Mammalian enamel maturation: Crystallographic changes prior to tooth eruption

. 2017 ; 12 (2) : e0171424. [epub] 20170214

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28196135

Using the distal molar of a minipig as a model, we studied changes in the microstructural characteristics of apatite crystallites during enamel maturation (16-23 months of postnatal age), and their effects upon the mechanical properties of the enamel coat. The slow rate of tooth development in a pig model enabled us to reveal essential heterochronies in particular components of the maturation process. The maturation changes began along the enamel-dentine junction (EDJ) of the trigonid, spreading subsequently to the outer layers of the enamel coat to appear at the surface zone with a 2-month delay. Correspondingly, at the distal part of the tooth the timing of maturation processes is delayed by 3-5 month compared to the mesial part of the tooth. The early stage of enamel maturation (16-20 months), when the enamel coat is composed almost exclusively of radial prismatic enamel, is characterized by a gradual increase in crystallite thickness (by a mean monthly increment of 3.8 nm); and an increase in the prism width and thickness of crystals composed of elementary crystallites. The late stage of maturation (the last two months prior to tooth eruption), marked with the rapid appearance of the interprismatic matrix (IPM) during which the crystals densely infill spaces between prisms, is characterized by an abrupt decrease in microstrain and abrupt changes in the micromechanical properties of the enamel: a rapid increase in its ability to resist long-term load and its considerable hardening. The results suggest that in terms of crystallization dynamics the processes characterizing the early and late stage of mammalian enamel maturation represent distinct entities. In regards to common features with enamel formation in the tribosphenic molar we argue that the separation of these processes could be a common apomorphy of mammalian amelogenetic dynamics in general.

Zobrazit více v PubMed

Fraser GJ, Cerny R, Soukup V, Bronner-Fraser M, Streelman JT. The odontode explosion: the origin of tooth-like structures in vertebrates. Bioessays. 2010;32(9):808–817. 10.1002/bies.200900151 PubMed DOI PMC

Stock DW. The genetic basis of modularity in the development and evolution of the vertebrate dentition. Philos T Roy Soc B. 2001;356(1414):1633–1653. 10.1098/rstb.2001.0917 PubMed DOI PMC

Thesleff I. Epithelial-mesenchymal signalling regulating tooth morphogenesis. J Cell Sci. 2003;116(9):1647–1648. 10.1242/jcs.00410 PubMed DOI

Tucker A, Sharpe P. The cutting-edge of mammalian development; how the embryo makes teeth. Nat Rev Genet. 2004;5(7):499–508. 10.1038/nrg1380 PubMed DOI

Huysseune A, Sire JY, Witten PE. Evolutionary and developmental origins of the vertebrate dentition. J Anat. 2009;214(4):465–476. 10.1111/j.1469-7580.2009.01053.x PubMed DOI PMC

Nanci A. Ten Cate’s Oral Histology: Development, Structure, and Function. 8th ed Nanci A, editor. St. Louis, Missouri, USA: Mosby; 2008.

Elliott JC, Holcomb DW, Young RA. Infrared determination of the degree of substitution of hydroxyl by carbonate ions in human dental enamel. Calcif Tissue Int. 1985;37(4):372–375. 10.1007/BF02553704 PubMed DOI

Simmer JP, Fincham AG. Molecular mechanisms of dental enamel formation. Crit Rev Oral Biol M. 1995;6(2):84–108. 10.1177/10454411950060020701 PubMed DOI

Glimcher MJ, Friberg UA, Levine PT. The isolation and amino acid composition of the enamel proteins of erupted bovine teeth. Biochem J. 1964;93(1):202–210. 10.1042/bj0930202 PubMed DOI PMC

Robinson C, Lowe NR, Weatherell JA. Amino acid composition, distribution and origin of tuft protein in human and bovine dental enamel. Arch Oral Biol. 1975;20(1):29–42. 10.1016/0003-9969(75)90149-1 PubMed DOI

Duverger O, Ohara T, Shaffer JR, Donahue D, Zerfas P, Dullnig A, et al. Hair keratin mutations in tooth enamel increase dental decay risk. J Clin Invest. 2014;124(12):5219–5224. 10.1172/JCI78272 PubMed DOI PMC

Du C, Falini G, Fermani S, Abbott C, Moradian-Oldak J. Supramolecular assembly of amelogenin nanospheres into birefringent microribbons. Science. 2005;307(5714):1450–1454. 10.1126/science.1105675 PubMed DOI

Boyde A. Enamel In: Oksche A, Vollrath L, editors. Teeth. Sprimger-Verlag: Berlin; 1989. p. 309–473.

Koenigswald Wv, Sander PM. Glossary of terms used for enamel microstructures In: Koenigswald Wv, Sander PM, editors. Tooth enamel microstructure. Rotterdam: A. A. Balkema; 1997. p. 267–280.

Koenigswald Wv. Brief survey of enamel diversity at the schmelzmuster level in Cenozoic placental mammals In: Koenigswald Wv, Sander PM, editors. Tooth enamel microstructure. Rotterdam: A. A. Balkema; 1997. p. 137–161.

Sander PM. Non-mammalian synapsid enamel and the origin of mammalian enamel prisms: the bottom-up perspective In: Koenigswald Wv, Sander PM, editors. Tooth enamel microstructure. Rotterdam: A. A. Balkema; 1997. p. 41–62.

Ganss B, Abbarin N. Maturation and beyond: proteins in the developmental continuum from enamel epithelium to junctional epithelium. Front Physiol. 2014;5(1):371 10.3389/fphys.2014.00371 PubMed DOI PMC

Simmer JP, Papagerakis P, Smith CE, Fisher DC, Rountrey AN, Zheng L, et al. Regulation of dental enamel shape and hardness. J Dent Res. 2010;89(10):1024–1038. 10.1177/0022034510375829 PubMed DOI PMC

Moradian-Oldak J. Protein-mediated enamel mineralization. Front Biosci. 2012;17(6):1996–2023. 10.2741/4034 PubMed DOI PMC

Robinson C, Kirkham J, Briggs HD, Atkinson PJ. Enamel proteins: from secretion to maturation. J Dent Res. 1982;Spec.No.:1490–1495. PubMed

Robinson C, Kirkham J, Brookes SJ, Bonass WA, Shore RC. The chemistry of enamel development. Int J Dev Biol. 1995;39(1):145–152. PubMed

Fincham AG, Moradian-Oldak J, Simmer JP. The structural biology of the developing dental enamel matrix. J Struct Biol. 1999;126(3):270–299. 10.1006/jsbi.1999.4130 PubMed DOI

Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, Oh JS, et al. Intrinsically disordered protein. J Mol Graph Model. 2001;19(1):26–59. 10.1016/S1093-3263(00)00138-8 PubMed DOI

Kawasaki K, Weiss KM. SCPP gene evolution and the dental mineralization continuum. J Dent Res. 2008;87(6):520–531. 10.1177/154405910808700608 PubMed DOI

Wald T, Osičková A, Šulc M, Benada O, Semerádová A, Rezábková L, et al. Intrinsically disordered enamel matrix protein ameloblastin forms ribbon-like supramolecular structures via an N-terminal segment encoded by exon 5. J Biol Chem. 2013;288(31):22333–22345. 10.1074/jbc.M113.456012 PubMed DOI PMC

Kirkham J, Brookes SJ, Shore RC, Bonass WA, Smith DA, Wallwork ML, et al. Atomic force microscopy studies of crystal surface topology during enamel development. Connect Tissue Res. 1998;38(1-4):91–100. 10.3109/03008209809017025 PubMed DOI

Robinson C, Shore RC, Wood SR, Brookes SJ, Smith DAM, Wright JT, et al. Subunit structures in hydroxyapatite crystal development in enamel: implications for amelogenesis imperfecta. Connect Tissue Res. 2003;44(1):65–71. PubMed

Robinson C, Yamamoto K, Connell SD, Kirkham J, Nakagaki H, Smith AD. The effects of fluoride on the nanostructure and surface pK of enamel crystals: an atomic force microscopy study of human and rat enamel. Eur J Oral Sci. 2006;114(s1):99–104. 10.1111/j.1600-0722.2006.00275.x PubMed DOI

Beniash E, Metzler RA, Lam RSK, Gilbert P. Transient amorphous calcium phosphate in forming enamel. J Struct Biol. 2009;166(2):133–143. 10.1016/j.jsb.2009.02.001 PubMed DOI PMC

Cuisinier FJG, Steuer P, Senger B, Voegel JC, Frank RM. Human amelogenesis I: High resolution electron microscopy study of ribbon-like crystals. Calcif Tissue Int. 1992;51(4):259–268. 10.1007/BF00334485 PubMed DOI

Daculsi G, Kerebel B. High-Resolution Electron Microscope Study of Human Enamel Crystallites: Size, Shape, and Growth. J Ultrastruct Res. 1978;65(2):163–172. 10.1016/S0022-5320(78)90053-9 PubMed DOI

Iijima M, Moriwaki Y, Takagi T, Moradian-Oldak J. Effects of bovine amelogenins on the crystal morphology of octacalcium phosphate in a model system of tooth enamel formation. J Cryst Growth. 2001;222(3):615–626. 10.1016/S0022-0248(00)00984-2 DOI

Margolis HC, Kwak SY, Yamazaki H. Role of mineralization inhibitors in the regulation of hard tissue biomineralization: relevance to initial enamel formation and maturation. Front Physiol. 2014;5(339):1–9. 10.3389/fphys.2014.00339 PubMed DOI PMC

Lu Y, Papagerakis P, Yamakoshi Y, Hu JCC, Bartlett JD, Simmer JP. Functions of KLK4 and MMP-20 in dental enamel formation. Biol Chem. 2008;389(6):695–700. 10.1515/BC.2008.080 PubMed DOI PMC

Robinson C. Enamel maturation: a brief background with implications for some enamel dysplasias. Front Physiol. 2014;5 10.3389/fphys.2014.00388 PubMed DOI PMC

Clemens WA. Characterization of enamel microstructure and application of the origins of prismatic structures in systematic analyses In: Koenigswald Wv, Sander PM, editors. Tooth enamel microstructure. Rotterdam: A. A. Balkema; 1997. p. 85–112.

Osborn HF. Evolution of mammalian molar teeth. vol. 1 Osborn HF, editor. New York: Macmillan; 1907.

Jernvall J. Mammalian Molar Cusp Patterns: Development Mechanisms of Diversity. Acta zoologica Fennica. Finnish Zoological and Botanical Pub. Board; 1995.

Evans AR, Sanson GD. The tooth of perfection: functional and spatial constraints on mammalian tooth shape. Biol J Linnean Soc. 2003;78(2):173–191. 10.1046/j.1095-8312.2003.00146.x DOI

Davis BM. Evolution of the tribosphenic molar pattern in early mammals, with comments on the dual-origin hypothesis. J Mammal Evol. 2011;18(4):227–244. 10.1007/s10914-011-9168-8 DOI

Lester KS, Hand SJ. Chiropteran enamel structure. Scanning Microsc. 1987;1(1):421–436. PubMed

Lester KS, Boyde A. Relating developing surface to adult ultrastructure in chiropteran enamel by SEM. Adv Dent Res. 1987;1(2):181–190. 10.1177/08959374870010020601 PubMed DOI

Lucas P, Constantino P, Wood B, Lawn B. Dental enamel as a dietary indicator in mammals. Bioessays. 2008;30(4):374–385. 10.1002/bies.20729 PubMed DOI

Špoutil F, Vlček V, Horáček I. Enamel microarchitecture of a tribosphenic molar. J Morphol. 2010;271(10):1204–1218. 10.1002/jmor.10867 PubMed DOI

Horáček I, Špoutil F. Why tribosphenic? On variation and constraint in developmental dynamics of chiropteran molars In: Gunnell GF, Simmons NB, editors. Evolutionary History of Bats: Fossils, Molecules and Morphology. 2 Cambridge University Press; 2012. p. 410–455.

Štembírek J, Buchtová M, Král T, Matalová E, Lozanoff S, Míšek I. Early morphogenesis of heterodont dentition in minipigs. Eur J Oral Sci. 2010;118(6):547–558. 10.1111/j.1600-0722.2010.00772.x PubMed DOI

Tonge CH, McCance RA. Normal development of the jaws and teeth in pigs, and the delay and malocclusion produced by calorie deficiencies. J Anat. 1973;115(1):1–22. PubMed PMC

Wang F, Xiao J, Cong W, Li A, Song T, Wei F, et al. Morphology and chronology of diphyodont dentition in miniature pigs, Sus Scrofa. Oral Dis. 2014;20(4):367–379. 10.1111/odi.12126 PubMed DOI

Klug HP, Alexander LE. Crystallite size and lattice strains from line broadening In: Klug HP, Alexander LE, editors. X-ray Diffraction procedures for polycrysstalline and amorphous materials. 2nd ed New York, USA: John Wiley and Sons, Inc.; 1974. p. 618–708.

Vodička P, Smetana K, Dvořánková B, Emerick T, Xu YiZ, Ourednik J, et al. The miniature pig as an animal model in biomedical research. Ann N Y Acad Sci. 2005;1049(1):161–171. 10.1196/annals.1334.015 PubMed DOI

Baxa M, Hruska-Plochan M, Juhas S, Vodicka P, Pavlok A, Juhasova J, et al. A transgenic minipig model of Huntington’s disease. J Huntington’s Dis. 2013;2(1):47–68. 10.3233/JHD-130001 PubMed DOI

Planska D, Burocziova M, Strnadel J, Horak V. Immunohistochemical Analysis of Collagen IV and Laminin Expression in Spontaneous Melanoma Regression in the Melanoma-Bearing Libechov Minipig. Acta histochem cytochem. 2015;48(1):15 10.1267/ahc.14020 PubMed DOI PMC

Kallistová A, Skála R, Horáček I, Miyajima N, Malíková R. Influence of sample preparation on the microstructure of tooth enamel apatite. J Appl Crystallogr. 2015;48(3):763–768. 10.1107/S1600576715005208 DOI

Rodríguez-Carvajal J. Recent developments of the program FULLPROF. Commission on powder diffraction, Newsletter. 2001;26:12–19.

Šlouf M, Vacková T, Nevoralová M, Pokorný D. Micromechanical properties of one-step and sequentially crosslinked UHMWPEs for total joint replacements. Polym Test. 2015;41(1):191–197.

Oliver WC, Pharr GM. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J Mater Res. 2004;19(01):3–20. 10.1557/jmr.2004.19.1.3 DOI

Instruments C. 8. Software Formulas. In: Indentation Software Manual R0.1.8. CSM Instruments; 2013. p. 135–148.

Daculsi G, Menanteau J, Kerebel LM, Mitre D. Lenght and Shape of Enamel Crystals. Calcif Tissue Int. 1984;36(1):550–555. 10.1007/BF02405364 PubMed DOI

Robinson C, Brookes SJ, Shore RC, Kirkham J. The developing enamel matrix: nature and function. Eur J Oral Sci. 1998;106(1):282–291. 10.1111/j.1600-0722.1998.tb02188.x PubMed DOI

Sasaki S, Takagi T, Suzuki M. Cyclical changes in pH in bovine developing enamel as sequential bands. Arch Oral Biol. 1991;36(3):227–231. 10.1016/0003-9969(91)90090-H PubMed DOI

Nylen MU, Eanes ED, Omnell K. Crystal growth in rat enamel. J Cell Biol. 1963;18(1):109–123. 10.1083/jcb.18.1.109 PubMed DOI PMC

Cuisinier FJG, Steuer P, Frank RM, Voegel JC. High resolution electron microscopy of young apatite crystals in human fetal enamel. J Biol Buccale. 1990;18(2):149–154. PubMed

Gasse B, Chiari Y, Silvent J, Davit-Béal T, Sire JY. Amelotin: an enamel matrix protein that experienced distinct evolutionary histories in amphibians, sauropsids and mammals. BMC Evol Biol. 2015;15(1):1–16. 10.1186/s12862-015-0329-x PubMed DOI PMC

Fukumoto S, Kiba T, Hall B, Iehara N, Nakamura T, Longenecker G, et al. Ameloblastin is a cell adhesion molecule required for maintaining the differentiation state of ameloblasts. J Cell Biol. 2004;167(5):973–983. 10.1083/jcb.200409077 PubMed DOI PMC

Warshawsky H, Josephsen K, Thylstrup A, Fejerskov O. The Development of Enamel Structure in Rat Incisors as Compared to the Teeth of Monkey and Man. Anat Rec. 1981;200(1):371–399. 10.1002/ar.1092000402 PubMed DOI

Cooper WEG. A microchemical, microradiographic and histological investigation of amelogenesis in the pig. Arch Oral Biol. 1968;13(1):46–48. 10.1016/0003-9969(68)90035-6 PubMed DOI

Vymětal J, Slabỳ I, Spahr A, Vondrášek J, Lyngstadaas SP. Bioinformatic analysis and molecular modelling of human ameloblastin suggest a two-domain intrinsically unstructured calcium-binding protein. Eur J Oral Sci. 2008;116(2):124–134. 10.1111/j.1600-0722.2008.00526.x PubMed DOI

Yoshizaki K, de Vega S, Y Y. Gene evolution and functions of extracellular matrix proteins in teeth. Orthod Waves. 2013;72(1):1–10. 10.1016/j.odw.2013.01.040 PubMed DOI PMC

Kallonen A, Corfe I, Hämäläinen K, Jernvall J. Three-dimensional relationships of enamel prisms, and enamel-and dentine-tubules, studied with synchrotron radiation holotomography. B Int Ass Paleodont. 2014;8(1):103.

Delgado S, Girondot M, Sire JY. Molecular evolution of amelogenin in mammals. J Mol Evol. 2005;60(1):12–30. 10.1007/s00239-003-0070-8 PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Enamel apatite crystallinity significantly contributes to mammalian dental adaptations

. 2018 Apr 03 ; 8 (1) : 5544. [epub] 20180403

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...