Metabolism of primary high-grade serous ovarian carcinoma (HGSOC) cells under limited glutamine or glucose availability

. 2024 Sep 16 ; 12 (1) : 27. [epub] 20240916

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39285269

Grantová podpora
324421 Univerzita Karlova v Praze
324421 Univerzita Karlova v Praze
324421 Univerzita Karlova v Praze
NU21-03-00539 Agentura Pro Zdravotnický Výzkum České Republiky

Odkazy

PubMed 39285269
PubMed Central PMC11403878
DOI 10.1186/s40170-024-00355-1
PII: 10.1186/s40170-024-00355-1
Knihovny.cz E-zdroje

BACKGROUND: High-grade serous ovarian carcinoma (HGSOC) is the most common and aggressive subtype of epithelial ovarian carcinoma. It is primarily diagnosed at stage III or IV when the 5-year survival rate ranges between 20% and 40%. Here, we aimed to validate the hypothesis, based on HGSOC cell lines, that proposed the existence of two distinct groups of HGSOC cells with high and low oxidative phosphorylation (OXPHOS) metabolism, respectively, which are associated with their responses to glucose and glutamine withdrawal. METHODS: We isolated and cultivated primary cancer cell cultures from HGSOC and nontransformed ovarian fibroblasts from the surrounding ovarium of 45 HGSOC patients. We tested the metabolic flexibility of the primary cells, particularly in response to glucose and glutamine depletion, analyzed and modulated endoplasmic reticulum stress, and searched for indices of the existence of previously reported groups of HGSOC cells with high and low OXPHOS metabolism. RESULTS: The primary HGSOC cells did not form two groups with high and low OXPHOS that responded differently to glucose and glutamine availabilities in the cell culture medium. Instead, they exhibited a continuum of OXPHOS phenotypes. In most tumor cell isolates, the responses to glucose or glutamine withdrawal were mild and surprisingly correlated with those of nontransformed ovarian fibroblasts from the same patients. The growth of tumor-derived cells in the absence of glucose was positively correlated with the lipid trafficking regulator FABP4 and was negatively correlated with the expression levels of HK2 and HK1. The correlations between the expression of electron transport chain (ETC) proteins and the oxygen consumption rates or extracellular acidification rates were weak. ER stress markers were strongly expressed in all the analyzed tumors. ER stress was further potentiated by tunicamycin but not by the recently proposed ER stress inducers based on copper(II)-phenanthroline complexes. ER stress modulation increased autophagy in tumor cell isolates but not in nontransformed ovarian fibroblasts. CONCLUSIONS: Analysis of the metabolism of primary HGSOC cells rejects the previously proposed hypothesis that there are distinct groups of HGSOC cells with high and low OXPHOS metabolism that respond differently to glutamine or glucose withdrawal and are characterized by ETC protein levels.

Zobrazit více v PubMed

George SH, Garcia R, Slomovitz BM. Ovarian cancer: the fallopian tube as the site of origin and opportunities for prevention. Front Oncol. 2016;6:108. 10.3389/fonc.2016.00108 PubMed DOI PMC

Sopik V, Iqbal J, Rosen B, Narod SA. Why have ovarian cancer mortality rates declined? Part I. Incidence. Gynecol Oncol. 2015;138:741–9. 10.1016/j.ygyno.2015.06.017 PubMed DOI

Wright AA, Bohlke K, Armstrong DK, Bookman MA, Cliby WA, Coleman RL, et al. Neoadjuvant chemotherapy for newly diagnosed, advanced ovarian cancer: Society of Gynecologic Oncology and American Society of Clinical Oncology Clinical Practice Guideline. Gynecol Oncol. 2016;143:3–15. 10.1016/j.ygyno.2016.05.022 PubMed DOI PMC

Gentric G, Kieffer Y, Mieulet V, Goundiam O, Bonneau C, Nemati F, et al. PML-regulated mitochondrial metabolism enhances chemosensitivity in human ovarian cancers. Cell Metab. 2019;29:156–73. 10.1016/j.cmet.2018.09.002 PubMed DOI PMC

Huang L-W, Lin C-Y, Lee C-C, Liu T-Z, Jeng C-J. Overexpression of GRP78 is associated with malignant transformation in epithelial ovarian tumors. Appl Immunohistochem Mol Morphol. 2012;20:381–5. 10.1097/PAI.0b013e3182434113 PubMed DOI

Samanta S, Tamura S, Dubeau L, Mhawech-Fauceglia P, Miyagi Y, Kato H, et al. Clinicopathological significance of endoplasmic reticulum stress proteins in ovarian carcinoma. Sci Rep. 2020;10:2160. 10.1038/s41598-020-59116-x PubMed DOI PMC

Pils D, Horak P, Vanhara P, Anees M, Petz M, Alfanz A, et al. Methylation status of TUSC3 is a prognostic factor in ovarian cancer. Cancer. 2013;119:946–54. 10.1002/cncr.27850 PubMed DOI

Kratochvilova K, Horak P, Esner M, Soucek K, Pils D, Anees M, et al. Tumor suppressor candidate 3 (TUSC3) prevents the epithelial-to-mesenchymal transition and inhibits tumor growth by modulating the endoplasmic reticulum stress response in ovarian cancer cells. Int J Cancer. 2015;137:1330–40. 10.1002/ijc.29502 PubMed DOI

Chen X, Cubillos-Ruiz JR. Endoplasmic reticulum stress signals in the tumour and its micrornvironment. Nat Rev Cancer. 2021;21:71–88. 10.1038/s41568-020-00312-2 PubMed DOI PMC

Huang N, Yu Y, Qiao J. Dual role for the unforlded protein response in the ovary: adaptation and apoptosis. Protein Cell. 2017;8:14–24. 10.1007/s13238-016-0312-3 PubMed DOI PMC

Kyathanahalli C, Organ K, Moreci RS, Anamthathmakula P, Hassan SS, Caritis SN, et al. Uterine endoplasmic reticulum stress-unfolded protein response regulation of gestational length in caspase-3 and-7-dependent. Proc Natl Acad Sci USA. 2015;112:14090–5. 10.1073/pnas.1518309112 PubMed DOI PMC

Chui MH, Doodnauth SA, Erdmann N, Tiedemann RE, Sircoulomb F, Drapkin R, et al. Chromosomal instability and mTORC1 activation through PTEN loss contribute to proteotoxic stress in ovarian carcinoma. Cancer Res. 2019;79:5536–49. 10.1158/0008-5472.CAN-18-3029 PubMed DOI

Moráň L, Pivetta T, Masuri S, Vašíčková K, Walter F, Prehn J, et al. Mixed copper(ii)-phenanthroline complexes induce cell death of ovarian cancer cells by evoking the unfolded protein response. Metallomics. 2019;11:1481–9. 10.1039/c9mt00055k PubMed DOI

Masuri S, Cadoni E, Cabiddu MG, Isaia F, Demuru MG, Moráň L, et al. The first copper(ii) complex with 1,10-phenanthroline and salubrinal with interesting biochemical properties. Metallomics. 2020;12:891–901. 10.1039/d0mt00006j PubMed DOI

Janczar S, Nautiyal J, Xiao Y, Curry E, Sun M, Zanini E, et al. WWOX sensitises ovarian cancer cells to paclitaxel via modulation of the ER stress response. Cell Death Dis. 2017;8:e2955. 10.1038/cddis.2017.346 PubMed DOI PMC

Avril T, Vauléon E, Chevet E. Endoplasmic reticulum stress signaling and chemotherapy resistance in solid cancers. Oncogenesis. 2017;6:e373. 10.1038/oncsis.2017.72 PubMed DOI PMC

Notte A, Rebucci M, Fransolet M, Roegiers E, Genin M, Tellier C, et al. Taxol-induced unfolded protein response activation in breast cancer cells exposed to hypoxia: ATF4 activation regulates autophagy and inhibits apoptosis. Int J Biochem Cell Biol. 2015;62:1–14. 10.1016/j.biocel.2015.02.010 PubMed DOI

Mgaudat NM, Alali FQ, Matalqah SM, Matalka II, Jaradat SA, Al-Sawalha NA, et al. Inhibition of MEK sensitizes paclitaxel-induced apoptosis of human colorectal cancer cells by downregulation of GRP78. Anticancer Drugs. 2009;20:601–6. 10.1097/CAD.0b013e32832e3120 PubMed DOI

Wilson AJ, Lalani AS, Wass E, Saskowski J, Khabele D. Romidepsin (FK228) comined with cisplatin stimulates DNA damage-induced cell death in ovarian cancer. Gynecol Oncol. 2012;127:579–86. 10.1016/j.ygyno.2012.09.016 PubMed DOI PMC

Du Y, Wu J, Zhang H, Li S, Sun H. Reduced expression of SIRT2 in serous ovarian carcinoma promotes cell proliferation through disinhibition of CDK4 expression. Mol Med Rep. 2017;15:1638–46. 10.3892/mmr.2017.6183 PubMed DOI PMC

Li W, Wang W, Dong H, Li Y, Li L, Han L, et al. Cisplatin-induced senescence in ovarian cancer cells is mediated by GRP78. Oncol Rep. 2014;31:2525–34. 10.3892/or.2014.3147 PubMed DOI

Nacarelli T, Fukumoto T, Zunell JA, Fatkhutdinov N, Jean S, Cadungog MG, et al. NAMPT inhibition suppresses cancer stem-like cells associated with therapy-induced senescence in ovarian cancer. Cancer Res. 2020;80:890–900. 10.1158/0008-5472.CAN-19-2830 PubMed DOI PMC

Xiao R, You L, Zhang L, Guo X, Guo E, Zhao F, et al. Inhibiting the IRE1α axis of the unfolded protein response enhances the antitumor effect of AZD1775 in TP53 mutant ovarian cancer. Adv Sci. 2022;9:e2105469.10.1002/advs.202105469 PubMed DOI PMC

Li X, Liu S, Chen X, Huang R, Ma L, Weng H, et al. GnRHa protects the ovarian reserve by reducing endoplasmic reticulum stress during cyclophosphamide-based chemotherapy. NJP Breast Cancer. 2021;7:132.10.1038/s41523-021-00340-7 PubMed DOI PMC

Moon H-S, Kim B, Gwak H, Sun DH, Song YS. Autophagy and protein kinase RNA-like endoplasmic reticulum kinase (PERK)/eukaryotic initiation factor 2 alpha kinase (eIF2α) pathway protect ovarian cancer cells from metformin-induced apoptosis. Mol Carcinog. 2016;55:346–56. 10.1002/mc.22284 PubMed DOI

Shepherd TG, Thériault BL, Campbell EJ, Nachtigal MW. Primary culture of ovarian surface epithelial cells and ascites-derived ovarian cancer cells from patients. Nat Protoc. 2006;1:2643–9. 10.1038/nprot.2006.328 PubMed DOI

Pivetta T, Cannas MD, Demartin F, Castellano C, Vascellari S, Verani G, et al. Synthesis, structural characterization, formation constants and in vitro cytotoxicity of phenanthroline and imidazolidine-2-thione copper(II) complexes. J Inorg Biochem. 2011;105:329–38. 10.1016/j.jinorgbio.2010.11.017 PubMed DOI

Wise DR, Thompson CB. Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci. 2010;35:427–33. 10.1016/j.tibs.2010.05.003 PubMed DOI PMC

Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang X-Y, Pfeiffer HK, et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA. 2008;105:18782–7. 10.1073/pnas.0810199105 PubMed DOI PMC

Yuneva M, Zamboni N, Oefner P, Sachidanandam R, Lazebnik Y. Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. J Cell Biol. 2007;178:93–105. 10.1083/jcb.200703099 PubMed DOI PMC

Pastò A, Pagotto A, Pilotto G, De Paoli A, De Salvo G, Baldoni A, et al. Resistance to glucose starvation as metabolic trait of platinum-resistant human epithelial ovarian cancer cells. Oncotarget. 2017;8:6433–45. 10.18632/oncotarget.14118 PubMed DOI PMC

Dar S, Chhina J, Mert I, Chitale D, Buekers T, Kaur H, et al. Bioenergetic adaptations in chemoresistant ovarian cancer cells. Sci Rep. 2017;7:8760. 10.1038/s41598-017-09206-0 PubMed DOI PMC

Hao J, Yan F, Zhang Y, Triplett A, Zhang Y, Schultz DA, et al. Expression of adipocyte/macrophage fatty acid-binding protein in tumor-associated macrophages promotes breast cancer progression. Cancer Res. 2018;78:2343–55. 10.1158/0008-5472.CAN-17-2465 PubMed DOI PMC

Cui Y, Song M, Kim SY. Prognostic significance of fatty acid binding protein-4 in the invasive ductal carcinoma of the breast. Pathol Int. 2019;69:68–75. 10.1111/pin.12756 PubMed DOI

Šimčíková D, Gardáš D, Hložková K, Hruda M, Žáček P, Rob L, et al. Loss of hexokinase 1 sensitizes ovarian cancer to high-dose metformin. Cancer Metab. 2021;9:41. 10.1186/s40170-021-00277-2 PubMed DOI PMC

Furkan Alkan H, Walter KE, Luengo A, Madreiter-Sokolowski CT, Stryeck S, Lau AN, et al. Cytosolic aspartate availability determines cell survival when glutamine is limiting. Cell Metab. 2018;28:706–20. 10.1016/j.cmet.2018.07.021 PubMed DOI PMC

He L, Wondisford FE. Metformin action: concentrations matter. Cell Metab. 2015;21:159–62. 10.1016/j.cmet.2015.01.003 PubMed DOI

Andrzejewski S, Gravel SP, Pollak M, St-Pierre J. Metformin directly acts on mitochondria to alter cellular bioenergetics. Cancer Metab. 2014;2:12. 10.1186/2049-3002-2-12 PubMed DOI PMC

Griss T, Vincent EE, Egnatchik R, Chen J, Ma EH, Faubert B, et al. Metformin antagonizes cancer cell proliferation by suppressing mitochondrial-dependent biosynthesis. PLoS Biol. 2015;13:e1002309. 10.1371/journal.pbio.1002309 PubMed DOI PMC

Elia I, Haigis MC. Metabolites and the tumour microenvironment: from cellular mechanisms to systemic metabolism. Nat Metab. 2021;3:21–32. 10.1038/s42255-020-00317-z PubMed DOI PMC

Zhou H-H, Chen X, Cai L-Y, Nan X-W, Chen J-H, Chen X-X, et al. Erastin reverses ABCB1-mediated docetaxel resistance in ovarian cancer. Front Oncol. 2019;9:1398. 10.3389/fonc.2019.01398 PubMed DOI PMC

Battaglia AM, Sacco A, Perrotta ID, Faniello MC, Scalise M, Torella D, et al. Iron administration overcomes resistance to erastin-mediated ferroptosis in ovarian cancer cells. Front Oncol. 2022;12:868351. 10.3389/fonc.2022.868351 PubMed DOI PMC

Wang W, Kryczek I, Dostál L, Lin H, Tan L, Zhao L, et al. Effector T cells abrogate stroma-mediated chemoresistance in ovarian cancer. Cell. 2016;165:1092–105. 10.1016/j.cell.2016.04.009 PubMed DOI PMC

Bhattarai KR, Riaz TA, Kim H-R, Chae H-J. The aftermath of the interplay between the endoplasmic reticulum stress response and redox signaling. Exp Mol Med. 2021;53:151–67. 10.1038/s12276-021-00560-8 PubMed DOI PMC

Pivetta T, Trudu F, Valletta E, Isaia F, Castellano C, Demartin F, et al. Novel copper(II) complexes as new promising antitumour agents. A crystal structure of [Cu(1,10-phenanthroline-5,6-dione)2(OH2)(OClO3)](ClO4). J Inorg Biochem. 2014;141:103–13. 10.1016/j.jinorgbio.2014.08.011 PubMed DOI

Qi Z, Chen L. Endoplasmic reticulum stress and autophagy. Adv Exp Med Biol. 2019;1206:167–77. 10.1007/978-981-15-0602-4_8 PubMed DOI

Li Y, Chen Y. AMPK and autophagy. Adv Exp Med Biol. 2019;1206:85–108. 10.1007/978-981-15-0602-4_4 PubMed DOI

Liu Y, Yang Q, Chen S, Li Z, Fu L. Targeting VPS34 in autophagy: an update on pharmacological small-molecule compounds. Eur J Med Chem. 2023;256:115467. 10.1016/j.ejmech.2023.115467 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...