Cryo-EM study of slow bee paralysis virus at low pH reveals iflavirus genome release mechanism

. 2017 Jan 17 ; 114 (3) : 598-603. [epub] 20170104

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28053231

Viruses from the family Iflaviridae are insect pathogens. Many of them, including slow bee paralysis virus (SBPV), cause lethal diseases in honeybees and bumblebees, resulting in agricultural losses. Iflaviruses have nonenveloped icosahedral virions containing single-stranded RNA genomes. However, their genome release mechanism is unknown. Here, we show that low pH promotes SBPV genome release, indicating that the virus may use endosomes to enter host cells. We used cryo-EM to study a heterogeneous population of SBPV virions at pH 5.5. We determined the structures of SBPV particles before and after genome release to resolutions of 3.3 and 3.4 Å, respectively. The capsids of SBPV virions in low pH are not expanded. Thus, SBPV does not appear to form "altered" particles with pores in their capsids before genome release, as is the case in many related picornaviruses. The egress of the genome from SBPV virions is associated with a loss of interpentamer contacts mediated by N-terminal arms of VP2 capsid proteins, which result in the expansion of the capsid. Pores that are 7 Å in diameter form around icosahedral threefold symmetry axes. We speculate that they serve as channels for the genome release. Our findings provide an atomic-level characterization of the genome release mechanism of iflaviruses.

Zobrazit více v PubMed

Chen YP, Pettis JS, Collins A, Feldlaufer MF. Prevalence and transmission of honeybee viruses. Appl Environ Microbiol. 2006;72(1):606–611. PubMed PMC

Bailey L, Woods RD. Three previously undescribed viruses from the honey bee. J Gen Virol. 1974;25(2):175–186. PubMed

Carreck NLBB, Wilson JK, Allen MF. 2005. The epidemiology of slow paralysis virus in honey bee colonies infested by Varroa destructor in the UK. Proceedings of XXXIXth International Apicultural Congress (Document Transformation Technologies, Dublin), pp 32–33.

Wilfert L, et al. Deformed wing virus is a recent global epidemic in honeybees driven by Varroa mites. Science. 2016;351(6273):594–597. PubMed

Santillan-Galicia MT, Ball BV, Clark SJ, Alderson PG. Transmission of deformed wing virus and slow paralysis virus to adult bees (Apis mellifera L.) by Varroa destructor. J Apic Res. 2010;49(2):141–148.

Fürst MA, McMahon DP, Osborne JL, Paxton RJ, Brown MJ. Disease associations between honeybees and bumblebees as a threat to wild pollinators. Nature. 2014;506(7488):364–366. PubMed PMC

Allsopp MH, de Lange WJ, Veldtman R. Valuing insect pollination services with cost of replacement. PLoS One. 2008;3(9):e3128. PubMed PMC

Biesmeijer JC, et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science. 2006;313(5785):351–354. PubMed

Van Regenmortel MHV, Fauquet CM, Bishop DHL. Virus Taxonomy: Seventh Report of the International Committee on Taxonomy of Viruses. Academic; San Diego: 1999.

Kalynych S, et al. Virion structure of iflavirus slow bee paralysis virus at 2.6-angstrom resolution. J Virol. 2016;90(16):7444–7455. PubMed PMC

Jiang P, Liu Y, Ma HC, Paul AV, Wimmer E. Picornavirus morphogenesis. Microbiol Mol Biol Rev. 2014;78(3):418–437. PubMed PMC

Tate J, et al. The crystal structure of cricket paralysis virus: The first view of a new virus family. Nat Struct Biol. 1999;6(8):765–774. PubMed

Squires G, et al. Structure of the Triatoma virus capsid. Acta Crystallogr D Biol Crystallogr. 2013;69(Pt 6):1026–1037. PubMed PMC

Fuchs R, Blaas D. Productive entry pathways of human rhinoviruses. Adv Virol. 2012;2012:826301. PubMed PMC

Vázquez-Calvo A, Saiz JC, McCullough KC, Sobrino F, Martín-Acebes MA. Acid-dependent viral entry. Virus Res. 2012;167(2):125–137. PubMed

Neubauer C, Frasel L, Kuechler E, Blaas D. Mechanism of entry of human rhinovirus 2 into HeLa cells. Virology. 1987;158(1):255–258. PubMed

Hogle JM. Poliovirus cell entry: Common structural themes in viral cell entry pathways. Annu Rev Microbiol. 2002;56:677–702. PubMed PMC

Tuthill TJ, Bubeck D, Rowlands DJ, Hogle JM. Characterization of early steps in the poliovirus infection process: Receptor-decorated liposomes induce conversion of the virus to membrane-anchored entry-intermediate particles. J Virol. 2006;80(1):172–180. PubMed PMC

Garriga D, et al. Insights into minor group rhinovirus uncoating: The X-ray structure of the HRV2 empty capsid. PLoS Pathog. 2012;8(1):e1002473. PubMed PMC

Wang X, et al. A sensor-adaptor mechanism for enterovirus uncoating from structures of EV71. Nat Struct Mol Biol. 2012;19(4):424–429. PubMed PMC

Bostina M, Levy H, Filman DJ, Hogle JM. Poliovirus RNA is released from the capsid near a twofold symmetry axis. J Virol. 2011;85(2):776–783. PubMed PMC

Shingler KL, et al. The enterovirus 71 A-particle forms a gateway to allow genome release: A cryoEM study of picornavirus uncoating. PLoS Pathog. 2013;9(3):e1003240. PubMed PMC

Huang Y, Hogle JM, Chow M. Is the 135S poliovirus particle an intermediate during cell entry? J Virol. 2000;74(18):8757–8761. PubMed PMC

Lonberg-Holm K, Gosser LB, Kauer JC. Early alteration of poliovirus in infected cells and its specific inhibition. J Gen Virol. 1975;27(3):329–342. PubMed

Davis MP, et al. Recombinant VP4 of human rhinovirus induces permeability in model membranes. J Virol. 2008;82(8):4169–4174. PubMed PMC

Panjwani A, et al. Capsid protein VP4 of human rhinovirus induces membrane permeability by the formation of a size-selective multimeric pore. PLoS Pathog. 2014;10(8):e1004294. PubMed PMC

Fricks CE, Hogle JM. Cell-induced conformational change in poliovirus: Externalization of the amino terminus of VP1 is responsible for liposome binding. J Virol. 1990;64(5):1934–1945. PubMed PMC

Baxt B, Bachrach HL. Early interactions of foot-and-mouth disease virus with cultured cells. Virology. 1980;104(1):42–55. PubMed

Curry S, et al. Viral RNA modulates the acid sensitivity of foot-and-mouth disease virus capsids. J Virol. 1995;69(1):430–438. PubMed PMC

Tuthill TJ, et al. Equine rhinitis A virus and its low pH empty particle: Clues towards an aphthovirus entry mechanism? PLoS Pathog. 2009;5(10):e1000620. PubMed PMC

Newman JFE, Brown F, Bailey L, Gibbs AJ. Some physico-chemical properties of two honey-bee picornaviruses. J Gen Virol. 1973;19:405–409.

Bailey L, Woods RD. Two more small RNA viruses from honey bees and further observations on Sacbrood and acute bee-paralysis viruses. J Gen Virol. 1977;37:175–182.

Prchla E, Kuechler E, Blaas D, Fuchs R. Uncoating of human rhinovirus serotype 2 from late endosomes. J Virol. 1994;68(6):3713–3723. PubMed PMC

Levy HC, Bostina M, Filman DJ, Hogle JM. Catching a virus in the act of RNA release: A novel poliovirus uncoating intermediate characterized by cryo-electron microscopy. J Virol. 2010;84(9):4426–4441. PubMed PMC

Rossmann MG, et al. Structure of a human common cold virus and functional relationship to other picornaviruses. Nature. 1985;317(6033):145–153. PubMed

Barczyk M, Carracedo S, Gullberg D. Integrins. Cell Tissue Res. 2010;339(1):269–280. PubMed PMC

Jackson T, Mould AP, Sheppard D, King AM. Integrin alphavbeta1 is a receptor for foot-and-mouth disease virus. J Virol. 2002;76(3):935–941. PubMed PMC

Shakeel S, et al. Structural and functional analysis of coxsackievirus A9 integrin αvβ6 binding and uncoating. J Virol. 2013;87(7):3943–3951. PubMed PMC

Ren J, et al. Picornavirus uncoating intermediate captured in atomic detail. Nat Commun. 2013;4:1929. PubMed PMC

Prchla E, Plank C, Wagner E, Blaas D, Fuchs R. Virus-mediated release of endosomal content in vitro: Different behavior of adenovirus and rhinovirus serotype 2. J Cell Biol. 1995;131(1):111–123. PubMed PMC

Shukla A, Padhi AK, Gomes J, Banerjee M. The VP4 peptide of hepatitis A virus ruptures membranes through formation of discrete pores. J Virol. 2014;88(21):12409–12421. PubMed PMC

Marc D, Drugeon G, Haenni AL, Girard M, van der Werf S. Role of myristoylation of poliovirus capsid protein VP4 as determined by site-directed mutagenesis of its N-terminal sequence. EMBO J. 1989;8(9):2661–2668. PubMed PMC

Gautier R, Douguet D, Antonny B, Drin G. HELIQUEST: A web server to screen sequences with specific alpha-helical properties. Bioinformatics. 2008;24(18):2101–2102. PubMed

Sharadadevi A, Sivakamasundari C, Nagaraj R. Amphipathic alpha-helices in proteins: Results from analysis of protein structures. Proteins. 2005;59(4):791–801. PubMed

Segrest JP, Jackson RL, Morrisett JD, Gotto AM., Jr A molecular theory of lipid-protein interactions in the plasma lipoproteins. FEBS Lett. 1974;38(3):247–258. PubMed

Wien MW, Curry S, Filman DJ, Hogle JM. Structural studies of poliovirus mutants that overcome receptor defects. Nat Struct Biol. 1997;4(8):666–674. PubMed

Liu Y, et al. Structure and inhibition of EV-D68, a virus that causes respiratory illness in children. Science. 2015;347(6217):71–74. PubMed PMC

Sharpe HJ, Stevens TJ, Munro S. A comprehensive comparison of transmembrane domains reveals organelle-specific properties. Cell. 2010;142(1):158–169. PubMed PMC

Scheres SH, Chen S. Prevention of overfitting in cryo-EM structure determination. Nat Methods. 2012;9(9):853–854. PubMed PMC

Scheres SH. A Bayesian view on cryo-EM structure determination. J Mol Biol. 2012;415(2):406–418. PubMed PMC

Shaikh TR, et al. SPIDER image processing for single-particle reconstruction of biological macromolecules from electron micrographs. Nat Protoc. 2008;3(12):1941–1974. PubMed PMC

Tang G, et al. EMAN2: An extensible image processing suite for electron microscopy. J Struct Biol. 2007;157(1):38–46. PubMed

Rohou A, Grigorieff N. CTFFIND4: Fast and accurate defocus estimation from electron micrographs. J Struct Biol. 2015;192(2):216–221. PubMed PMC

Pettersen EF, et al. UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–1612. PubMed

Emsley P, Cowtan K. Coot: Model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr. 2004;60(Pt 12 Pt 1):2126–2132. PubMed

Afonine PV, et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr D Biol Crystallogr. 2012;68(Pt 4):352–367. PubMed PMC

Kleywegt GJ, Jones TA. Detection, delineation, measurement and display of cavities in macromolecular structures. Acta Crystallogr D Biol Crystallogr. 1994;50(Pt 2):178–185. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...