Enterovirus particles expel capsid pentamers to enable genome release
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30850609
PubMed Central
PMC6408523
DOI
10.1038/s41467-019-09132-x
PII: 10.1038/s41467-019-09132-x
Knihovny.cz E-zdroje
- MeSH
- Cercopithecus aethiops MeSH
- dvouvláknová RNA chemie genetika MeSH
- elektronová kryomikroskopie MeSH
- enterovirus B lidský genetika ultrastruktura MeSH
- epitelové buňky ultrastruktura virologie MeSH
- genom virový * MeSH
- kapsida chemie ultrastruktura MeSH
- koncentrace vodíkových iontů MeSH
- lidé MeSH
- RNA virová chemie genetika MeSH
- simulace molekulární dynamiky MeSH
- svlékání virového obalu genetika MeSH
- virion genetika ultrastruktura MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- dvouvláknová RNA MeSH
- RNA virová MeSH
Viruses from the genus Enterovirus are important human pathogens. Receptor binding or exposure to acidic pH in endosomes converts enterovirus particles to an activated state that is required for genome release. However, the mechanism of enterovirus uncoating is not well understood. Here, we use cryo-electron microscopy to visualize virions of human echovirus 18 in the process of genome release. We discover that the exit of the RNA from the particle of echovirus 18 results in a loss of one, two, or three adjacent capsid-protein pentamers. The opening in the capsid, which is more than 120 Å in diameter, enables the release of the genome without the need to unwind its putative double-stranded RNA segments. We also detect capsids lacking pentamers during genome release from echovirus 30. Thus, our findings uncover a mechanism of enterovirus genome release that could become target for antiviral drugs.
Central European Institute of Technology Masaryk University Kamenice 5 Brno 625 00 Czech Republic
Faculty of Science Masaryk University Kamenice 5 Brno 625 00 Czech Republic
Max Planck Institute for Developmental Biology Max Planck Ring 5 72076 Tübingen Germany
Zobrazit více v PubMed
Tuthill TJ, Groppelli E, Hogle JM, Rowlands DJ. Picornaviruses. Curr. Top. Microbiol. Immunol. 2010;343:43–89. PubMed PMC
Ren J, et al. Picornavirus uncoating intermediate captured in atomic detail. Nat. Commun. 2013;4:1929. doi: 10.1038/ncomms2889. PubMed DOI PMC
Levy HC, Bostina M, Filman DJ, Hogle JM. Catching a virus in the act of RNA release: a novel poliovirus uncoating intermediate characterized by cryo-electron microscopy. J. Virol. 2010;84:4426–4441. doi: 10.1128/JVI.02393-09. PubMed DOI PMC
Garriga D, et al. Insights into minor group rhinovirus uncoating: the X-ray structure of the HRV2 empty capsid. PLoS Pathog. 2012;8:e1002473. doi: 10.1371/journal.ppat.1002473. PubMed DOI PMC
Wang X, et al. A sensor-adaptor mechanism for enterovirus uncoating from structures of EV71. Nat. Struct. Mol. Biol. 2012;19:424–429. doi: 10.1038/nsmb.2255. PubMed DOI PMC
Shingler KL, et al. The enterovirus 71 A-particle forms a gateway to allow genome release: a cryoEM study of picornavirus uncoating. PLoS Pathog. 2013;9:e1003240. doi: 10.1371/journal.ppat.1003240. PubMed DOI PMC
Seitsonen JJ, et al. Structural analysis of coxsackievirus A7 reveals conformational changes associated with uncoating. J. Virol. 2012;86:7207–7215. doi: 10.1128/JVI.06425-11. PubMed DOI PMC
Bostina M, Levy H, Filman DJ, Hogle JM. Poliovirus RNA is released from the capsid near a twofold symmetry axis. J. Virol. 2011;85:776–783. doi: 10.1128/JVI.00531-10. PubMed DOI PMC
Belnap DM, et al. Molecular tectonic model of virus structural transitions: the putative cell entry states of poliovirus. J. Virol. 2000;74:1342–1354. doi: 10.1128/JVI.74.3.1342-1354.2000. PubMed DOI PMC
Hadfield AT, et al. The refined structure of human rhinovirus 16 at 2.15 A resolution: implications for the viral life cycle. Structure. 1997;5:427–441. doi: 10.1016/S0969-2126(97)00199-8. PubMed DOI
Reinisch KM, Nibert ML, Harrison SC. Structure of the reovirus core at 3.6 A resolution. Nature. 2000;404:960–967. doi: 10.1038/35010041. PubMed DOI
Naitow H, Tang J, Canady M, Wickner RB, Johnson JE. L-A virus at 3.4 A resolution reveals particle architecture and mRNA decapping mechanism. Nat. Struct. Biol. 2002;9:725–728. doi: 10.1038/nsb844. PubMed DOI
Rich A, Davies DR. A new two stranded helical structure: polyadenylic acid and polyuridylic acid. J. Am. Chem. Soc. 1956;78:3548–3549. doi: 10.1021/ja01595a086. DOI
Hewat EA, Neumann E, Blaas D. The concerted conformational changes during human rhinovirus 2 uncoating. Mol. Cell. 2002;10:317–326. doi: 10.1016/S1097-2765(02)00603-2. PubMed DOI
Hewat EA, Blaas D. Cryoelectron microscopy analysis of the structural changes associated with human rhinovirus type 14 uncoating. J. Virol. 2004;78:2935–2942. doi: 10.1128/JVI.78.6.2935-2942.2004. PubMed DOI PMC
Pelletier J, Sonenberg N. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature. 1988;334:320–325. doi: 10.1038/334320a0. PubMed DOI
Jiang P, Liu Y, Ma HC, Paul AV, Wimmer E. Picornavirus morphogenesis. Microbiol. Mol. Biol. Rev. 2014;78:418–437. doi: 10.1128/MMBR.00012-14. PubMed DOI PMC
Fricks CE, Hogle JM. Cell-induced conformational change in poliovirus: externalization of the amino terminus of VP1 is responsible for liposome binding. J. Virol. 1990;64:1934–1945. PubMed PMC
Tuthill TJ, Bubeck D, Rowlands DJ, Hogle JM. Characterization of early steps in the poliovirus infection process: receptor-decorated liposomes induce conversion of the virus to membrane-anchored entry-intermediate particles. J. Virol. 2006;80:172–180. doi: 10.1128/JVI.80.1.172-180.2006. PubMed DOI PMC
Groppelli E, et al. Picornavirus RNA is protected from cleavage by ribonuclease during virion uncoating and transfer across cellular and model membranes. PLoS Pathog. 2017;13:e1006197. doi: 10.1371/journal.ppat.1006197. PubMed DOI PMC
Chow M, et al. Myristylation of picornavirus capsid protein VP4 and its structural significance. Nature. 1987;327:482–486. doi: 10.1038/327482a0. PubMed DOI
Kirkegaard K. Mutations in VP1 of poliovirus specifically affect both encapsidation and release of viral RNA. J. Virol. 1990;64:195–206. PubMed PMC
Krausslich HG, Holscher C, Reuer Q, Harber J, Wimmer E. Myristoylation of the poliovirus polyprotein is required for proteolytic processing of the capsid and for viral infectivity. J. Virol. 1990;64:2433–2436. PubMed PMC
Moscufo N, Yafal AG, Rogove A, Hogle J, Chow M. A mutation in VP4 defines a new step in the late stages of cell entry by poliovirus. J. Virol. 1993;67:5075–5078. PubMed PMC
Rapaport DC. Role of reversibility in viral capsid growth: a paradigm for self-assembly. Phys. Rev. Lett. 2008;101:186101. doi: 10.1103/PhysRevLett.101.186101. PubMed DOI
Harutyunyan S, et al. Viral uncoating is directional: exit of the genomic RNA in a common cold virus starts with the poly-(A) tail at the 3′-end. PLoS Pathog. 2013;9:e1003270. doi: 10.1371/journal.ppat.1003270. PubMed DOI PMC
Pickl-Herk A, et al. Uncoating of common cold virus is preceded by RNA switching as determined by X-ray and cryo-EM analyses of the subviral A-particle. Proc. Natl Acad. Sci. USA. 2013;110:20063–20068. doi: 10.1073/pnas.1312128110. PubMed DOI PMC
Harutyunyan S, Kowalski H, Blaas D. The Rhinovirus subviral a-particle exposes 3’-terminal sequences of its genomic RNA. J. Virol. 2014;88:6307–6317. doi: 10.1128/JVI.00539-14. PubMed DOI PMC
Fout GS, Medappa KC, Mapoles JE, Rueckert RR. Radiochemical determination of polyamines in poliovirus and human rhinovirus 14. J. Biol. Chem. 1984;259:3639–3643. PubMed
Mounce, B. C., Olsen, M. E., Vignuzzi, M. & Connor, J. H. Polyamines and their role in virus infection. Microbiol Mol Biol Rev81, e00029-17 (2017). PubMed PMC
Rossmann MG. Viral cell recognition and entry. Protein Sci. 1994;3:1712–1725. doi: 10.1002/pro.5560031010. PubMed DOI PMC
Grant RA, et al. Structures of poliovirus complexes with anti-viral drugs: implications for viral stability and drug design. Curr. Biol. 1994;4:784–797. doi: 10.1016/S0960-9822(00)00176-7. PubMed DOI
Smith TJ, et al. The site of attachment in human rhinovirus 14 for antiviral agents that inhibit uncoating. Science. 1986;233:1286–1293. doi: 10.1126/science.3018924. PubMed DOI
Shih SR, et al. Selective human enterovirus and rhinovirus inhibitors: An overview of capsid-binding and protease-inhibiting molecules. Med. Res. Rev. 2004;24:449–474. doi: 10.1002/med.10067. PubMed DOI PMC
Zheng SQ, et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods. 2017;14:331–332. doi: 10.1038/nmeth.4193. PubMed DOI PMC
Zhang K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 2016;193:1–12. doi: 10.1016/j.jsb.2015.11.003. PubMed DOI PMC
Scheres SH. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 2012;180:519–530. doi: 10.1016/j.jsb.2012.09.006. PubMed DOI PMC
Plevka P, et al. Interaction of decay-accelerating factor with echovirus 7. J. Virol. 2010;84:12665–12674. doi: 10.1128/JVI.00837-10. PubMed DOI PMC
Tang G, et al. EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 2007;157:38–46. doi: 10.1016/j.jsb.2006.05.009. PubMed DOI
Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 2010;66:486–501. doi: 10.1107/S0907444910007493. PubMed DOI PMC
Adams PD, et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 2010;66:213–221. doi: 10.1107/S0907444909052925. PubMed DOI PMC
Stenqvist B, Thuresson A, Kurut A, Vácha R, Lund M. Faunus—a flexible framework for Monte Carlo simulation. Mol. Simul. 2013;39:1233–1239. doi: 10.1080/08927022.2013.828207. DOI
Israelachvili, J. N. Intermolecular and Surface Forces (Academic Press, 2011) https://www.elsevier.com/books/intermolecular-and-surface-forces/israelachvili/978-0-12-391927-4.
Bagotsky, V. S. Fundamentals of Electrochemistry (John Wiley & Sons, Hoboken, 2005).
Lund M, Åkesson T, Jönsson B. Enhanced protein adsorption due to charge regulation. Langmuir. 2005;21:8385–8388. doi: 10.1021/la050607z. PubMed DOI
Páll, S., Abraham, M. J., Kutzner, C., Hess, B. & Lindahl, E. Tackling exascale softwarechallenges in molecular dynamics simulati ons with GROMACS. In Solving Software Challenges for Exascale, Vol. 8759 (eds Markidis, S. & Laure, E.) 3–27 (Springer, Switzerland London, 2015).
Abraham MJ, et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25. doi: 10.1016/j.softx.2015.06.001. DOI
Lindorff-Larsen K, et al. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins. 2010;78:1950–1958. PubMed PMC
Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007;126:014101. doi: 10.1063/1.2408420. PubMed DOI
Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984;81:3684–3690. doi: 10.1063/1.448118. DOI
Darden T, York D, Pedersen L. Particle mesh Ewald: an N⋅log(N) method for Ewald sums in large systems. J. Chem. Phys. 1993;98:10089–10092. doi: 10.1063/1.464397. DOI
Hess B, Bekker H, Berendsen HJC, Fraaije JGEM. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 1997;18:1463–1472. doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H. DOI
Miyamoto S, Kollman PA. Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 1992;13:952–962. doi: 10.1002/jcc.540130805. DOI
Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH. The MARTINI force field: coarse grained model for biomolecular simulations. J. Phys. Chem. B. 2007;111:7812–7824. doi: 10.1021/jp071097f. PubMed DOI
Monticelli L, et al. The MARTINI coarse-grained force field: extension to proteins. J. Chem. Theory Comput. 2008;4:819–834. doi: 10.1021/ct700324x. PubMed DOI
de Jong DH, et al. Improved parameters for the martini coarse-grained protein force field. J. Chem. Theory Comput. 2013;9:687–697. doi: 10.1021/ct300646g. PubMed DOI
Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983;22:2577–2637. doi: 10.1002/bip.360221211. PubMed DOI
Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 1981;52:7182–7190. doi: 10.1063/1.328693. DOI
Kumar S, Rosenberg JM, Bouzida D, Swendsen RH, Kollman PA. The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J. Comput. Chem. 1992;13:1011–1021. doi: 10.1002/jcc.540130812. DOI
Zhang C, Lai CL, Pettitt BM. Accelerating the weighted histogram analysis method by direct inversion in the iterative subspace. Mol. Simul. 2016;42:1079–1089. doi: 10.1080/08927022.2015.1110583. PubMed DOI PMC
Weeks JD, Chandler D, Andersen HC. Role of repulsive forces in determining the equilibrium structure of simple liquids. J. Chem. Phys. 1971;54:5237–5247. doi: 10.1063/1.1674820. DOI
Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995;117:1–19. doi: 10.1006/jcph.1995.1039. DOI
DÜNweg B, Paul W. Brownian dynamics simulations without Gaussian random numbers. Int. J. Mod. Phys. C. 1991;02:817–827. doi: 10.1142/S0129183191001037. DOI
Schneider T, Stoll E. Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions. Phys. Rev. B. 1978;17:1302–1322. doi: 10.1103/PhysRevB.17.1302. DOI
Grønbech-Jensen N, Hayre NR, Farago O. Application of the G-JF discrete-time thermostat for fast and accurate molecular simulations. Comput. Phys. Commun. 2014;185:524–527. doi: 10.1016/j.cpc.2013.10.006. DOI
Stenqvist B, Thuresson A, Kurut A, Vácha R, Lund M. Faunus—a flexible framework for Monte Carlo simulation. Mol. Simul. 2013;39:1233–1239. doi: 10.1080/08927022.2013.828207. DOI
Endosome rupture enables enteroviruses from the family Picornaviridae to infect cells
A stargate mechanism of Microviridae genome delivery unveiled by cryogenic electron tomography
Structure of Human Enterovirus 70 and Its Inhibition by Capsid-Binding Compounds
The Present and Future of Virology in the Czech Republic-A New Phoenix Made of Ashes?
ICAM-1 induced rearrangements of capsid and genome prime rhinovirus 14 for activation and uncoating
Virion structure and in vitro genome release mechanism of dicistrovirus Kashmir bee virus