Virion structure and genome delivery mechanism of sacbrood honeybee virus
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29987012
PubMed Central
PMC6065027
DOI
10.1073/pnas.1722018115
PII: 1722018115
Knihovny.cz E-zdroje
- Klíčová slova
- genome, honeybee, release, structure, virus,
- MeSH
- endozomy chemie metabolismus virologie MeSH
- genom virový * MeSH
- krystalografie rentgenová MeSH
- RNA-viry * chemie metabolismus MeSH
- včely virologie MeSH
- virion * chemie metabolismus MeSH
- virové plášťové proteiny * chemie metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- virové plášťové proteiny * MeSH
Infection by sacbrood virus (SBV) from the family Iflaviridae is lethal to honey bee larvae but only rarely causes the collapse of honey bee colonies. Despite the negative effect of SBV on honey bees, the structure of its particles and mechanism of its genome delivery are unknown. Here we present the crystal structure of SBV virion and show that it contains 60 copies of a minor capsid protein (MiCP) attached to the virion surface. No similar MiCPs have been previously reported in any of the related viruses from the order Picornavirales. The location of the MiCP coding sequence within the SBV genome indicates that the MiCP evolved from a C-terminal extension of a major capsid protein by the introduction of a cleavage site for a virus protease. The exposure of SBV to acidic pH, which the virus likely encounters during cell entry, induces the formation of pores at threefold and fivefold axes of the capsid that are 7 Å and 12 Å in diameter, respectively. This is in contrast to vertebrate picornaviruses, in which the pores along twofold icosahedral symmetry axes are currently considered the most likely sites for genome release. SBV virions lack VP4 subunits that facilitate the genome delivery of many related dicistroviruses and picornaviruses. MiCP subunits induce liposome disruption in vitro, indicating that they are functional analogs of VP4 subunits and enable the virus genome to escape across the endosome membrane into the cell cytoplasm.
Central European Institute of Technology Masaryk University 625 00 Brno Czech Republic
Central European Institute of Technology Masaryk University 625 00 Brno Czech Republic;
Faculty of Agronomy Mendel University 613 00 Brno Czech Republic
Zobrazit více v PubMed
Ellis JD, Munn PA. The worldwide health status of honey bees. Bee World. 2005;86:88–101.
Breeze TD, Bailey AP, Balcombe KG, Potts SG. Pollination services in the UK: How important are honeybees? Agric Ecosyst Environ. 2011;142:137–143.
Gisder S, Genersch E. Viruses of commercialized insect pollinators. J Invertebr Pathol. 2017;147:51–59. PubMed
Choe S-E, et al. Genetic and phylogenetic analysis of South Korean sacbrood virus isolates from infected honey bees (Apis cerana) Vet Microbiol. 2012;157:32–40. PubMed
Ghosh RC, Ball BV, Willcocks MM, Carter MJ. The nucleotide sequence of sacbrood virus of the honey bee: An insect picorna-like virus. J Gen Virol. 1999;80:1541–1549. PubMed
Rossmann MG, Johnson JE. Icosahedral RNA virus structure. Annu Rev Biochem. 1989;58:533–573. PubMed
Kalynych S, et al. Virion structure of iflavirus slow bee paralysis virus at 2.6-Angstrom resolution. J Virol. 2016;90:7444–7455. PubMed PMC
Škubník K, et al. Structure of deformed wing virus, a major honey bee pathogen. Proc Natl Acad Sci USA. 2017;114:3210–3215. PubMed PMC
Rossmann MG, et al. Structure of a human common cold virus and functional relationship to other picornaviruses. Nature. 1985;317:145–153. PubMed
Harrison SC, Olson AJ, Schutt CE, Winkler FK, Bricogne G. Tomato bushy stunt virus at 2.9-Å resolution. Nature. 1978;276:368–373. PubMed
de Miranda JR, et al. Genetic characterization of slow bee paralysis virus of the honeybee (Apis mellifera L.) J Gen Virol. 2010;91:2524–2530. PubMed
Zhang J, et al. Three-dimensional structure of the Chinese sacbrood bee virus. Sci China C Life Sci. 2001;44:443–448. PubMed
Organtini LJ, et al. Honey bee deformed wing virus structures reveal that conformational changes accompany genome release. J Virol. 2017;91:e01795-16. PubMed PMC
Rueckert RR, Wimmer E. Systematic nomenclature of picornavirus proteins. J Virol. 1984;50:957–959. PubMed PMC
Kalynych S, Füzik T, Přidal A, de Miranda J, Plevka P. Cryo-EM study of slow bee paralysis virus at low pH reveals iflavirus genome release mechanism. Proc Natl Acad Sci USA. 2017;114:598–603. PubMed PMC
Nicklin MJ, Kräusslich HG, Toyoda H, Dunn JJ, Wimmer E. Poliovirus polypeptide precursors: Expression in vitro and processing by exogenous 3C and 2A proteinases. Proc Natl Acad Sci USA. 1987;84:4002–4006. PubMed PMC
Pallai PV, et al. Cleavage of synthetic peptides by purified poliovirus 3C proteinase. J Biol Chem. 1989;264:9738–9741. PubMed
Plevka P, et al. Structure of human enterovirus 71 in complex with a capsid-binding inhibitor. Proc Natl Acad Sci USA. 2013;110:5463–5467. PubMed PMC
Smith TJ, et al. The site of attachment in human rhinovirus 14 for antiviral agents that inhibit uncoating. Science. 1986;233:1286–1293. PubMed
Badger J, et al. Structural analysis of a series of antiviral agents complexed with human rhinovirus 14. Proc Natl Acad Sci USA. 1988;85:3304–3308. PubMed PMC
van Oers MM. Genomics and biology of iflaviruses. In: Johnson K, Agari S, editors. Insect Virology. Caister Academic Press; Poole, UK: 2010. pp. 231–250.
Tate J, et al. The crystal structure of cricket paralysis virus: The first view of a new virus family. Nat Struct Biol. 1999;6:765–774. PubMed
Agirre J, et al. Capsid protein identification and analysis of mature Triatoma virus (TrV) virions and naturally occurring empty particles. Virology. 2011;409:91–101. PubMed
Arnold E, et al. Implications of the picornavirus capsid structure for polyprotein processing. Proc Natl Acad Sci USA. 1987;84:21–25. PubMed PMC
Harber JJ, Bradley J, Anderson CW, Wimmer E. Catalysis of poliovirus VP0 maturation cleavage is not mediated by serine 10 of VP2. J Virol. 1991;65:326–334. PubMed PMC
Spurny R, et al. Virion structure of black queen cell virus, a common honeybee pathogen. J Virol. 2017;91:e02100–e02116. PubMed PMC
Squires G, et al. Structure of the Triatoma virus capsid. Acta Crystallogr D Biol Crystallogr. 2013;69:1026–1037. PubMed PMC
Hogle JM, Chow M, Filman DJ. Three-dimensional structure of poliovirus at 2.9-Å resolution. Science. 1985;229:1358–1365. PubMed
Rossmann MG. Viral cell recognition and entry. Protein Sci. 1994;3:1712–1725. PubMed PMC
Fuchs R, Blaas D. Uncoating of human rhinoviruses. Rev Med Virol. 2010;20:281–297. PubMed
Neubauer C, Frasel L, Kuechler E, Blaas D. Mechanism of entry of human rhinovirus 2 into HeLa cells. Virology. 1987;158:255–258. PubMed
Garriga D, et al. Insights into minor group rhinovirus uncoating: The X-ray structure of the HRV2 empty capsid. PLoS Pathog. 2012;8:e1002473. PubMed PMC
Wang X, et al. A sensor-adaptor mechanism for enterovirus uncoating from structures of EV71. Nat Struct Mol Biol. 2012;19:424–429. PubMed PMC
Geisow MJ, Evans WH. pH in the endosome: Measurements during pinocytosis and receptor-mediated endocytosis. Exp Cell Res. 1984;150:36–46. PubMed
Shingler KL, et al. The enterovirus 71 a-particle forms a gateway to allow genome release: A cryoEM study of picornavirus uncoating. PLoS Pathog. 2013;9:e1003240. PubMed PMC
Lyu K, et al. Human enterovirus 71 uncoating captured at atomic resolution. J Virol. 2014;88:3114–3126. PubMed PMC
Bostina M, Levy H, Filman DJ, Hogle JM. Poliovirus RNA is released from the capsid near a twofold symmetry axis. J Virol. 2011;85:776–783. PubMed PMC
van Meer G, Voelker DR, Feigenson GW. Membrane lipids: Where they are and how they behave. Nat Rev Mol Cell Biol. 2008;9:112–124. PubMed PMC
Panjwani A, et al. Capsid protein VP4 of human rhinovirus induces membrane permeability by the formation of a size-selective multimeric pore. PLoS Pathog. 2014;10:e1004294. PubMed PMC
Danthi P, Tosteson M, Li Q-H, Chow M. Genome delivery and ion channel properties are altered in VP4 mutants of poliovirus. J Virol. 2003;77:5266–5274. PubMed PMC
de Miranda JR, et al. 2013. The COLLOS BEEBOOK: Standard Methods for Apis mellifera Pest and Pathogen Research (IBRA, Treforest, UK)
Scheres SHW. RELION: Implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol. 2012;180:519–530. PubMed PMC