Capsid opening enables genome release of iflaviruses
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33523856
PubMed Central
PMC7775750
DOI
10.1126/sciadv.abd7130
PII: 7/1/eabd7130
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The family Iflaviridae includes economically important viruses of the western honeybee such as deformed wing virus, slow bee paralysis virus, and sacbrood virus. Iflaviruses have nonenveloped virions and capsids organized with icosahedral symmetry. The genome release of iflaviruses can be induced in vitro by exposure to acidic pH, implying that they enter cells by endocytosis. Genome release intermediates of iflaviruses have not been structurally characterized. Here, we show that conformational changes and expansion of iflavirus RNA genomes, which are induced by acidic pH, trigger the opening of iflavirus particles. Capsids of slow bee paralysis virus and sacbrood virus crack into pieces. In contrast, capsids of deformed wing virus are more flexible and open like flowers to release their genomes. The large openings in iflavirus particles enable the fast exit of genomes from capsids, which decreases the probability of genome degradation by the RNases present in endosomes.
Zobrazit více v PubMed
Brutscher L. M., McMenamin A. J., Flenniken M. L., The buzz about honey bee viruses. PLOS Pathog. 12, e1005757 (2016). PubMed PMC
Bowen-Walker P. L., Martin S. J., Gunn A., The transmission of deformed wing virus between honeybees (Apis melliferaL.) by the ectoparasitic mite Varroa jacobsoniOud. J. Invertebr. Pathol. 73, 101–106 (1999). PubMed
Shen M., Yang X., Cox-Foster D., Cui L., The role of varroa mites in infections of Kashmir bee virus (KBV) and deformed wing virus (DWV) in honey bees. Virology 342, 141–149 (2005). PubMed
Gisder S., Möckel N., Eisenhardt D., Genersch E., In vivo evolution of viral virulence: Switching of deformed wing virus between hosts results in virulence changes and sequence shifts. Environ. Microbiol. 20, 4612–4628 (2018). PubMed
Traynor K. S., Mondet F., de Miranda J. R., Techer M., Kowallik V., Oddie M. A. Y., Chantawannakul P., McAfee A., Varroa destructor: A complex parasite, crippling honey bees worldwide. Trends Parasitol. 36, 592–606 (2020). PubMed
Highfield A. C., Nagar A. E., Mackinder L. C. M., Noël L. M.-L. J., Hall M. J., Martin S. J., Schroeder D. C., Deformed wing virus implicated in overwintering honeybee colony losses. Appl. Environ. Microbiol. 75, 7212–7220 (2009). PubMed PMC
J. R. de Miranda, L. Gauthier, M. Ribiere, Y. P. Chen, Honey Bee Viruses and Their Effect on Bee and Colony Health, in Honey Bee Colony Health: Challenges and Sustainable Solutions, Y. J. Sammataro D., Ed. (CRC Press, Boca Raton, 2012), pp. 71–102.
Dainat B., vanEngelsdorp D., Neumann P., Colony collapse disorder in Europe. Environ. Microbiol. Rep. 4, 123–125 (2012). PubMed
van Engelsdorp D., Hayes J. Jr., Underwood R. M., Pettis J., A survey of honey bee colony losses in the U.S., fall 2007 to spring 2008. PLOS ONE 3, e4071 (2008). PubMed PMC
Smith K. M., Loh E. H., Rostal M. K., Zambrana-Torrelio C. M., Mendiola L., Daszak P., Pathogens, pests, and economics: Drivers of honey bee colony declines and losses. Ecohealth 10, 434–445 (2013). PubMed
Allsopp M. H., de Lange W. J., Veldtman R., Valuing insect pollination services with cost of replacement. PLOS ONE 3, e3128 (2008). PubMed PMC
Biesmeijer J. C., Roberts S. P. M., Reemer M., Ohlemüller R., Edwards M., Peeters T., Schaffers A. P., Potts S. G., Kleukers R., Thomas C. D., Settele J., Kunin W. E., Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313, 351–354 (2006). PubMed
Škubnik K., Nováček J., Füzik T., Přidal A., Paxton R. J., Plevka P., Structure of deformed wing virus, a major honey bee pathogen. Proc. Natl. Acad. Sci. U.S.A. 114, 3210–3215 (2017). PubMed PMC
Procházková M., Füzik T., Škubník K., Moravcová J., Ubiparip Z., Přidal A., Plevka P., Virion structure and genome delivery mechanism of sacbrood honeybee virus. Proc. Natl. Acad. Sci. U.S.A. 115, 7759–7764 (2018). PubMed PMC
Kalynych S., Füzik T., Přidal A., de Miranda J., Plevka P., Cryo-EM study of slow bee paralysis virus at low pH reveals iflavirus genome release mechanism. Proc. Natl. Acad. Sci. U.S.A. 114, 598–603 (2017). PubMed PMC
Kalynych S., Přidal A., Pálková L., Levdansky Y., de Miranda J. R., Plevka P., Virion structure of iflavirus slow bee paralysis virus at 2.6-angstrom resolution. J. Virol. 90, 7444–7455 (2016). PubMed PMC
Lanzi G., de Miranda J. R., Boniotti M. B., Cameron C. E., Lavazza A., Capucci L., Camazine S. M., Rossi C., Molecular and biological characterization of deformed wing virus of honeybees (Apis mellifera L.). J. Virol. 80, 4998–5009 (2006). PubMed PMC
Ghosh R. C., Ball B. V., Willcocks M. M., Carter M. J., The nucleotide sequence of sacbrood virus of the honey bee: An insect picorna-like virus. J. Gen. Virol. 80 ( Pt. 6), 1541–1549 (1999). PubMed
de Miranda J. R., Dainat B., Locke B., Cordoni G., Berthoud H., Gauthier L., Neumann P., Budge G. E., Ball B. V., Stoltz D. B., Genetic characterization of slow bee paralysis virus of the honeybee (Apis mellifera L.). J. Gen. Virol. 91, 2524–2530 (2010). PubMed
Bergelson J. M., Coyne C. B., Picornavirus entry. Adv. Exp. Med. Biol. 790, 24–41 (2013). PubMed
Fuchs R., Blaas D., Productive entry pathways of human rhinoviruses. Adv. Virol. 2012, 826301 (2012). PubMed PMC
Tuthill T. J., Groppelli E., Hogle J. M., Rowlands D. J., Picornaviruses. Curr. Top. Microbiol. Immunol. 343, 43–89 (2010). PubMed PMC
Ren J., Wang X., Hu Z., Gao Q., Sun Y., Li X., Porta C., Walter T. S., Gilbert R. J., Zhao Y., Axford D., Williams M., Auley K. M., Rowlands D. J., Yin W., Wang J., Stuart D. I., Rao Z., Fry E. E., Picornavirus uncoating intermediate captured in atomic detail. Nat. Commun. 4, 1929 (2013). PubMed PMC
Levy H. C., Bostina M., Filman D. J., Hogle J. M., Catching a virus in the act of RNA release: A novel poliovirus uncoating intermediate characterized by cryo-electron microscopy. J. Virol. 84, 4426–4441 (2010). PubMed PMC
Garriga D., Pickl-Herk A., Luque D., Wruss J., Castón J. R., Blaas D., Verdaguer N., Insights into minor group rhinovirus uncoating: The x-ray structure of the HRV2 empty capsid. PLOS Pathog. 8, e1002473 (2012). PubMed PMC
Wang X., Peng W., Ren J., Hu Z., Xu J., Lou Z., Li X., Yin W., Shen X., Porta C., Walter T. S., Evans G., Axford D., Owen R., Rowlands D. J., Wang J., Stuart D. I., Fry E. E., Rao Z., A sensor-adaptor mechanism for enterovirus uncoating from structures of EV71. Nat. Struct. Mol. Biol. 19, 424–429 (2012). PubMed PMC
Organtini L. J., Shingler K. L., Ashley R. E., Capaldi E. A., Durrani K., Dryden K. A., Makhov A. M., Conway J. F., Pizzorno M. C., Hafenstein S., Honey bee deformed wing virus structures reveal that conformational changes accompany genome release. J. Virol. 91, e01795-16 (2017). PubMed PMC
Giranda V. L., Heinz B. A., Oliveira M. A., Minor I., Kim K. H., Kolatkar P. R., Rossmann M. G., Rueckert R. R., Acid-induced structural changes in human rhinovirus 14: Possible role in uncoating. Proc. Natl. Acad. Sci. U.S.A. 89, 10213–10217 (1992). PubMed PMC
Lin J., Lee L. Y., Roivainen M., Filman D. J., Hogle J. M., Belnap D. M., Structure of the Fab-labeled "breathing" state of native poliovirus. J. Virol. 86, 5959–5962 (2012). PubMed PMC
Li Q., Yafal A. G., Lee Y. M., Hogle J., Chow M., Poliovirus neutralization by antibodies to internal epitopes of VP4 and VP1 results from reversible exposure of these sequences at physiological temperature. J. Virol. 68, 3965–3970 (1994). PubMed PMC
Katpally U., Fu T.-M., Freed D. C., Casimiro D. R., Smith T. J., Antibodies to the buried N terminus of rhinovirus VP4 exhibit cross-serotypic neutralization. J. Virol. 83, 7040–7048 (2009). PubMed PMC
Bakker S. E., Groppelli E., Pearson A. R., Stockley P. G., Rowlands D. J., Ranson N. A., Limits of structural plasticity in a picornavirus capsid revealed by a massively expanded equine rhinitis A virus particle. J. Virol. 88, 6093–6099 (2014). PubMed PMC
Harutyunyan S., Kumar M., Sedivy A., Subirats X., Kowalski H., Köhler G., Blaas D., Viral uncoating is directional: Exit of the genomic RNA in a common cold virus starts with the poly-(A) tail at the 3′-end. PLOS Pathog. 9, e1003270 (2013). PubMed PMC
Pickl-Herk A., Luque D., Vives-Adrián L., Querol-Audí J., Garriga D., Trus B. L., Verdaguer N., Blaas D., Castón J. R., Uncoating of common cold virus is preceded by RNA switching as determined by X-ray and cryo-EM analyses of the subviral A-particle. Proc. Natl. Acad. Sci. U.S.A. 110, 20063–20068 (2013). PubMed PMC
Buchta D., Füzik T., Hrebík D., Levdansky Y., Sukeník L., Mukhamedova L., Moravcová J., Vácha R., Plevka P., Enterovirus particles expel capsid pentamers to enable genome release. Nat. Commun. 10, 1138 (2019). PubMed PMC
Mullapudi E., Füzik T., Přidal A., Plevka P., Cryo-electron Microscopy Study of the Genome Release of the Dicistrovirus Israeli Acute Bee Paralysis Virus. J. Virol. 91, e02060-16 (2017). PubMed PMC
Jiang P., Liu Y., Ma H.-C., Paul A. V., Wimmer E., Picornavirus morphogenesis. Microbiol. Mol. Biol. Rev. 78, 418–437 (2014). PubMed PMC
Fout G. S., Medappa K. C., Mapoles J. E., Rueckert R. R., Radiochemical determination of polyamines in poliovirus and human rhinovirus 14. J. Biol. Chem. 259, 3639–3643 (1984). PubMed
Mounce B. C., Olsen M. E., Vignuzzi M., Connor J. H., Polyamines and their role in virus infection. Microbiol. Mol. Biol. Rev. 81, e00029-17 (2017). PubMed PMC
Bostina M., Levy H., Filman D. J., Hogle J. M., Poliovirus RNA is released from the capsid near a twofold symmetry axis. J. Virol. 85, 776–783 (2011). PubMed PMC
Belnap D. M., Filman D. J., Trus B. L., Cheng N., Booy F. P., Conway J. F., Curry S., Hiremath C. N., Tsang S. K., Steven A. C., Hogle J. M., Molecular tectonic model of virus structural transitions: The putative cell entry states of poliovirus. J. Virol. 74, 1342–1354 (2000). PubMed PMC
Hadfield A. T., Lee W. m., Zhao R., Oliveira M. A., Minor I., Rueckert R. R., Rossmann M. G., The refined structure of human rhinovirus 16 at 2.15 Å resolution: Implications for the viral life cycle. Structure 5, 427–441 (1997). PubMed
Shingler K. L., Yoder J. L., Carnegie M. S., Ashley R. E., Makhov A. M., Conway J. F., Hafenstein S., The enterovirus 71 A-particle forms a gateway to allow genome release: A cryoEM study of picornavirus uncoating. PLOS Pathog. 9, e1003240 (2013). PubMed PMC
Groppelli E., Levy H. C., Sun E., Strauss M., Nicol C., Gold S., Zhuang X., Tuthill T. J., Hogle J. M., Rowlands D. J., Picornavirus RNA is protected from cleavage by ribonuclease during virion uncoating and transfer across cellular and model membranes. PLOS Pathog. 13, e1006197 (2017). PubMed PMC
Blaas D., Viral entry pathways: The example of common cold viruses. Wien. Med. Wochenschr. 166, 211–226 (2016). PubMed PMC
Prchla E., Kuechler E., Blaas D., Fuchs R., Uncoating of human rhinovirus serotype 2 from late endosomes. J. Virol. 68, 3713–3723 (1994). PubMed PMC
Bilek G., Matscheko N. M., Pickl-Herk A., Weiss V. U., Subirats X., Kenndler E., Blaas D., Liposomal nanocontainers as models for viral infection: Monitoring viral genomic RNA transfer through lipid membranes. J. Virol. 85, 8368–8375 (2011). PubMed PMC
Tosteson M. T., Chow M., Characterization of the ion channels formed by poliovirus in planar lipid membranes. J. Virol. 71, 507–511 (1997). PubMed PMC
Tosteson M. T., Wang H., Naumov A., Chow M., Poliovirus binding to its receptor in lipid bilayers results in particle-specific, temperature-sensitive channels. J. Gen. Virol. 85, 1581–1589 (2004). PubMed
Bayer N., Prchla E., Schwab M., Blaas D., Fuchs R., Human rhinovirus HRV14 uncoats from early endosomes in the presence of bafilomycin. FEBS Lett. 463, 175–178 (1999). PubMed
Sánchez-Eugenia R., Durana A., López-Marijuan I., Marti G. A., Guérin D. M. A., X-ray structure of Triatoma virus empty capsid: Insights into the mechanism of uncoating and RNA release in dicistroviruses. J. Gen. Virol. 97, 2769–2779 (2016). PubMed
Procházková M., Škubník K., Füzik T., Mukhamedova L., Přidal A., Plevka P., Virion structures and genome delivery of honeybee viruses. Curr. Opin. Virol. 45, 17–24 (2020). PubMed
Zheng S. Q., Palovcak E., Armache J.-P., Verba K. A., Cheng Y., Agard D. A., MotionCor2: Anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017). PubMed PMC
Zhang K., Gctf: Real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016). PubMed PMC
Tang G., Peng L., Baldwin P. R., Mann D. S., Jiang W., Rees I., Ludtke S. J., EMAN2: An extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38–46 (2007). PubMed
Scheres S. H. W., RELION: Implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012). PubMed PMC
de la Rosa-Trevín J. M., Otón J., Marabini R., Zaldívar A., Vargas J., Carazo J. M., Sorzano C. O. S., Xmipp 3.0: An improved software suite for image processing in electron microscopy. J. Struct. Biol. 184, 321–328 (2013). PubMed
Stenqvist B., Thuresson A., Kurut A., Vácha R., Lund M., Faunus– a flexible framework for Monte Carlo simulation. Mol. Simul. 39, 1233–1239 (2013).
J. N. Israelachvili, Intermolecular and Surface Forces (Intermolecular and surface forces: revised ed. 3, 2011).
V. S. Bagotsky, Fundamentals of Electrochemistry (John Wiley & Sons, 2005), vol. 44.
Lund M., Åkesson T., Jönsson B., Enhanced protein adsorption due to charge regulation. Langmuir 21, 8385–8388 (2005). PubMed
Marrink S. J., Risselada H. J., Yefimov S., Tieleman D. P., de Vries A. H., The MARTINI force field: Coarse grained model for biomolecular simulations. J. Phys. Chem. B 111, 7812–7824 (2007). PubMed
Monticelli L., Kandasamy S. K., Periole X., Larson R. G., Tieleman D. P., Marrink S.-J., The MARTINI coarse-grained force field: Extension to proteins. J. Chem. Theory Comput. 4, 819–834 (2008). PubMed
de Jong D. H., Singh G., Bennett W. F. D., Arnarez C., Wassenaar T. A., Schäfer L. V., Periole X., Tieleman D. P., Marrink S. J., Improved parameters for the martini coarse-grained protein force field. J. Chem. Theory Comput. 9, 687–697 (2013). PubMed
Kabsch W., Sander C., Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637 (1983). PubMed
Bussi G., Donadio D., Parrinello M., Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007). PubMed
Parrinello M., Rahman A., Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 52, 7182–7190 (1981).
Kumar S., Rosenberg J. M., Bouzida D., Swendsen R. H., Kollman P. A., THE weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J. Comput. Chem. 13, 1011–1021 (1992).
Zhang C., Lai C.-L., Pettitt B. M., Accelerating the weighted histogram analysis method by direct inversion in the iterative subspace. Mol. Simul. 42, 1079–1089 (2016). PubMed PMC
Weeks J. D., Chandler D., Andersen H. C., Role of repulsive forces in determining the equilibrium structure of simple liquids. J. Chem. Phys. 54, 5237–5247 (1971).
Plimpton S., Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).
Dünweg B., Paul W., Brownian dynamics simulations without Gaussian random numbers. Int. J. Mod. Phys. C 02, 817–827 (1991).
Schneider T., Stoll E., Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions. Phys. Rev. B 17, 1302–1322 (1978).
Grønbech-Jensen N., Hayre N. R., Farago O., Application of the G-JF discrete-time thermostat for fast and accurate molecular simulations. Comput. Phys. Commun. 185, 524–527 (2014).