Enterovirus particles expel capsid pentamers to enable genome release

. 2019 Mar 08 ; 10 (1) : 1138. [epub] 20190308

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30850609
Odkazy

PubMed 30850609
PubMed Central PMC6408523
DOI 10.1038/s41467-019-09132-x
PII: 10.1038/s41467-019-09132-x
Knihovny.cz E-zdroje

Viruses from the genus Enterovirus are important human pathogens. Receptor binding or exposure to acidic pH in endosomes converts enterovirus particles to an activated state that is required for genome release. However, the mechanism of enterovirus uncoating is not well understood. Here, we use cryo-electron microscopy to visualize virions of human echovirus 18 in the process of genome release. We discover that the exit of the RNA from the particle of echovirus 18 results in a loss of one, two, or three adjacent capsid-protein pentamers. The opening in the capsid, which is more than 120 Å in diameter, enables the release of the genome without the need to unwind its putative double-stranded RNA segments. We also detect capsids lacking pentamers during genome release from echovirus 30. Thus, our findings uncover a mechanism of enterovirus genome release that could become target for antiviral drugs.

Zobrazit více v PubMed

Tuthill TJ, Groppelli E, Hogle JM, Rowlands DJ. Picornaviruses. Curr. Top. Microbiol. Immunol. 2010;343:43–89. PubMed PMC

Ren J, et al. Picornavirus uncoating intermediate captured in atomic detail. Nat. Commun. 2013;4:1929. doi: 10.1038/ncomms2889. PubMed DOI PMC

Levy HC, Bostina M, Filman DJ, Hogle JM. Catching a virus in the act of RNA release: a novel poliovirus uncoating intermediate characterized by cryo-electron microscopy. J. Virol. 2010;84:4426–4441. doi: 10.1128/JVI.02393-09. PubMed DOI PMC

Garriga D, et al. Insights into minor group rhinovirus uncoating: the X-ray structure of the HRV2 empty capsid. PLoS Pathog. 2012;8:e1002473. doi: 10.1371/journal.ppat.1002473. PubMed DOI PMC

Wang X, et al. A sensor-adaptor mechanism for enterovirus uncoating from structures of EV71. Nat. Struct. Mol. Biol. 2012;19:424–429. doi: 10.1038/nsmb.2255. PubMed DOI PMC

Shingler KL, et al. The enterovirus 71 A-particle forms a gateway to allow genome release: a cryoEM study of picornavirus uncoating. PLoS Pathog. 2013;9:e1003240. doi: 10.1371/journal.ppat.1003240. PubMed DOI PMC

Seitsonen JJ, et al. Structural analysis of coxsackievirus A7 reveals conformational changes associated with uncoating. J. Virol. 2012;86:7207–7215. doi: 10.1128/JVI.06425-11. PubMed DOI PMC

Bostina M, Levy H, Filman DJ, Hogle JM. Poliovirus RNA is released from the capsid near a twofold symmetry axis. J. Virol. 2011;85:776–783. doi: 10.1128/JVI.00531-10. PubMed DOI PMC

Belnap DM, et al. Molecular tectonic model of virus structural transitions: the putative cell entry states of poliovirus. J. Virol. 2000;74:1342–1354. doi: 10.1128/JVI.74.3.1342-1354.2000. PubMed DOI PMC

Hadfield AT, et al. The refined structure of human rhinovirus 16 at 2.15 A resolution: implications for the viral life cycle. Structure. 1997;5:427–441. doi: 10.1016/S0969-2126(97)00199-8. PubMed DOI

Reinisch KM, Nibert ML, Harrison SC. Structure of the reovirus core at 3.6 A resolution. Nature. 2000;404:960–967. doi: 10.1038/35010041. PubMed DOI

Naitow H, Tang J, Canady M, Wickner RB, Johnson JE. L-A virus at 3.4 A resolution reveals particle architecture and mRNA decapping mechanism. Nat. Struct. Biol. 2002;9:725–728. doi: 10.1038/nsb844. PubMed DOI

Rich A, Davies DR. A new two stranded helical structure: polyadenylic acid and polyuridylic acid. J. Am. Chem. Soc. 1956;78:3548–3549. doi: 10.1021/ja01595a086. DOI

Hewat EA, Neumann E, Blaas D. The concerted conformational changes during human rhinovirus 2 uncoating. Mol. Cell. 2002;10:317–326. doi: 10.1016/S1097-2765(02)00603-2. PubMed DOI

Hewat EA, Blaas D. Cryoelectron microscopy analysis of the structural changes associated with human rhinovirus type 14 uncoating. J. Virol. 2004;78:2935–2942. doi: 10.1128/JVI.78.6.2935-2942.2004. PubMed DOI PMC

Pelletier J, Sonenberg N. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature. 1988;334:320–325. doi: 10.1038/334320a0. PubMed DOI

Jiang P, Liu Y, Ma HC, Paul AV, Wimmer E. Picornavirus morphogenesis. Microbiol. Mol. Biol. Rev. 2014;78:418–437. doi: 10.1128/MMBR.00012-14. PubMed DOI PMC

Fricks CE, Hogle JM. Cell-induced conformational change in poliovirus: externalization of the amino terminus of VP1 is responsible for liposome binding. J. Virol. 1990;64:1934–1945. PubMed PMC

Tuthill TJ, Bubeck D, Rowlands DJ, Hogle JM. Characterization of early steps in the poliovirus infection process: receptor-decorated liposomes induce conversion of the virus to membrane-anchored entry-intermediate particles. J. Virol. 2006;80:172–180. doi: 10.1128/JVI.80.1.172-180.2006. PubMed DOI PMC

Groppelli E, et al. Picornavirus RNA is protected from cleavage by ribonuclease during virion uncoating and transfer across cellular and model membranes. PLoS Pathog. 2017;13:e1006197. doi: 10.1371/journal.ppat.1006197. PubMed DOI PMC

Chow M, et al. Myristylation of picornavirus capsid protein VP4 and its structural significance. Nature. 1987;327:482–486. doi: 10.1038/327482a0. PubMed DOI

Kirkegaard K. Mutations in VP1 of poliovirus specifically affect both encapsidation and release of viral RNA. J. Virol. 1990;64:195–206. PubMed PMC

Krausslich HG, Holscher C, Reuer Q, Harber J, Wimmer E. Myristoylation of the poliovirus polyprotein is required for proteolytic processing of the capsid and for viral infectivity. J. Virol. 1990;64:2433–2436. PubMed PMC

Moscufo N, Yafal AG, Rogove A, Hogle J, Chow M. A mutation in VP4 defines a new step in the late stages of cell entry by poliovirus. J. Virol. 1993;67:5075–5078. PubMed PMC

Rapaport DC. Role of reversibility in viral capsid growth: a paradigm for self-assembly. Phys. Rev. Lett. 2008;101:186101. doi: 10.1103/PhysRevLett.101.186101. PubMed DOI

Harutyunyan S, et al. Viral uncoating is directional: exit of the genomic RNA in a common cold virus starts with the poly-(A) tail at the 3′-end. PLoS Pathog. 2013;9:e1003270. doi: 10.1371/journal.ppat.1003270. PubMed DOI PMC

Pickl-Herk A, et al. Uncoating of common cold virus is preceded by RNA switching as determined by X-ray and cryo-EM analyses of the subviral A-particle. Proc. Natl Acad. Sci. USA. 2013;110:20063–20068. doi: 10.1073/pnas.1312128110. PubMed DOI PMC

Harutyunyan S, Kowalski H, Blaas D. The Rhinovirus subviral a-particle exposes 3’-terminal sequences of its genomic RNA. J. Virol. 2014;88:6307–6317. doi: 10.1128/JVI.00539-14. PubMed DOI PMC

Fout GS, Medappa KC, Mapoles JE, Rueckert RR. Radiochemical determination of polyamines in poliovirus and human rhinovirus 14. J. Biol. Chem. 1984;259:3639–3643. PubMed

Mounce, B. C., Olsen, M. E., Vignuzzi, M. & Connor, J. H. Polyamines and their role in virus infection. Microbiol Mol Biol Rev81, e00029-17 (2017). PubMed PMC

Rossmann MG. Viral cell recognition and entry. Protein Sci. 1994;3:1712–1725. doi: 10.1002/pro.5560031010. PubMed DOI PMC

Grant RA, et al. Structures of poliovirus complexes with anti-viral drugs: implications for viral stability and drug design. Curr. Biol. 1994;4:784–797. doi: 10.1016/S0960-9822(00)00176-7. PubMed DOI

Smith TJ, et al. The site of attachment in human rhinovirus 14 for antiviral agents that inhibit uncoating. Science. 1986;233:1286–1293. doi: 10.1126/science.3018924. PubMed DOI

Shih SR, et al. Selective human enterovirus and rhinovirus inhibitors: An overview of capsid-binding and protease-inhibiting molecules. Med. Res. Rev. 2004;24:449–474. doi: 10.1002/med.10067. PubMed DOI PMC

Zheng SQ, et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods. 2017;14:331–332. doi: 10.1038/nmeth.4193. PubMed DOI PMC

Zhang K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 2016;193:1–12. doi: 10.1016/j.jsb.2015.11.003. PubMed DOI PMC

Scheres SH. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 2012;180:519–530. doi: 10.1016/j.jsb.2012.09.006. PubMed DOI PMC

Plevka P, et al. Interaction of decay-accelerating factor with echovirus 7. J. Virol. 2010;84:12665–12674. doi: 10.1128/JVI.00837-10. PubMed DOI PMC

Tang G, et al. EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 2007;157:38–46. doi: 10.1016/j.jsb.2006.05.009. PubMed DOI

Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 2010;66:486–501. doi: 10.1107/S0907444910007493. PubMed DOI PMC

Adams PD, et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 2010;66:213–221. doi: 10.1107/S0907444909052925. PubMed DOI PMC

Stenqvist B, Thuresson A, Kurut A, Vácha R, Lund M. Faunus—a flexible framework for Monte Carlo simulation. Mol. Simul. 2013;39:1233–1239. doi: 10.1080/08927022.2013.828207. DOI

Israelachvili, J. N. Intermolecular and Surface Forces (Academic Press, 2011) https://www.elsevier.com/books/intermolecular-and-surface-forces/israelachvili/978-0-12-391927-4.

Bagotsky, V. S. Fundamentals of Electrochemistry (John Wiley & Sons, Hoboken, 2005).

Lund M, Åkesson T, Jönsson B. Enhanced protein adsorption due to charge regulation. Langmuir. 2005;21:8385–8388. doi: 10.1021/la050607z. PubMed DOI

Páll, S., Abraham, M. J., Kutzner, C., Hess, B. & Lindahl, E. Tackling exascale softwarechallenges in molecular dynamics simulati ons with GROMACS. In Solving Software Challenges for Exascale, Vol. 8759 (eds Markidis, S. & Laure, E.) 3–27 (Springer, Switzerland London, 2015).

Abraham MJ, et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25. doi: 10.1016/j.softx.2015.06.001. DOI

Lindorff-Larsen K, et al. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins. 2010;78:1950–1958. PubMed PMC

Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007;126:014101. doi: 10.1063/1.2408420. PubMed DOI

Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984;81:3684–3690. doi: 10.1063/1.448118. DOI

Darden T, York D, Pedersen L. Particle mesh Ewald: an N⋅log(N) method for Ewald sums in large systems. J. Chem. Phys. 1993;98:10089–10092. doi: 10.1063/1.464397. DOI

Hess B, Bekker H, Berendsen HJC, Fraaije JGEM. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 1997;18:1463–1472. doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H. DOI

Miyamoto S, Kollman PA. Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 1992;13:952–962. doi: 10.1002/jcc.540130805. DOI

Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH. The MARTINI force field: coarse grained model for biomolecular simulations. J. Phys. Chem. B. 2007;111:7812–7824. doi: 10.1021/jp071097f. PubMed DOI

Monticelli L, et al. The MARTINI coarse-grained force field: extension to proteins. J. Chem. Theory Comput. 2008;4:819–834. doi: 10.1021/ct700324x. PubMed DOI

de Jong DH, et al. Improved parameters for the martini coarse-grained protein force field. J. Chem. Theory Comput. 2013;9:687–697. doi: 10.1021/ct300646g. PubMed DOI

Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983;22:2577–2637. doi: 10.1002/bip.360221211. PubMed DOI

Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 1981;52:7182–7190. doi: 10.1063/1.328693. DOI

Kumar S, Rosenberg JM, Bouzida D, Swendsen RH, Kollman PA. The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J. Comput. Chem. 1992;13:1011–1021. doi: 10.1002/jcc.540130812. DOI

Zhang C, Lai CL, Pettitt BM. Accelerating the weighted histogram analysis method by direct inversion in the iterative subspace. Mol. Simul. 2016;42:1079–1089. doi: 10.1080/08927022.2015.1110583. PubMed DOI PMC

Weeks JD, Chandler D, Andersen HC. Role of repulsive forces in determining the equilibrium structure of simple liquids. J. Chem. Phys. 1971;54:5237–5247. doi: 10.1063/1.1674820. DOI

Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995;117:1–19. doi: 10.1006/jcph.1995.1039. DOI

DÜNweg B, Paul W. Brownian dynamics simulations without Gaussian random numbers. Int. J. Mod. Phys. C. 1991;02:817–827. doi: 10.1142/S0129183191001037. DOI

Schneider T, Stoll E. Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions. Phys. Rev. B. 1978;17:1302–1322. doi: 10.1103/PhysRevB.17.1302. DOI

Grønbech-Jensen N, Hayre NR, Farago O. Application of the G-JF discrete-time thermostat for fast and accurate molecular simulations. Comput. Phys. Commun. 2014;185:524–527. doi: 10.1016/j.cpc.2013.10.006. DOI

Stenqvist B, Thuresson A, Kurut A, Vácha R, Lund M. Faunus—a flexible framework for Monte Carlo simulation. Mol. Simul. 2013;39:1233–1239. doi: 10.1080/08927022.2013.828207. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Endosome rupture enables enteroviruses from the family Picornaviridae to infect cells

. 2024 Nov 08 ; 7 (1) : 1465. [epub] 20241108

A stargate mechanism of Microviridae genome delivery unveiled by cryogenic electron tomography

. 2024 Jun 11 ; () : . [epub] 20240611

Structure of Human Enterovirus 70 and Its Inhibition by Capsid-Binding Compounds

. 2022 Sep 14 ; 96 (17) : e0060422. [epub] 20220808

Cryo-electron microscopy and image classification reveal the existence and structure of the coxsackievirus A6 virion

. 2022 Sep 02 ; 5 (1) : 898. [epub] 20220902

The Present and Future of Virology in the Czech Republic-A New Phoenix Made of Ashes?

. 2022 Jun 14 ; 14 (6) : . [epub] 20220614

ICAM-1 induced rearrangements of capsid and genome prime rhinovirus 14 for activation and uncoating

Virion structure and in vitro genome release mechanism of dicistrovirus Kashmir bee virus

. 2021 May 10 ; 95 (11) : . [epub] 20210303

Capsid opening enables genome release of iflaviruses

. 2021 Jan ; 7 (1) : . [epub] 20210101

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace