doi: 10.1046/j.1365-2443.1997.1510349.x. PubMed DOI
Nguyen VQ, Co C, Irie K, Li JJ. Clb/Cdc28 kinases promote nuclear export of the replication initiator proteins Mcm2-7. Curr. Biol. 2000;10:195–205. doi: 10.1016/S0960-9822(00)00337-7. PubMed DOI
Brison O, et al. Mistimed origin licensing and activation stabilize common fragile sites under tight DNA-replication checkpoint activation. Nat. Struct. Mol. Biol. 2023;30:539–550. doi: 10.1038/s41594-023-00949-1. PubMed DOI
Davoli T, de Lange T. The causes and consequences of polyploidy in normal development and cancer. Annu. Rev. Cell Dev. Biol. 2011;27:585–610. doi: 10.1146/annurev-cellbio-092910-154234. PubMed DOI
Saito Y, Santosa V, Ishiguro KI, Kanemaki MT. MCMBP promotes the assembly of the MCM2-7 hetero-hexamer to ensure robust DNA replication in human cells. Elife. 2022;11:e77393. doi: 10.7554/eLife.77393. PubMed DOI PMC
Sakwe AM, Nguyen T, Athanasopoulos V, Shire K, Frappier L. Identification and characterization of a novel component of the human minichromosome maintenance complex. Mol. Cell Biol. 2007;27:3044–3055. doi: 10.1128/MCB.02384-06. PubMed DOI PMC
Nishiyama A, Frappier L, Méchali M. MCM-BP regulates unloading of the MCM2-7 helicase in late S phase. Genes Dev. 2011;25:165–175. doi: 10.1101/gad.614411. PubMed DOI PMC
Ghosh S, Vassilev AP, Zhang J, Zhao Y, DePamphilis ML. Assembly of the human origin recognition complex occurs through independent nuclear localization of its components. J. Biol. Chem. 2011;286:23831–23841. doi: 10.1074/jbc.M110.215988. PubMed DOI PMC
Collart C, Allen GE, Bradshaw CR, Smith JC, Zegerman P. Titration of four replication factors is essential for the Xenopus laevis midblastula transition. Science. 2013;341:893–896. doi: 10.1126/science.1241530. PubMed DOI PMC
Wong PG, et al. Cdc45 limits replicon usage from a low density of preRCs in mammalian cells. PLoS ONE. 2011;6:e17533. doi: 10.1371/journal.pone.0017533. PubMed DOI PMC
Kohler C, et al. Cdc45 is limiting for replication initiation in humans. Cell Cycle. 2016;15:974–985. doi: 10.1080/15384101.2016.1152424. PubMed DOI PMC
Marchal C, Sima J, Gilbert DM. Control of DNA replication timing in the 3D genome. Nat. Rev. Mol. Cell Biol. 2019;20:721–737. doi: 10.1038/s41580-019-0162-y. PubMed DOI
Fan Y, et al. LRR1-mediated replisome disassembly promotes DNA replication by recycling replisome components. J. Cell Biol. 2021;220:e202009147. doi: 10.1083/jcb.202009147. PubMed DOI PMC
Jenkinson F, Tan KW, Schopf B, Santos MM, Zegerman P. Dephosphorylation of the pre-initiation complex is critical for origin firing. Mol. Cell. 2023;83:12–25.e10. doi: 10.1016/j.molcel.2022.12.001. PubMed DOI
Polasek-Sedlackova H, Miller TCR, Krejci J, Rask MB, Lukas J. Solving the MCM paradox by visualizing the scaffold of CMG helicase at active replisomes. Nat. Commun. 2022;13:6090. doi: 10.1038/s41467-022-33887-5. PubMed DOI PMC
Donovan S, Harwood J, Drury LS, Diffley JF. Cdc6p-dependent loading of Mcm proteins onto pre-replicative chromatin in budding yeast. Proc. Natl Acad. Sci. USA. 1997;94:5611–5616. doi: 10.1073/pnas.94.11.5611. PubMed DOI PMC
Lei M, Kawasaki Y, Tye BK. Physical interactions among Mcm proteins and effects of Mcm dosage on DNA replication in Saccharomyces cerevisiae. Mol. Cell Biol. 1996;16:5081–5090. doi: 10.1128/MCB.16.9.5081. PubMed DOI PMC
Mahbubani HM, Chong JP, Chevalier S, Thommes P, Blow JJ. Cell cycle regulation of the replication licensing system: involvement of a Cdk-dependent inhibitor. J. Cell Biol. 1997;136:125–135. doi: 10.1083/jcb.136.1.125. PubMed DOI PMC
Powell SK, et al. Dynamic loading and redistribution of the Mcm2-7 helicase complex through the cell cycle. EMBO J. 2015;34:531–543. doi: 10.15252/embj.201488307. PubMed DOI PMC
Hyrien O, Marheineke K, Goldar A. Paradoxes of eukaryotic DNA replication: MCM proteins and the random completion problem. Bioessays. 2003;25:116–125. doi: 10.1002/bies.10208. PubMed DOI
Forsburg SL. Eukaryotic MCM proteins: beyond replication initiation. Microbiol. Mol. Biol. Rev. 2004;68:109–131. doi: 10.1128/MMBR.68.1.109-131.2004. PubMed DOI PMC
Blow JJ, Hodgson B. Replication licensing-defining the proliferative state? Trends Cell Biol. 2002;12:72–78. doi: 10.1016/S0962-8924(01)02203-6. PubMed DOI PMC
Shreeram S, Sparks A, Lane DP, Blow JJ. Cell type-specific responses of human cells to inhibition of replication licensing. Oncogene. 2002;21:6624–6632. doi: 10.1038/sj.onc.1205910. PubMed DOI PMC
Machida YJ, Teer JK, Dutta A. Acute reduction of an origin recognition complex (ORC) subunit in human cells reveals a requirement of ORC for Cdk2 activation. J. Biol. Chem. 2005;280:27624–27630. doi: 10.1074/jbc.M502615200. PubMed DOI
Teer JK, et al. Proliferating human cells hypomorphic for origin recognition complex 2 and pre-replicative complex formation have a defect in p53 activation and Cdk2 kinase activation. J. Biol. Chem. 2006;281:6253–6260. doi: 10.1074/jbc.M507150200. PubMed DOI
Liu P, et al. Replication licensing promotes cyclin D1 expression and G1 progression in untransformed human cells. Cell Cycle. 2009;8:125–136. doi: 10.4161/cc.8.1.7528. PubMed DOI PMC
Nevis KR, Cordeiro-Stone M, Cook JG. Origin licensing and p53 status regulate Cdk2 activity during G(1) Cell Cycle. 2009;8:1952–1963. doi: 10.4161/cc.8.12.8811. PubMed DOI PMC
Matson JP, et al. Intrinsic checkpoint deficiency during cell cycle re-entry from quiescence. J. Cell Biol. 2019;218:2169–2184. doi: 10.1083/jcb.201902143. PubMed DOI PMC
Ge XQ, Blow JJ. The licensing checkpoint opens up. Cell Cycle. 2009;8:2320–2322. PubMed PMC
Liang DT, Hodson JA, Forsburg SL. Reduced dosage of a single fission yeast MCM protein causes genetic instability and S phase delay. J. Cell Sci. 1999;112:559–567. doi: 10.1242/jcs.112.4.559. PubMed DOI
Ryu S, Holzschuh J, Erhardt S, Ettl AK, Driever W. Depletion of minichromosome maintenance protein 5 in the zebrafish retina causes cell-cycle defect and apoptosis. Proc. Natl Acad. Sci. USA. 2005;102:18467–18472. doi: 10.1073/pnas.0506187102. PubMed DOI PMC
Pruitt SC, Bailey KJ, Freeland A. Reduced Mcm2 expression results in severe stem/progenitor cell deficiency and cancer. Stem Cells. 2007;25:3121–3132. doi: 10.1634/stemcells.2007-0483. PubMed DOI
Shima N, et al. A viable allele of Mcm4 causes chromosome instability and mammary adenocarcinomas in mice. Nat. Genet. 2007;39:93–98. doi: 10.1038/ng1936. PubMed DOI
Kawabata T, et al. Stalled fork rescue via dormant replication origins in unchallenged S phase promotes proper chromosome segregation and tumor suppression. Mol. Cell. 2011;41:543–553. doi: 10.1016/j.molcel.2011.02.006. PubMed DOI PMC
Kunnev D, et al. DNA damage response and tumorigenesis in Mcm2-deficient mice. Oncogene. 2010;29:3630–3638. doi: 10.1038/onc.2010.125. PubMed DOI PMC
DePamphilis ML. Origins of DNA replication that function in eukaryotic cells. Curr. Opin. Cell Biol. 1993;5:434–441. doi: 10.1016/0955-0674(93)90008-E. PubMed DOI
Mechali M. Eukaryotic DNA replication origins: many choices for appropriate answers. Nat. Rev. Mol. Cell Biol. 2010;11:728–738. doi: 10.1038/nrm2976. PubMed DOI
Kalejta RF, et al. Distal sequences, but not ori-beta/OBR-1, are essential for initiation of DNA replication in the Chinese hamster DHFR origin. Mol. Cell. 1998;2:797–806. doi: 10.1016/S1097-2765(00)80294-4. PubMed DOI
Mesner LD, Li X, Dijkwel PA, Hamlin JL. The dihydrofolate reductase origin of replication does not contain any nonredundant genetic elements required for origin activity. Mol. Cell Biol. 2003;23:804–814. doi: 10.1128/MCB.23.3.804-814.2003. PubMed DOI PMC
Ganier O, Prorok P, Akerman I, Mechali M. Metazoan DNA replication origins. Curr. Opin. Cell Biol. 2019;58:134–141. doi: 10.1016/j.ceb.2019.03.003. PubMed DOI
Sanchez H, et al. DNA replication origins retain mobile licensing proteins. Nat. Commun. 2021;12:1908. doi: 10.1038/s41467-021-22216-x. PubMed DOI PMC
Ockey CH, Saffhill R. The comparative effects of short-term DNA Inhibition on replicon synthesis in mammalian cells. Exp. Cell Res. 1976;103:361–373. doi: 10.1016/0014-4827(76)90272-X. PubMed DOI
Taylor JH. Increase in DNA replication sites in cells held at the beginning of S phase. Chromosoma. 1977;62:291–300. doi: 10.1007/BF00327029. PubMed DOI
Anglana M, Apiou F, Bensimon A, Debatisse M. Dynamics of DNA replication in mammalian somatic cells: nucleotide pool modulates origin choice and interorigin spacing. Cell. 2003;114:385–394. doi: 10.1016/S0092-8674(03)00569-5. PubMed DOI
Woodward AM, et al. Excess Mcm2-7 license dormant origins of replication that can be used under conditions of replicative stress. J. Cell Biol. 2006;173:673–683. doi: 10.1083/jcb.200602108. PubMed DOI PMC
Ge XQ, Jackson DA, Blow JJ. Dormant origins licensed by excess Mcm2-7 are required for human cells to survive replicative stress. Genes Dev. 2007;21:3331–3341. doi: 10.1101/gad.457807. PubMed DOI PMC
Ibarra A, Schwob E, Mendez J. Excess MCM proteins protect human cells from replicative stress by licensing backup origins of replication. Proc. Natl Acad. Sci. USA. 2008;105:8956–8961. doi: 10.1073/pnas.0803978105. PubMed DOI PMC
Blow JJ, Ge XQ, Jackson DA. How dormant origins promote complete genome replication. Trends Biochem. Sci. 2011;36:405–414. doi: 10.1016/j.tibs.2011.05.002. PubMed DOI PMC
Saldivar JC, Cortez D, Cimprich KA. The essential kinase ATR: ensuring faithful duplication of a challenging genome. Nat. Rev. Mol. Cell Biol. 2017;18:622–636. doi: 10.1038/nrm.2017.67. PubMed DOI PMC
Ge XQ, Blow JJ. Chk1 inhibits replication factory activation but allows dormant origin firing in existing factories. J. Cell Biol. 2010;191:1285–1297. doi: 10.1083/jcb.201007074. PubMed DOI PMC
Toledo LI, et al. ATR prohibits replication catastrophe by preventing global exhaustion of RPA. Cell. 2013;155:1088–1103. doi: 10.1016/j.cell.2013.10.043. PubMed DOI
Berti M, Cortez D, Lopes M. The plasticity of DNA replication forks in response to clinically relevant genotoxic stress. Nat. Rev. Mol. Cell Biol. 2020;21:633–651. doi: 10.1038/s41580-020-0257-5. PubMed DOI
Spies J, Polasek-Sedlackova H, Lukas J, Somyajit K. Homologous recombination as a fundamental genome surveillance mechanism during DNA replication. Genes. 2021;12:1960. doi: 10.3390/genes12121960. PubMed DOI PMC
Glover TW, Berger C, Coyle J, Echo B. DNA polymerase alpha inhibition by aphidicolin induces gaps and breaks at common fragile sites in human chromosomes. Hum. Genet. 1984;67:136–142. doi: 10.1007/BF00272988. PubMed DOI
Brison O, et al. Transcription-mediated organization of the replication initiation program across large genes sets common fragile sites genome-wide. Nat. Commun. 2019;10:5693. doi: 10.1038/s41467-019-13674-5. PubMed DOI PMC
Bergoglio V, et al. DNA synthesis by Pol eta promotes fragile site stability by preventing under-replicated DNA in mitosis. J. Cell Biol. 2013;201:395–408. doi: 10.1083/jcb.201207066. PubMed DOI PMC
Minocherhomji S, et al. Replication stress activates DNA repair synthesis in mitosis. Nature. 2015;528:286–290. doi: 10.1038/nature16139. PubMed DOI
Spies J, et al. 53BP1 nuclear bodies enforce replication timing at under-replicated DNA to limit heritable DNA damage. Nat. Cell Biol. 2019;21:487–497. doi: 10.1038/s41556-019-0293-6. PubMed DOI
Tada S, Blow JJ. The replication licensing system. Biol. Chem. 1998;379:941–949. PubMed PMC
Yeeles JT, Deegan TD, Janska A, Early A, Diffley JF. Regulated eukaryotic DNA replication origin firing with purified proteins. Nature. 2015;519:431–435. doi: 10.1038/nature14285. PubMed DOI PMC
Frigola J, Remus D, Mehanna A, Diffley JF. ATPase-dependent quality control of DNA replication origin licensing. Nature. 2013;495:339–343. doi: 10.1038/nature11920. PubMed DOI PMC
Hill, J., Eickhoff, P., Drury, L. S., Costa, A. & Diffley, J. F. X. The eukaryotic replisome requires an additional helicase to disarm dormant replication origins. bioRxiv10.1101/2020.09.17.301366 (2020). Using budding yest as model organism, this study provides evidence that the removal of inactive MCMs bound on DNA requires additional 5’-3’ helicase activity complementary to CMG unwinding.
Douglas ME, Ali FA, Costa A, Diffley JFX. The mechanism of eukaryotic CMG helicase activation. Nature. 2018;555:265–268. doi: 10.1038/nature25787. PubMed DOI PMC
Ivessa AS, et al. The Saccharomyces cerevisiae helicase Rrm3p facilitates replication past nonhistone protein-DNA complexes. Mol. Cell. 2003;12:1525–1536. doi: 10.1016/S1097-2765(03)00456-8. PubMed DOI
Claussin C, Vazquez J, Whitehouse I. Single-molecule mapping of replisome progression. Mol. Cell. 2022;82:1372–1382.e4. doi: 10.1016/j.molcel.2022.02.010. PubMed DOI PMC
Saxena S, Zou L. Hallmarks of DNA replication stress. Mol. Cell. 2022;82:2298–2314. doi: 10.1016/j.molcel.2022.05.004. PubMed DOI PMC
Stewart-Morgan KR, Petryk N, Groth A. Chromatin replication and epigenetic cell memory. Nat. Cell Biol. 2020;22:361–371. doi: 10.1038/s41556-020-0487-y. PubMed DOI
Kuhbacher U, Duxin JP. How to fix DNA-protein crosslinks. DNA Repair. 2020;94:102924. doi: 10.1016/j.dnarep.2020.102924. PubMed DOI PMC
Gambus A. Termination of eukaryotic replication forks. Adv. Exp. Med. Biol. 2017;1042:163–187. doi: 10.1007/978-981-10-6955-0_8. PubMed DOI
Dewar JM, Budzowska M, Walter JC. The mechanism of DNA replication termination in vertebrates. Nature. 2015;525:345–350. doi: 10.1038/nature14887. PubMed DOI PMC
Somyajit K, et al. Redox-sensitive alteration of replisome architecture safeguards genome integrity. Science. 2017;358:797–802. doi: 10.1126/science.aao3172. PubMed DOI
Maya-Mendoza A, et al. High speed of fork progression induces DNA replication stress and genomic instability. Nature. 2018;559:279–284. doi: 10.1038/s41586-018-0261-5. PubMed DOI
Merchut-Maya JM, Bartek J, Maya-Mendoza A. Regulation of replication fork speed: mechanisms and impact on genomic stability. DNA Repair. 2019;81:102654. doi: 10.1016/j.dnarep.2019.102654. PubMed DOI
Zhong Y, et al. The level of origin firing inversely affects the rate of replication fork progression. J. Cell Biol. 2013;201:373–383. doi: 10.1083/jcb.201208060. PubMed DOI PMC
Rodriguez-Acebes S, Mourón S, Méndez J. Uncoupling fork speed and origin activity to identify the primary cause of replicative stress phenotypes. J. Biol. Chem. 2018;293:12855–12861. doi: 10.1074/jbc.RA118.003740. PubMed DOI PMC
Holthoff HP, Baack M, Richter A, Ritzi M, Knippers R. Human protein MCM6 on HeLa cell chromatin. J. Biol. Chem. 1998;273:7320–7325. doi: 10.1074/jbc.273.13.7320. PubMed DOI
Sugimoto N, et al. Cdt1-binding protein GRWD1 is a novel histone-binding protein that facilitates MCM loading through its influence on chromatin architecture. Nucleic Acids Res. 2015;43:5898–5911. doi: 10.1093/nar/gkv509. PubMed DOI PMC
Sugimoto N, Yugawa T, Iizuka M, Kiyono T, Fujita M. Chromatin remodeler sucrose nonfermenting 2 homolog (SNF2H) is recruited onto DNA replication origins through interaction with Cdc10 protein-dependent transcript 1 (Cdt1) and promotes pre-replication complex formation. J. Biol. Chem. 2011;286:39200–39210. doi: 10.1074/jbc.M111.256123. PubMed DOI PMC
Iizuka M, Matsui T, Takisawa H, Smith MM. Regulation of replication licensing by acetyltransferase Hbo1. Mol. Cell Biol. 2006;26:1098–1108. doi: 10.1128/MCB.26.3.1098-1108.2006. PubMed DOI PMC
Tardat M, et al. The histone H4 Lys 20 methyltransferase PR-Set7 regulates replication origins in mammalian cells. Nat. Cell Biol. 2010;12:1086–1093. doi: 10.1038/ncb2113. PubMed DOI
Miotto B, Struhl K. HBO1 histone acetylase is a coactivator of the replication licensing factor Cdt1. Genes Dev. 2008;22:2633–2638. doi: 10.1101/gad.1674108. PubMed DOI PMC
Chacin E, et al. Establishment and function of chromatin organization at replication origins. Nature. 2023;616:836–842. doi: 10.1038/s41586-023-05926-8. PubMed DOI
Huang H, et al. A unique binding mode enables MCM2 to chaperone histones H3-H4 at replication forks. Nat. Struct. Mol. Biol. 2015;22:618–626. doi: 10.1038/nsmb.3055. PubMed DOI PMC
Jasencakova Z, et al. Replication stress interferes with histone recycling and predeposition marking of new histones. Mol. Cell. 2010;37:736–743. doi: 10.1016/j.molcel.2010.01.033. PubMed DOI
Petryk N, et al. MCM2 promotes symmetric inheritance of modified histones during DNA replication. Science. 2018;361:1389–1392. doi: 10.1126/science.aau0294. PubMed DOI
Saponaro M. Transcription-replication coordination. Life. 2022;12:108. doi: 10.3390/life12010108. PubMed DOI PMC
Gros J, et al. Post-licensing specification of eukaryotic replication origins by facilitated Mcm2-7 sliding along DNA. Mol. Cell. 2015;60:797–807. doi: 10.1016/j.molcel.2015.10.022. PubMed DOI PMC
Scherr MJ, Wahab SA, Remus D, Duderstadt KE. Mobile origin-licensing factors confer resistance to conflicts with RNA polymerase. Cell Rep. 2022;38:110531. doi: 10.1016/j.celrep.2022.110531. PubMed DOI PMC
Macheret M, Halazonetis TD. Intragenic origins due to short G1 phases underlie oncogene-induced DNA replication stress. Nature. 2018;555:112–116. doi: 10.1038/nature25507. PubMed DOI PMC
Holland L, Gauthier L, Bell-Rogers P, Yankulov K. Distinct parts of minichromosome maintenance protein 2 associate with histone H3/H4 and RNA polymerase II holoenzyme. Eur. J. Biochem. 2002;269:5192–5202. doi: 10.1046/j.1432-1033.2002.03224.x. PubMed DOI
Zhang JJ, et al. Ser727-dependent recruitment of MCM5 by Stat1alpha in IFN-gamma-induced transcriptional activation. EMBO J. 1998;17:6963–6971. doi: 10.1093/emboj/17.23.6963. PubMed DOI PMC
DaFonseca CJ, Shu F, Zhang JJ. Identification of two residues in MCM5 critical for the assembly of MCM complexes and Stat1-mediated transcription activation in response to IFN-gamma. Proc. Natl Acad. Sci. USA. 2001;98:3034–3039. doi: 10.1073/pnas.061487598. PubMed DOI PMC
Takahashi TS, Yiu P, Chou MF, Gygi S, Walter JC. Recruitment of Xenopus Scc2 and cohesin to chromatin requires the pre-replication complex. Nat. Cell Biol. 2004;6:991–996. doi: 10.1038/ncb1177. PubMed DOI
Gillespie PJ, Hirano T. Scc2 couples replication licensing to sister chromatid cohesion in Xenopus egg extracts. Curr. Biol. 2004;14:1598–1603. doi: 10.1016/j.cub.2004.07.053. PubMed DOI
Dequeker BJH, et al. MCM complexes are barriers that restrict cohesin-mediated loop extrusion. Nature. 2022;606:197–203. doi: 10.1038/s41586-022-04730-0. PubMed DOI PMC
Emerson DJ, et al. Cohesin-mediated loop anchors confine the locations of human replication origins. Nature. 2022;606:812–819. doi: 10.1038/s41586-022-04803-0. PubMed DOI PMC
Schmit M, Bielinsky AK. Congenital diseases of DNA replication: clinical phenotypes and molecular mechanisms. Int. J. Mol. Sci. 2021;22:911. doi: 10.3390/ijms22020911. PubMed DOI PMC
Teixeira LK, Reed SI. Cyclin E deregulation and genomic instability. Adv. Exp. Med. Biol. 2017;1042:527–547. doi: 10.1007/978-981-10-6955-0_22. PubMed DOI
Musgrove EA, Caldon CE, Barraclough J, Stone A, Sutherland RL. Cyclin D as a therapeutic target in cancer. Nat. Rev. Cancer. 2011;11:558–572. doi: 10.1038/nrc3090. PubMed DOI
Moreno-Bueno G, et al. Cyclin D1 gene (CCND1) mutations in endometrial cancer. Oncogene. 2003;22:6115–6118. doi: 10.1038/sj.onc.1206868. PubMed DOI
Benzeno S, et al. Identification of mutations that disrupt phosphorylation-dependent nuclear export of cyclin D1. Oncogene. 2006;25:6291–6303. doi: 10.1038/sj.onc.1209644. PubMed DOI
Aggarwal P, et al. Nuclear accumulation of cyclin D1 during S phase inhibits Cul4-dependent Cdt1 proteolysis and triggers p53-dependent DNA rereplication. Genes Dev. 2007;21:2908–2922. doi: 10.1101/gad.1586007. PubMed DOI PMC
Gonzalez MA, Tachibana KE, Laskey RA, Coleman N. Control of DNA replication and its potential clinical exploitation. Nat. Rev. Cancer. 2005;5:135–141. doi: 10.1038/nrc1548. PubMed DOI
Williams GH, Stoeber K. Cell cycle markers in clinical oncology. Curr. Opin. Cell Biol. 2007;19:672–679. doi: 10.1016/j.ceb.2007.10.005. PubMed DOI
Arentson E, et al. Oncogenic potential of the DNA replication licensing protein CDT1. Oncogene. 2002;21:1150–1158. doi: 10.1038/sj.onc.1205175. PubMed DOI
Liontos M, et al. Deregulated overexpression of hCdt1 and hCdc6 promotes malignant behavior. Cancer Res. 2007;67:10899–10909. doi: 10.1158/0008-5472.CAN-07-2837. PubMed DOI
Gaillard H, Garcia-Muse T, Aguilera A. Replication stress and cancer. Nat. Rev. Cancer. 2015;15:276–289. doi: 10.1038/nrc3916. PubMed DOI
Yu S, et al. MCMs in cancer: prognostic potential and mechanisms. Anal. Cell Pathol. 2020;2020:3750294. doi: 10.1155/2020/3750294. PubMed DOI PMC
Zhu W, Depamphilis ML. Selective killing of cancer cells by suppression of geminin activity. Cancer Res. 2009;69:4870–4877. doi: 10.1158/0008-5472.CAN-08-4559. PubMed DOI PMC
Lin JJ, Milhollen MA, Smith PG, Narayanan U, Dutta A. NEDD8-targeting drug MLN4924 elicits DNA rereplication by stabilizing Cdt1 in S phase, triggering checkpoint activation, apoptosis, and senescence in cancer cells. Cancer Res. 2010;70:10310–10320. doi: 10.1158/0008-5472.CAN-10-2062. PubMed DOI PMC
Maine GT, Sinha P, Tye BK. Mutants of S. cerevisiae defective in the maintenance of minichromosomes. Genetics. 1984;106:365–385. doi: 10.1093/genetics/106.3.365. PubMed DOI PMC
Madine MA, Khoo CY, Mills AD, Musahl C, Laskey RA. The nuclear envelope prevents reinitiation of replication by regulating the binding of MCM3 to chromatin in Xenopus egg extracts. Curr. Biol. 1995;5:1270–1279. doi: 10.1016/S0960-9822(95)00253-3. PubMed DOI
Krude T, Musahl C, Laskey RA, Knippers R. Human replication proteins hCdc21, hCdc46 and P1Mcm3 bind chromatin uniformly before S-phase and are displaced locally during DNA replication. J. Cell Sci. 1996;109:309–318. doi: 10.1242/jcs.109.2.309. PubMed DOI
Dimitrova DS, Todorov IT, Melendy T, Gilbert DM. Mcm2, but not RPA, is a component of the mammalian early G1-phase prereplication complex. J. Cell Biol. 1999;146:709–722. doi: 10.1083/jcb.146.4.709. PubMed DOI PMC
Laskey RA, Madine MA. A rotary pumping model for helicase function of MCM proteins at a distance from replication forks. EMBO Rep. 2003;4:26–30. doi: 10.1038/sj.embor.embor706. PubMed DOI PMC
Aparicio T, Megias D, Mendez J. Visualization of the MCM DNA helicase at replication factories before the onset of DNA synthesis. Chromosoma. 2012;121:499–507. doi: 10.1007/s00412-012-0381-x. PubMed DOI
Masata M, Juda P, Raska O, Cardoso MC, Raska I. A fraction of MCM 2 proteins remain associated with replication foci during a major part of S phase. Folia Biol. 2011;57:3–11. PubMed