Enamel apatite crystallinity significantly contributes to mammalian dental adaptations
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29615748
PubMed Central
PMC5882951
DOI
10.1038/s41598-018-23826-0
PII: 10.1038/s41598-018-23826-0
Knihovny.cz E-zdroje
- MeSH
- apatity chemie MeSH
- fyziologická adaptace * MeSH
- krystalografie MeSH
- miniaturní prasata MeSH
- moláry růst a vývoj MeSH
- prasata MeSH
- prořezávání zubů fyziologie MeSH
- zubní sklovina chemie MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- apatity MeSH
The monophyodont molar teeth, prismatic enamel and the complexity of enamel microarchitecture are regarded as essential dental apomorphies of mammals. As prominent background factors of feeding efficiency and individual longevity these characters are crucial components of mammalian adaptive dynamics. Little is known, however, to which degree these adaptations are influenced by the crystallographic properties of elementary hydroxyapatite crystallites, the only inorganic component of enamel. In a miniature pig where individual molars differ significantly in duration of their development and in enamel resistance to attrition stress, we found highly significant differences between the molars in the size of crystallites, amount of microstrain, crystallinity and in enamel stiffness and elasticity, all clearly scaled with the duration of tooth calcification. The same pattern was found also in red deer bearing different molar type. The results suggest that the prolongation of tooth development is associated with an increase of crystallinity, i.e. the atomic order of enamel hydroxyapatite, an obvious component of micromechanical property of mature enamel. This relation could contribute to prolongation of dental development, characteristic of mammals in general. The aspects of enamel crystallinity, omitted in previous studies on mammalian and vertebrate dental evolution, are to be taken in account in these topics.
Department of Zoology Faculty of Science Charles University Viničná 7 Prague 2 Czech Republic
Institute of Geology of the CAS v v i Rozvojová 269 Prague 6 Czech Republic
Institute of Macromolecular Chemistry of the CAS v v i Heyrovského náměstí 2 Prague 6 Czech Republic
Zobrazit více v PubMed
Pasteris JD, Pasteris JB, Valsami-Jones E. Bone and tooth mineralization: Why apatite? Elements. 2008;4:97–104. doi: 10.2113/GSELEMENTS.4.2.97. DOI
Nanci, A. & Smith, C. Development and calcification of enamel in Calcification in Biological Systems (ed. Bonucci, E.) 314–343 (CRC press, Florida, USA, 1992).
Ruan Q, Moradian-Oldak J. Amelogenin and enamel biomimetics. J. Mater. Chem. B. 2015;3:3112–3129. doi: 10.1039/C5TB00163C. PubMed DOI PMC
Hu JC, Sun X, Zhang C, Simmer JP. A comparison of enamelin and amelogenin expression in developing mouse molars. Eur. J. Oral Sci. 2001;109:125–132. doi: 10.1034/j.1600-0722.2001.00998.x. PubMed DOI
Iwasaki K, et al. Amelotin – a novel secreted, ameloblast-specific protein. J. Dent. Res. 2005;84:1127–1132. doi: 10.1177/154405910508401207. PubMed DOI
Moradian-Oldak J. Protein-mediated enamel mineralization. Front. Biosci. 2012;17:1996–2023. doi: 10.2741/4034. PubMed DOI PMC
Butler P. The ontogeny of molar pattern. Biol. Rev. 1956;31:30–69. doi: 10.1111/j.1469-185X.1956.tb01551.x. DOI
Jernvall J. Mammalian molar cusp patterns: Development mechanisms of diversity. Acta Zool. Fennica. 1995;198:1–61.
Horáček, I. & Špoutil, F. Why tribosphenic? On variation and constraint in developmental dynamics of chiropteran molars in Evolutionary History of Bats: Fossils, Molecules and Morphology (eds Gunnell, G. F. & Simmons, N. B.) 410–455 (Cambridge University Press, 2012).
Fortelius M. Ungulate cheek teeth: Developmental, functional, and evolutionary interrelations. Acta Zool. Fennica. 1985;180:1–76.
Thenius, E. Zähne und Gebiß der Säugetiere (W. de Gruyter Berlin, 1989).
Strait SG. Differences in occlusal morphology and molar size in frugivores and faunivores. J. Hum. Evol. 1993;25:471–484. doi: 10.1006/jhev.1993.1062. DOI
Koenigswald, W. v. Brief survey of enamel diversity at the schmelzmuster level in Cenozoic placental mammals in Tooth Enamel Microstructure (eds Koenigswald, W. & Sander, P.) 137–161 (Rotterdam: A. A. Balkema, 1997).
Kallistová A, Horáček I, Šlouf M, Skála R, Fridrichová M. Mammalian enamel maturation: Crystallographic changes prior to tooth eruption. PLoS ONE. 2017;12:e0171424. doi: 10.1371/journal.pone.0171424. PubMed DOI PMC
Ungár T. Microstructural parameters from X-ray diffraction peak broadening. Scr. Mater. 2004;51:777–781. doi: 10.1016/j.scriptamat.2004.05.007. DOI
Termine JD, Posner AS. Infra-red determinaion of the percentage of crystallinity in apatitic calcium phosphates. Nature. 1966;211:268–270. doi: 10.1038/211268a0. PubMed DOI
Allegra G, et al. Definitions of terms relating to crystalline polymers (Recommendations 1988) Pure Appl. Chem. 1989;61:769–785. doi: 10.1351/pac198961040769. DOI
Rey C, Shimizu M, Collins B, Glimcher MJ. Resolution-enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ions in the early deposits of a solid phase of calcium-phosphate in bone and enamel, and their evolution with age. I: Investigations in the ν4 PO4 domain. Calcif. Tissue Int. 1990;46:384–394. doi: 10.1007/BF02554969. PubMed DOI
Roche D, Ségalen L, Balan E, Delattre S. Preservation assessment of Miocene–Pliocene tooth enamel from Tugen Hills (Kenyan Rift Valley) through FTIR, chemical and stable-isotope analyses. J. Archaeol. Sci. 2010;37:1690–1699. doi: 10.1016/j.jas.2010.01.029. DOI
Asscher Y, Weiner S, Boaretto E. Variations in atomic disorder in biogenic carbonate hydroxyapatite using the infrared spectrum grinding curve method. Adv. Funct. Mater. 2011;21:3308–3313. doi: 10.1002/adfm.201100266. DOI
Tonge C, McCance R. Normal development of the jaws and teeth in pigs, and the delay and malocclusion produced by calorie deficiencies. J. Anat. 1973;115:1–22. PubMed PMC
Wang F, et al. Morphology and chronology of diphyodont dentition in miniature pigs, Sus Scrofa. Oral Dis. 2014;20:367–379. doi: 10.1111/odi.12126. PubMed DOI
Oltramari PVP, Navarro RL, Henriques JFC, Capelozza ALA, Granjeiro JM. Dental and skeletal characterization of the BR-1 minipig. Vet. J. 2007;173:399–407. doi: 10.1016/j.tvjl.2005.11.001. PubMed DOI
McAnulty, P. A. et. al. The Minipig in Biomedical Research (eds McAnulty, P. A., Dayan, A. D., Ganderup, N. Ch. & Hastings, K. L.) (CRC press, 2011).
Grant, A. The use of tooth wear as a guide to the age of domestic ungulates in Ageing and Sexing Animal Bone from Archaeological Sites, vol. 109 (eds Wilson, B., Gigson, C. & Payne, S.) 91–108 (B.A.R: Oxford, 1982).
Kallistová A, Skála R, Horáček I, Miyajima N, Malková R. Influence of sample preparation on the microstructure of tooth enamel apatite. J. Appl. Crystallogr. 2015;48:763–768. doi: 10.1107/S1600576715005208. DOI
Koenigswald, W. v. & Sander, P. Glossary of terms used for enamel microstructures in Tooth Enamel Microstructure (eds Koenigswald, W. & Sander, P.) 267–280 (Rotterdam: A. A. Balkema, 1997).
Ungar, P. S. Mammal Teeth: Origin, Evolution, and Diversity (The Johns Hopkins University Press, Baltimore, 2010).
Hall EO. The deformation and ageing of mild steel: II characteristics of the lüders deformation. Proc. Phys. Soc. Section B. 1951;64:742–753. doi: 10.1088/0370-1301/64/9/302. DOI
Petch NJ. The cleavage strength of polycrystals. J. Iron Steel Inst. 1953;174:25–28.
Nieh T, Wadsworth J. Hall-Petch relation in nanocrystalline solids. Scr. Metall. Mater. 1991;25:955–958. doi: 10.1016/0956-716X(91)90256-Z. DOI
Ostafinska A, et al. Synergistic effects in mechanical properties of PLA/PCL blends with optimized composition, processing, and morphology. RSC Advances. 2015;5:98971–98982. doi: 10.1039/C5RA21178F. DOI
Williamson G, Smallman R. III. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum. Philos. Mag. 1956;1:34–46. doi: 10.1080/14786435608238074. DOI
Šlouf M, Vacková T, Nevoralová M, Pokorný D. Micromechanical properties of one-step and sequentially crosslinked UHMWPEs for total joint replacements. Polym. Test. 2015;41:191–197. doi: 10.1016/j.polymertesting.2014.12.003. DOI
Koenigswald Wv, Clemens WA. Levels of complexity in the microstructure of mammalian enamel and their application in studies of systematics. Scanning Microsc. 1992;6:195–217. PubMed
He LH, Swain MV. Influence of enviroment on the mechanical behaviour of mature human enamel. Biomaterials. 2007;28:4512–4520. doi: 10.1016/j.biomaterials.2007.06.020. PubMed DOI
He LH, Swain MV. Understanding the mechanical behaviour of human enamel from its structural and compositional characteristics. J. Mech. Behav. Biomed. 2008;I:18–29. doi: 10.1016/j.jmbbm.2007.05.001. PubMed DOI
Xie Z, Swain MV, Munroe P, Hoffman M. On the critical parameters that regulate the deformation behaviour of tooth enamel. Biomaterials. 2008;29:2697–2703. doi: 10.1016/j.biomaterials.2008.02.022. PubMed DOI
Yahyazadehfar M, Arola D. The role of organic proteins on the crack growth resistance of human enamel. Acta Biomater. 2015;19:33–45. doi: 10.1016/j.actbio.2015.03.011. PubMed DOI PMC
Cuy JL, Mann AB, Livi JL, Teaford MF, Weihs TP. Nanoindentation mapping of the mechanical properties of human molar tooth enamel. Arch. Oral. Biol. 2002;47:281–291. doi: 10.1016/S0003-9969(02)00006-7. PubMed DOI
Braly A, Darnell LA, Mann AB, Teaford MF, Weihs TP. The effect of prism orientation on the indentation testing of human molar enamel. Arch. Oral. Biol. 2007;52:856–860. doi: 10.1016/j.archoralbio.2007.03.005. PubMed DOI PMC
Fonseca RB, et al. Radiodensity and hardness of enamel and dentin of human and bovine teeth, varying bovine teeth age. Arch. Oral. Biol. 2008;53:1023–1029. doi: 10.1016/j.archoralbio.2008.06.012. PubMed DOI
Robinson, C., Kirkham, J., Brookes, S. J. & Shore, R. C. Chemistry of mature enamel in Dental enamel: formation to destruction (eds Robinson, C., Kirkham, J. & Shore, R.) 167–191 (CRC press, 1995).
Helfman PM, Bada JL. Aspartic acid racemization in tooth enamel from living humans. P. Natl. Acad. Sci. 1975;72(8):2891–2894. doi: 10.1073/pnas.72.8.2891. PubMed DOI PMC
Park S, Wang DH, Zhang D, Romberg E, Arola D. Mechanical properties of human enamel as a function of age and location in the tooth. J. Mater. Sci: Mater. Med. 2008;19:2317–2324. PubMed
Nanci, A. Enamel: composition, formation, and structure in Ten Cate’s oral histology: Development, structure, and function. 122–164 (Elsevier: Mosby, Missouri, USA, 2008).
Vodička P, et al. The miniature pig as an animal model in biomedical research. Ann. N. Y. Acad. Sci. 2005;1049:161–171. doi: 10.1196/annals.1334.015. PubMed DOI
Baxa M, et al. A transgenic minipig model of Huntington’s disease. J Huntington’s Dis. 2013;2:47–68. PubMed
Planska D, Burocziova M, Strnadel J, Horak V. Immunohistochemical analysis of collagen IV and laminin expression in spontaneous melanoma regression in the melanoma-bearing Lib ěchov minipig. Acta Histochem. Cytochem. 2015;48:15. doi: 10.1267/ahc.14020. PubMed DOI PMC
Weaver ME, Jump EB, McKean CF. The eruption pattern of permanent teeth in miniature swine. Arch. Oral Biol. 1969;14:323–331. doi: 10.1016/0003-9969(69)90235-0. PubMed DOI
Rodrguez-Carvajal J. Recent developments of the program FULLPROF. Commission on powder diffraction, Newsletter. 2001;26:12–19.
Rönholm E. The amelogenesis of human teeth as revealed by electron microscopy. II - The development of the enamel crystallites. J. Ultrastruct. Res. 1962;6:249–303. doi: 10.1016/S0022-5320(62)80036-7. PubMed DOI
Daculsi G, Kerebel B. High–resolution electron microscope study of human enamel crystallites: size, shape, and growth. J. Ultrastruct. Res. 1978;65:163–172. doi: 10.1016/S0022-5320(78)90053-9. PubMed DOI
Cuisinier FJG, Steuer P, Senger B, Voegel JC, Frank RM. Human amelogenesis: high resolution electron microscopy of nanometer–sized particles. Cell Tissue Res. 1993;273:175–182. doi: 10.1007/BF00304624. PubMed DOI
Popa NC. The (hkl) dependence of diffraction-line broadening caused by strain and size for all Laue groups in Rietveld refinement. J. Appl. Cryst. 1998;31:176–180. doi: 10.1107/S0021889897009795. DOI
Scardi P, Leoni M. Fourier modelling of the anisotropic line broadening of X-ray diffraction profiles due to line and plane lattice defects. J. Appl. Cryst. 1999;32:671–682. doi: 10.1107/S002188989900374X. DOI
Stephens PW. Phenomenological model of anisotropic peak broadening in powder diffraction. J. Appl. Cryst. 1999;32:281–289. doi: 10.1107/S0021889898006001. DOI
Popa NC, Balzar D. Size-broadening anisotropy in whole powder pattern fitting. Application to zinc oxide and interpretation of the apparent crystallites in terms of physical models. J. Appl. Cryst. 2008;41:615–627. doi: 10.1107/S0021889808012223. DOI
Oliver WC, Pharr GM. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 2004;19:3–20. doi: 10.1557/jmr.2004.19.1.3. DOI
Poduska KM, et al. Decoupling local disorder and optical effects in infrared spectra: differentiating between calcites with different origins. Adv. Mater. 2011;23:550–554. doi: 10.1002/adma.201003890. PubMed DOI
Weiner S, Bar-Yosef O. States of preservation of bones from prehistoric sites in the Near East: a survey. J. Archaeol. Sci. 1990;17:187–196. doi: 10.1016/0305-4403(90)90058-D. DOI
OMNIC software 9.2.98. Thermo Fisher Scientific Inc. (1992–2012).