Cerebellar parcellation in schizophrenia and bipolar disorder

. 2019 Nov ; 140 (5) : 468-476.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, multicentrická studie, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31418816

Grantová podpora
ANR-11-IDEX-0004 Agence Nationale de la Recherche - International
ANR-11-INBS-006 Agence Nationale de la Recherche - International
ANR-14-CE35-0035 Agence Nationale de la Recherche - International
SFB636/C6 and We3638/3-1 Deutsche Forschungsgemeinschaft - International
NV16-32696A Ministerstvo Zdravotnictví Ceské Republiky - International
NV16-32791A Ministerstvo Zdravotnictví Ceské Republiky - International
R01 MH076971 NIMH NIH HHS - United States
159/03 Regione Veneto Italy - International
DGRV n. 4087 Regione Veneto Italy - International

OBJECTIVE: The cerebellum is involved in cognitive processing and emotion control. Cerebellar alterations could explain symptoms of schizophrenia spectrum disorder (SZ) and bipolar disorder (BD). In addition, literature suggests that lithium might influence cerebellar anatomy. Our aim was to study cerebellar anatomy in SZ and BD, and investigate the effect of lithium. METHODS: Participants from 7 centers worldwide underwent a 3T MRI. We included 182 patients with SZ, 144 patients with BD, and 322 controls. We automatically segmented the cerebellum using the CERES pipeline. All outputs were visually inspected. RESULTS: Patients with SZ showed a smaller global cerebellar gray matter volume compared to controls, with most of the changes located to the cognitive part of the cerebellum (Crus II and lobule VIIb). This decrease was present in the subgroup of patients with recent-onset SZ. We did not find any alterations in the cerebellum in patients with BD. However, patients medicated with lithium had a larger size of the anterior cerebellum, compared to patients not treated with lithium. CONCLUSION: Our multicenter study supports a distinct pattern of cerebellar alterations in SZ and BD.

Department of Clinical Psychology and Neuropsychology Johannes Gutenberg University Mainz Germany

Department of Neurosciences and Mental Health Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan Italy

Department of Psychiatry Assistance Publique Hôpitaux de Paris Hôpital Corentin Celton Paris Descartes University Près Sorbonne Paris Cité Issy les Moulineaux France

Department of Psychiatry Dalhousie University Halifax NS Canada

Department of Psychiatry Western Psychiatric Institute and Clinic University of Pittsburgh Pittsburgh PA USA

Fondation Fondamental Créteil France

Grenoble Institute of Neuroscience INSERM U1216 Hôpital Grenoble Alpes Grenoble Alpes University Grenoble France

Institut National de la Santé et de la Recherche Médicale U955 Translational Psychiatry Institut Mondor de Recherche Biomédicale Psychiatrie Créteil France

Instituto Universitario de Tecnologías de la Información y Comunicaciones Universitat Politècnica de València Valencia España

National Institute of Mental Health Klecany Czech Republic

NeuroSpin CEA Paris Saclay University Gif sur Yvette France

Pictura Research Group Unité Mixte de Recherche Centre National de la Recherche Scientifique Laboratoire Bordelais de Recherche en Informatique Centre National de la Recherche Scientifique Talence France

Pictura Research Group Unité Mixte de Recherche Centre National de la Recherche Scientifique Laboratoire Bordelais de Recherche en Informatique University Bordeaux Talence France

Pôle de Psychiatrie Assistance Publique Hôpitaux de Paris Faculté de Médecine de Créteil DHU PePsy Hôpitaux Universitaires Mondor Créteil France

Zobrazit více v PubMed

Li W-K, Hausknecht MJ, Stone P, Mauk MD. Using a million cell simulation of the cerebellum: network scaling and task generality. Neural Netw Off J Int Neural Netw Soc 2013;47:95-102.

Barton RA, Venditti C. Rapid evolution of the cerebellum in humans and other great apes. Curr Biol CB 2014;24:2440-2444.

Leiner HC, Leiner AL, Dow RS. Does the cerebellum contribute to mental skills? Behav Neurosci 1986;100:443-454.

Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain J Neurol 1998;121:561-579.

Guell X, Gabrieli JDE, Schmahmann JD. Triple representation of language, working memory, social and emotion processing in the cerebellum: Convergent evidence from task and seed-based resting-state fMRI analyses in a single large cohort. NeuroImage 2018;172:437-449.

Buckner RL. The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron 2013;80:807-815.

Adamaszek M, D'Agata F, Kirkby KC et al. Impairment of emotional facial expression and prosody discrimination due to ischemic cerebellar lesions. Cerebellum Lond Engl 2014;13:338-345.

Zhou Y, Shi L, Cui X, Wang S, Luo X. Functional connectivity of the caudal anterior cingulate cortex is decreased in Autism. PLoS ONE 2016;11:e0151879.

Schmahmann JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci 2004;16:367-378.

Andreasen NC, Pierson R. The role of the cerebellum in Schizophrenia. Biol Psychiatry 2008;64:81-88.

Moberget T, Doan NT, Alnaes D et al. Cerebellar volume and cerebellocerebral structural covariance in schizophrenia: a multisite mega-analysis of 983 patients and 1349 healthy controls. Mol Psychiatry 2018;23:1512-1520.

Laidi C, d'Albis M-A, Wessa M et al. Cerebellar volume in schizophrenia and bipolar I disorder with and without psychotic features. Acta Psychiatr Scand 2015;131:223-233.

Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BTT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol 2011;106:2322-2345.

Hajek T, Weiner MW. Neuroprotective effects of lithium in human brain? Food for thought Curr Alzheimer Res 2016;13:862-872.

Johnson CP, Christensen GE, Fiedorowicz JG et al. Alterations of the cerebellum and basal ganglia in bipolar disorder mood states detected by quantitative T1ρ mapping. Bipolar Disord 2018;20:381-390.

Johnson CP, Follmer RL, Oguz I et al. Brain abnormalities in bipolar disorder detected by quantitative T1ρ mapping. Mol Psychiatry 2015;20:201-206.

Banwari G, Chaudhary P, Panchmatia A, Patel N. Persistent cerebellar dysfunction following acute lithium toxicity: a report of two cases. Indian J Pharmacol. 2016;48:331-333.

Romero JE, Coupé P, Giraud R et al. CERES: a new cerebellum lobule segmentation method. NeuroImage 2017;147:916-924.

Park MTM, Pipitone J, Baer LH et al. Derivation of high-resolution MRI atlases of the human cerebellum at 3 T and segmentation using multiple automatically generated templates. NeuroImage 2014;95:217-231.

Sarrazin S, d'Albis M-A, McDonald C et al. Corpus callosum area in patients with bipolar disorder with and without psychotic features: an international multicentre study. J Psychiatry Neurosci JPN 2015;40:352-359.

Luo J. Effects of ethanol on the cerebellum: advances and prospects. Cerebellum Lond Engl 2015;14:383-385.

Battistella G, Fornari E, Annoni J-M et al. Long-term effects of cannabis on brain structure. Neuropsychopharmacology 2014;39:2041-2048.

Kubilius J. A framework for streamlining research workflow in neuroscience and psychology. Front Neuroinformatics 2014;7:52.

Ioannidis JPA. Excess significance bias in the literature on brain volume abnormalities. Arch Gen Psychiatry 2011;68:773-780.

Traut N, Beggiato A, Bourgeron T et al. Cerebellar volume in autism: literature meta-analysis and analysis of the autism brain imaging data exchange cohort. Biol Psychiatry 2018;83:579-588.

Gupta T, Dean DJ, Kelley NJ, Bernard JA, Ristanovic I, Mittal VA. Cerebellar transcranial direct current stimulation improves procedural learning in nonclinical psychosis: a double-blind crossover study. Schizophr Bull 2018;44:1373-1380.

Farzan F, Pascual-Leone A, Schmahmann JD, Halko M. Enhancing the temporal complexity of distributed brain networks with patterned cerebellar stimulation. Sci Rep 2016;6:23599.

Hibar DP, Westlye LT, Doan NT et al. Cortical abnormalities in bipolar disorder: an MRI analysis of 6503 individuals from the ENIGMA Bipolar Disorder Working Group. Mol Psychiatry 2018;23:932-942.

Hibar DP, Westlye LT, van Erp TGM et al. Subcortical volumetric abnormalities in bipolar disorder. Mol Psychiatry 2016;21:1710-1716.

Niethammer M, Ford B. Permanent lithium-induced cerebellar toxicity: three cases and review of literature. Mov Disord Off J Mov Disord Soc 2007;22:570-573.

O'Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H. Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex N Y N 1991. 2010,;20:953-965.

Cardenas VA, Studholme C, Gazdzinski S, Durazzo TC, Meyerhoff DJ. Deformation based morphometry of brain changes in alcohol dependence and abstinence. NeuroImage 2007;34:879-887.

Shear PK, Sullivan EV, Lane B, Pfefferbaum A. Mammillary body and cerebellar shrinkage in chronic alcoholics with and without amnesia. Alcohol Clin Exp Res 1996;20:1489-1495.

Carass A, Cuzzocreo JL, Han S et al. Comparing fully automated state-of-the-art cerebellum parcellation from magnetic resonance images. NeuroImage 2018;183:150-172.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...