Virion structure and genome delivery mechanism of sacbrood honeybee virus

. 2018 Jul 24 ; 115 (30) : 7759-7764. [epub] 20180709

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29987012

Infection by sacbrood virus (SBV) from the family Iflaviridae is lethal to honey bee larvae but only rarely causes the collapse of honey bee colonies. Despite the negative effect of SBV on honey bees, the structure of its particles and mechanism of its genome delivery are unknown. Here we present the crystal structure of SBV virion and show that it contains 60 copies of a minor capsid protein (MiCP) attached to the virion surface. No similar MiCPs have been previously reported in any of the related viruses from the order Picornavirales. The location of the MiCP coding sequence within the SBV genome indicates that the MiCP evolved from a C-terminal extension of a major capsid protein by the introduction of a cleavage site for a virus protease. The exposure of SBV to acidic pH, which the virus likely encounters during cell entry, induces the formation of pores at threefold and fivefold axes of the capsid that are 7 Å and 12 Å in diameter, respectively. This is in contrast to vertebrate picornaviruses, in which the pores along twofold icosahedral symmetry axes are currently considered the most likely sites for genome release. SBV virions lack VP4 subunits that facilitate the genome delivery of many related dicistroviruses and picornaviruses. MiCP subunits induce liposome disruption in vitro, indicating that they are functional analogs of VP4 subunits and enable the virus genome to escape across the endosome membrane into the cell cytoplasm.

Zobrazit více v PubMed

Ellis JD, Munn PA. The worldwide health status of honey bees. Bee World. 2005;86:88–101.

Breeze TD, Bailey AP, Balcombe KG, Potts SG. Pollination services in the UK: How important are honeybees? Agric Ecosyst Environ. 2011;142:137–143.

Gisder S, Genersch E. Viruses of commercialized insect pollinators. J Invertebr Pathol. 2017;147:51–59. PubMed

Choe S-E, et al. Genetic and phylogenetic analysis of South Korean sacbrood virus isolates from infected honey bees (Apis cerana) Vet Microbiol. 2012;157:32–40. PubMed

Ghosh RC, Ball BV, Willcocks MM, Carter MJ. The nucleotide sequence of sacbrood virus of the honey bee: An insect picorna-like virus. J Gen Virol. 1999;80:1541–1549. PubMed

Rossmann MG, Johnson JE. Icosahedral RNA virus structure. Annu Rev Biochem. 1989;58:533–573. PubMed

Kalynych S, et al. Virion structure of iflavirus slow bee paralysis virus at 2.6-Angstrom resolution. J Virol. 2016;90:7444–7455. PubMed PMC

Škubník K, et al. Structure of deformed wing virus, a major honey bee pathogen. Proc Natl Acad Sci USA. 2017;114:3210–3215. PubMed PMC

Rossmann MG, et al. Structure of a human common cold virus and functional relationship to other picornaviruses. Nature. 1985;317:145–153. PubMed

Harrison SC, Olson AJ, Schutt CE, Winkler FK, Bricogne G. Tomato bushy stunt virus at 2.9-Å resolution. Nature. 1978;276:368–373. PubMed

de Miranda JR, et al. Genetic characterization of slow bee paralysis virus of the honeybee (Apis mellifera L.) J Gen Virol. 2010;91:2524–2530. PubMed

Zhang J, et al. Three-dimensional structure of the Chinese sacbrood bee virus. Sci China C Life Sci. 2001;44:443–448. PubMed

Organtini LJ, et al. Honey bee deformed wing virus structures reveal that conformational changes accompany genome release. J Virol. 2017;91:e01795-16. PubMed PMC

Rueckert RR, Wimmer E. Systematic nomenclature of picornavirus proteins. J Virol. 1984;50:957–959. PubMed PMC

Kalynych S, Füzik T, Přidal A, de Miranda J, Plevka P. Cryo-EM study of slow bee paralysis virus at low pH reveals iflavirus genome release mechanism. Proc Natl Acad Sci USA. 2017;114:598–603. PubMed PMC

Nicklin MJ, Kräusslich HG, Toyoda H, Dunn JJ, Wimmer E. Poliovirus polypeptide precursors: Expression in vitro and processing by exogenous 3C and 2A proteinases. Proc Natl Acad Sci USA. 1987;84:4002–4006. PubMed PMC

Pallai PV, et al. Cleavage of synthetic peptides by purified poliovirus 3C proteinase. J Biol Chem. 1989;264:9738–9741. PubMed

Plevka P, et al. Structure of human enterovirus 71 in complex with a capsid-binding inhibitor. Proc Natl Acad Sci USA. 2013;110:5463–5467. PubMed PMC

Smith TJ, et al. The site of attachment in human rhinovirus 14 for antiviral agents that inhibit uncoating. Science. 1986;233:1286–1293. PubMed

Badger J, et al. Structural analysis of a series of antiviral agents complexed with human rhinovirus 14. Proc Natl Acad Sci USA. 1988;85:3304–3308. PubMed PMC

van Oers MM. Genomics and biology of iflaviruses. In: Johnson K, Agari S, editors. Insect Virology. Caister Academic Press; Poole, UK: 2010. pp. 231–250.

Tate J, et al. The crystal structure of cricket paralysis virus: The first view of a new virus family. Nat Struct Biol. 1999;6:765–774. PubMed

Agirre J, et al. Capsid protein identification and analysis of mature Triatoma virus (TrV) virions and naturally occurring empty particles. Virology. 2011;409:91–101. PubMed

Arnold E, et al. Implications of the picornavirus capsid structure for polyprotein processing. Proc Natl Acad Sci USA. 1987;84:21–25. PubMed PMC

Harber JJ, Bradley J, Anderson CW, Wimmer E. Catalysis of poliovirus VP0 maturation cleavage is not mediated by serine 10 of VP2. J Virol. 1991;65:326–334. PubMed PMC

Spurny R, et al. Virion structure of black queen cell virus, a common honeybee pathogen. J Virol. 2017;91:e02100–e02116. PubMed PMC

Squires G, et al. Structure of the Triatoma virus capsid. Acta Crystallogr D Biol Crystallogr. 2013;69:1026–1037. PubMed PMC

Hogle JM, Chow M, Filman DJ. Three-dimensional structure of poliovirus at 2.9-Å resolution. Science. 1985;229:1358–1365. PubMed

Rossmann MG. Viral cell recognition and entry. Protein Sci. 1994;3:1712–1725. PubMed PMC

Fuchs R, Blaas D. Uncoating of human rhinoviruses. Rev Med Virol. 2010;20:281–297. PubMed

Neubauer C, Frasel L, Kuechler E, Blaas D. Mechanism of entry of human rhinovirus 2 into HeLa cells. Virology. 1987;158:255–258. PubMed

Garriga D, et al. Insights into minor group rhinovirus uncoating: The X-ray structure of the HRV2 empty capsid. PLoS Pathog. 2012;8:e1002473. PubMed PMC

Wang X, et al. A sensor-adaptor mechanism for enterovirus uncoating from structures of EV71. Nat Struct Mol Biol. 2012;19:424–429. PubMed PMC

Geisow MJ, Evans WH. pH in the endosome: Measurements during pinocytosis and receptor-mediated endocytosis. Exp Cell Res. 1984;150:36–46. PubMed

Shingler KL, et al. The enterovirus 71 a-particle forms a gateway to allow genome release: A cryoEM study of picornavirus uncoating. PLoS Pathog. 2013;9:e1003240. PubMed PMC

Lyu K, et al. Human enterovirus 71 uncoating captured at atomic resolution. J Virol. 2014;88:3114–3126. PubMed PMC

Bostina M, Levy H, Filman DJ, Hogle JM. Poliovirus RNA is released from the capsid near a twofold symmetry axis. J Virol. 2011;85:776–783. PubMed PMC

van Meer G, Voelker DR, Feigenson GW. Membrane lipids: Where they are and how they behave. Nat Rev Mol Cell Biol. 2008;9:112–124. PubMed PMC

Panjwani A, et al. Capsid protein VP4 of human rhinovirus induces membrane permeability by the formation of a size-selective multimeric pore. PLoS Pathog. 2014;10:e1004294. PubMed PMC

Danthi P, Tosteson M, Li Q-H, Chow M. Genome delivery and ion channel properties are altered in VP4 mutants of poliovirus. J Virol. 2003;77:5266–5274. PubMed PMC

de Miranda JR, et al. 2013. The COLLOS BEEBOOK: Standard Methods for Apis mellifera Pest and Pathogen Research (IBRA, Treforest, UK)

Scheres SHW. RELION: Implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol. 2012;180:519–530. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Honeybee Iflaviruses Pack Specific tRNA Fragments from Host Cells in Their Virions

. 2022 Sep 05 ; 23 (17) : e202200281. [epub] 20220721

Capsid opening enables genome release of iflaviruses

. 2021 Jan ; 7 (1) : . [epub] 20210101

Zobrazit více v PubMed

PDB
5OYP, 6EIW, 6EGV, 6EGX, 6EH1, 5LSF

GENBANK
KY617033

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace