Capsid opening enables genome release of iflaviruses

. 2021 Jan ; 7 (1) : . [epub] 20210101

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33523856

The family Iflaviridae includes economically important viruses of the western honeybee such as deformed wing virus, slow bee paralysis virus, and sacbrood virus. Iflaviruses have nonenveloped virions and capsids organized with icosahedral symmetry. The genome release of iflaviruses can be induced in vitro by exposure to acidic pH, implying that they enter cells by endocytosis. Genome release intermediates of iflaviruses have not been structurally characterized. Here, we show that conformational changes and expansion of iflavirus RNA genomes, which are induced by acidic pH, trigger the opening of iflavirus particles. Capsids of slow bee paralysis virus and sacbrood virus crack into pieces. In contrast, capsids of deformed wing virus are more flexible and open like flowers to release their genomes. The large openings in iflavirus particles enable the fast exit of genomes from capsids, which decreases the probability of genome degradation by the RNases present in endosomes.

Zobrazit více v PubMed

Brutscher L. M., McMenamin A. J., Flenniken M. L., The buzz about honey bee viruses. PLOS Pathog. 12, e1005757 (2016). PubMed PMC

Bowen-Walker P. L., Martin S. J., Gunn A., The transmission of deformed wing virus between honeybees (Apis melliferaL.) by the ectoparasitic mite Varroa jacobsoniOud. J. Invertebr. Pathol. 73, 101–106 (1999). PubMed

Shen M., Yang X., Cox-Foster D., Cui L., The role of varroa mites in infections of Kashmir bee virus (KBV) and deformed wing virus (DWV) in honey bees. Virology 342, 141–149 (2005). PubMed

Gisder S., Möckel N., Eisenhardt D., Genersch E., In vivo evolution of viral virulence: Switching of deformed wing virus between hosts results in virulence changes and sequence shifts. Environ. Microbiol. 20, 4612–4628 (2018). PubMed

Traynor K. S., Mondet F., de Miranda J. R., Techer M., Kowallik V., Oddie M. A. Y., Chantawannakul P., McAfee A., Varroa destructor: A complex parasite, crippling honey bees worldwide. Trends Parasitol. 36, 592–606 (2020). PubMed

Highfield A. C., Nagar A. E., Mackinder L. C. M., Noël L. M.-L. J., Hall M. J., Martin S. J., Schroeder D. C., Deformed wing virus implicated in overwintering honeybee colony losses. Appl. Environ. Microbiol. 75, 7212–7220 (2009). PubMed PMC

J. R. de Miranda, L. Gauthier, M. Ribiere, Y. P. Chen, Honey Bee Viruses and Their Effect on Bee and Colony Health, in Honey Bee Colony Health: Challenges and Sustainable Solutions, Y. J. Sammataro D., Ed. (CRC Press, Boca Raton, 2012), pp. 71–102.

Dainat B., vanEngelsdorp D., Neumann P., Colony collapse disorder in Europe. Environ. Microbiol. Rep. 4, 123–125 (2012). PubMed

van Engelsdorp D., Hayes J. Jr., Underwood R. M., Pettis J., A survey of honey bee colony losses in the U.S., fall 2007 to spring 2008. PLOS ONE 3, e4071 (2008). PubMed PMC

Smith K. M., Loh E. H., Rostal M. K., Zambrana-Torrelio C. M., Mendiola L., Daszak P., Pathogens, pests, and economics: Drivers of honey bee colony declines and losses. Ecohealth 10, 434–445 (2013). PubMed

Allsopp M. H., de Lange W. J., Veldtman R., Valuing insect pollination services with cost of replacement. PLOS ONE 3, e3128 (2008). PubMed PMC

Biesmeijer J. C., Roberts S. P. M., Reemer M., Ohlemüller R., Edwards M., Peeters T., Schaffers A. P., Potts S. G., Kleukers R., Thomas C. D., Settele J., Kunin W. E., Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313, 351–354 (2006). PubMed

Škubnik K., Nováček J., Füzik T., Přidal A., Paxton R. J., Plevka P., Structure of deformed wing virus, a major honey bee pathogen. Proc. Natl. Acad. Sci. U.S.A. 114, 3210–3215 (2017). PubMed PMC

Procházková M., Füzik T., Škubník K., Moravcová J., Ubiparip Z., Přidal A., Plevka P., Virion structure and genome delivery mechanism of sacbrood honeybee virus. Proc. Natl. Acad. Sci. U.S.A. 115, 7759–7764 (2018). PubMed PMC

Kalynych S., Füzik T., Přidal A., de Miranda J., Plevka P., Cryo-EM study of slow bee paralysis virus at low pH reveals iflavirus genome release mechanism. Proc. Natl. Acad. Sci. U.S.A. 114, 598–603 (2017). PubMed PMC

Kalynych S., Přidal A., Pálková L., Levdansky Y., de Miranda J. R., Plevka P., Virion structure of iflavirus slow bee paralysis virus at 2.6-angstrom resolution. J. Virol. 90, 7444–7455 (2016). PubMed PMC

Lanzi G., de Miranda J. R., Boniotti M. B., Cameron C. E., Lavazza A., Capucci L., Camazine S. M., Rossi C., Molecular and biological characterization of deformed wing virus of honeybees (Apis mellifera L.). J. Virol. 80, 4998–5009 (2006). PubMed PMC

Ghosh R. C., Ball B. V., Willcocks M. M., Carter M. J., The nucleotide sequence of sacbrood virus of the honey bee: An insect picorna-like virus. J. Gen. Virol. 80 ( Pt. 6), 1541–1549 (1999). PubMed

de Miranda J. R., Dainat B., Locke B., Cordoni G., Berthoud H., Gauthier L., Neumann P., Budge G. E., Ball B. V., Stoltz D. B., Genetic characterization of slow bee paralysis virus of the honeybee (Apis mellifera L.). J. Gen. Virol. 91, 2524–2530 (2010). PubMed

Bergelson J. M., Coyne C. B., Picornavirus entry. Adv. Exp. Med. Biol. 790, 24–41 (2013). PubMed

Fuchs R., Blaas D., Productive entry pathways of human rhinoviruses. Adv. Virol. 2012, 826301 (2012). PubMed PMC

Tuthill T. J., Groppelli E., Hogle J. M., Rowlands D. J., Picornaviruses. Curr. Top. Microbiol. Immunol. 343, 43–89 (2010). PubMed PMC

Ren J., Wang X., Hu Z., Gao Q., Sun Y., Li X., Porta C., Walter T. S., Gilbert R. J., Zhao Y., Axford D., Williams M., Auley K. M., Rowlands D. J., Yin W., Wang J., Stuart D. I., Rao Z., Fry E. E., Picornavirus uncoating intermediate captured in atomic detail. Nat. Commun. 4, 1929 (2013). PubMed PMC

Levy H. C., Bostina M., Filman D. J., Hogle J. M., Catching a virus in the act of RNA release: A novel poliovirus uncoating intermediate characterized by cryo-electron microscopy. J. Virol. 84, 4426–4441 (2010). PubMed PMC

Garriga D., Pickl-Herk A., Luque D., Wruss J., Castón J. R., Blaas D., Verdaguer N., Insights into minor group rhinovirus uncoating: The x-ray structure of the HRV2 empty capsid. PLOS Pathog. 8, e1002473 (2012). PubMed PMC

Wang X., Peng W., Ren J., Hu Z., Xu J., Lou Z., Li X., Yin W., Shen X., Porta C., Walter T. S., Evans G., Axford D., Owen R., Rowlands D. J., Wang J., Stuart D. I., Fry E. E., Rao Z., A sensor-adaptor mechanism for enterovirus uncoating from structures of EV71. Nat. Struct. Mol. Biol. 19, 424–429 (2012). PubMed PMC

Organtini L. J., Shingler K. L., Ashley R. E., Capaldi E. A., Durrani K., Dryden K. A., Makhov A. M., Conway J. F., Pizzorno M. C., Hafenstein S., Honey bee deformed wing virus structures reveal that conformational changes accompany genome release. J. Virol. 91, e01795-16 (2017). PubMed PMC

Giranda V. L., Heinz B. A., Oliveira M. A., Minor I., Kim K. H., Kolatkar P. R., Rossmann M. G., Rueckert R. R., Acid-induced structural changes in human rhinovirus 14: Possible role in uncoating. Proc. Natl. Acad. Sci. U.S.A. 89, 10213–10217 (1992). PubMed PMC

Lin J., Lee L. Y., Roivainen M., Filman D. J., Hogle J. M., Belnap D. M., Structure of the Fab-labeled "breathing" state of native poliovirus. J. Virol. 86, 5959–5962 (2012). PubMed PMC

Li Q., Yafal A. G., Lee Y. M., Hogle J., Chow M., Poliovirus neutralization by antibodies to internal epitopes of VP4 and VP1 results from reversible exposure of these sequences at physiological temperature. J. Virol. 68, 3965–3970 (1994). PubMed PMC

Katpally U., Fu T.-M., Freed D. C., Casimiro D. R., Smith T. J., Antibodies to the buried N terminus of rhinovirus VP4 exhibit cross-serotypic neutralization. J. Virol. 83, 7040–7048 (2009). PubMed PMC

Bakker S. E., Groppelli E., Pearson A. R., Stockley P. G., Rowlands D. J., Ranson N. A., Limits of structural plasticity in a picornavirus capsid revealed by a massively expanded equine rhinitis A virus particle. J. Virol. 88, 6093–6099 (2014). PubMed PMC

Harutyunyan S., Kumar M., Sedivy A., Subirats X., Kowalski H., Köhler G., Blaas D., Viral uncoating is directional: Exit of the genomic RNA in a common cold virus starts with the poly-(A) tail at the 3′-end. PLOS Pathog. 9, e1003270 (2013). PubMed PMC

Pickl-Herk A., Luque D., Vives-Adrián L., Querol-Audí J., Garriga D., Trus B. L., Verdaguer N., Blaas D., Castón J. R., Uncoating of common cold virus is preceded by RNA switching as determined by X-ray and cryo-EM analyses of the subviral A-particle. Proc. Natl. Acad. Sci. U.S.A. 110, 20063–20068 (2013). PubMed PMC

Buchta D., Füzik T., Hrebík D., Levdansky Y., Sukeník L., Mukhamedova L., Moravcová J., Vácha R., Plevka P., Enterovirus particles expel capsid pentamers to enable genome release. Nat. Commun. 10, 1138 (2019). PubMed PMC

Mullapudi E., Füzik T., Přidal A., Plevka P., Cryo-electron Microscopy Study of the Genome Release of the Dicistrovirus Israeli Acute Bee Paralysis Virus. J. Virol. 91, e02060-16 (2017). PubMed PMC

Jiang P., Liu Y., Ma H.-C., Paul A. V., Wimmer E., Picornavirus morphogenesis. Microbiol. Mol. Biol. Rev. 78, 418–437 (2014). PubMed PMC

Fout G. S., Medappa K. C., Mapoles J. E., Rueckert R. R., Radiochemical determination of polyamines in poliovirus and human rhinovirus 14. J. Biol. Chem. 259, 3639–3643 (1984). PubMed

Mounce B. C., Olsen M. E., Vignuzzi M., Connor J. H., Polyamines and their role in virus infection. Microbiol. Mol. Biol. Rev. 81, e00029-17 (2017). PubMed PMC

Bostina M., Levy H., Filman D. J., Hogle J. M., Poliovirus RNA is released from the capsid near a twofold symmetry axis. J. Virol. 85, 776–783 (2011). PubMed PMC

Belnap D. M., Filman D. J., Trus B. L., Cheng N., Booy F. P., Conway J. F., Curry S., Hiremath C. N., Tsang S. K., Steven A. C., Hogle J. M., Molecular tectonic model of virus structural transitions: The putative cell entry states of poliovirus. J. Virol. 74, 1342–1354 (2000). PubMed PMC

Hadfield A. T., Lee W. m., Zhao R., Oliveira M. A., Minor I., Rueckert R. R., Rossmann M. G., The refined structure of human rhinovirus 16 at 2.15 Å resolution: Implications for the viral life cycle. Structure 5, 427–441 (1997). PubMed

Shingler K. L., Yoder J. L., Carnegie M. S., Ashley R. E., Makhov A. M., Conway J. F., Hafenstein S., The enterovirus 71 A-particle forms a gateway to allow genome release: A cryoEM study of picornavirus uncoating. PLOS Pathog. 9, e1003240 (2013). PubMed PMC

Groppelli E., Levy H. C., Sun E., Strauss M., Nicol C., Gold S., Zhuang X., Tuthill T. J., Hogle J. M., Rowlands D. J., Picornavirus RNA is protected from cleavage by ribonuclease during virion uncoating and transfer across cellular and model membranes. PLOS Pathog. 13, e1006197 (2017). PubMed PMC

Blaas D., Viral entry pathways: The example of common cold viruses. Wien. Med. Wochenschr. 166, 211–226 (2016). PubMed PMC

Prchla E., Kuechler E., Blaas D., Fuchs R., Uncoating of human rhinovirus serotype 2 from late endosomes. J. Virol. 68, 3713–3723 (1994). PubMed PMC

Bilek G., Matscheko N. M., Pickl-Herk A., Weiss V. U., Subirats X., Kenndler E., Blaas D., Liposomal nanocontainers as models for viral infection: Monitoring viral genomic RNA transfer through lipid membranes. J. Virol. 85, 8368–8375 (2011). PubMed PMC

Tosteson M. T., Chow M., Characterization of the ion channels formed by poliovirus in planar lipid membranes. J. Virol. 71, 507–511 (1997). PubMed PMC

Tosteson M. T., Wang H., Naumov A., Chow M., Poliovirus binding to its receptor in lipid bilayers results in particle-specific, temperature-sensitive channels. J. Gen. Virol. 85, 1581–1589 (2004). PubMed

Bayer N., Prchla E., Schwab M., Blaas D., Fuchs R., Human rhinovirus HRV14 uncoats from early endosomes in the presence of bafilomycin. FEBS Lett. 463, 175–178 (1999). PubMed

Sánchez-Eugenia R., Durana A., López-Marijuan I., Marti G. A., Guérin D. M. A., X-ray structure of Triatoma virus empty capsid: Insights into the mechanism of uncoating and RNA release in dicistroviruses. J. Gen. Virol. 97, 2769–2779 (2016). PubMed

Procházková M., Škubník K., Füzik T., Mukhamedova L., Přidal A., Plevka P., Virion structures and genome delivery of honeybee viruses. Curr. Opin. Virol. 45, 17–24 (2020). PubMed

Zheng S. Q., Palovcak E., Armache J.-P., Verba K. A., Cheng Y., Agard D. A., MotionCor2: Anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017). PubMed PMC

Zhang K., Gctf: Real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016). PubMed PMC

Tang G., Peng L., Baldwin P. R., Mann D. S., Jiang W., Rees I., Ludtke S. J., EMAN2: An extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38–46 (2007). PubMed

Scheres S. H. W., RELION: Implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012). PubMed PMC

de la Rosa-Trevín J. M., Otón J., Marabini R., Zaldívar A., Vargas J., Carazo J. M., Sorzano C. O. S., Xmipp 3.0: An improved software suite for image processing in electron microscopy. J. Struct. Biol. 184, 321–328 (2013). PubMed

Stenqvist B., Thuresson A., Kurut A., Vácha R., Lund M., Faunus– a flexible framework for Monte Carlo simulation. Mol. Simul. 39, 1233–1239 (2013).

J. N. Israelachvili, Intermolecular and Surface Forces (Intermolecular and surface forces: revised ed. 3, 2011).

V. S. Bagotsky, Fundamentals of Electrochemistry (John Wiley & Sons, 2005), vol. 44.

Lund M., Åkesson T., Jönsson B., Enhanced protein adsorption due to charge regulation. Langmuir 21, 8385–8388 (2005). PubMed

Marrink S. J., Risselada H. J., Yefimov S., Tieleman D. P., de Vries A. H., The MARTINI force field: Coarse grained model for biomolecular simulations. J. Phys. Chem. B 111, 7812–7824 (2007). PubMed

Monticelli L., Kandasamy S. K., Periole X., Larson R. G., Tieleman D. P., Marrink S.-J., The MARTINI coarse-grained force field: Extension to proteins. J. Chem. Theory Comput. 4, 819–834 (2008). PubMed

de Jong D. H., Singh G., Bennett W. F. D., Arnarez C., Wassenaar T. A., Schäfer L. V., Periole X., Tieleman D. P., Marrink S. J., Improved parameters for the martini coarse-grained protein force field. J. Chem. Theory Comput. 9, 687–697 (2013). PubMed

Kabsch W., Sander C., Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637 (1983). PubMed

Bussi G., Donadio D., Parrinello M., Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007). PubMed

Parrinello M., Rahman A., Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 52, 7182–7190 (1981).

Kumar S., Rosenberg J. M., Bouzida D., Swendsen R. H., Kollman P. A., THE weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J. Comput. Chem. 13, 1011–1021 (1992).

Zhang C., Lai C.-L., Pettitt B. M., Accelerating the weighted histogram analysis method by direct inversion in the iterative subspace. Mol. Simul. 42, 1079–1089 (2016). PubMed PMC

Weeks J. D., Chandler D., Andersen H. C., Role of repulsive forces in determining the equilibrium structure of simple liquids. J. Chem. Phys. 54, 5237–5247 (1971).

Plimpton S., Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

Dünweg B., Paul W., Brownian dynamics simulations without Gaussian random numbers. Int. J. Mod. Phys. C 02, 817–827 (1991).

Schneider T., Stoll E., Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions. Phys. Rev. B 17, 1302–1322 (1978).

Grønbech-Jensen N., Hayre N. R., Farago O., Application of the G-JF discrete-time thermostat for fast and accurate molecular simulations. Comput. Phys. Commun. 185, 524–527 (2014).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...