Immunohistochemical Analysis of Collagen IV and Laminin Expression in Spontaneous Melanoma Regression in the Melanoma-Bearing Libechov Minipig
Status PubMed-not-MEDLINE Jazyk angličtina Země Japonsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
25861134
PubMed Central
PMC4387259
DOI
10.1267/ahc.14020
PII: JST.JSTAGE/ahc/14020
Knihovny.cz E-zdroje
- Klíčová slova
- MeLiM, collagen IV, laminin, porcine melanoma, spontaneous regression,
- Publikační typ
- časopisecké články MeSH
Spontaneous regression (SR) of human melanoma is a rare, well-documented phenomenon that is not still fully understood. Its detailed study cannot be performed in patients due to ethical reasons. Using the Melanoma-bearing Libechov Minipig (MeLiM) animals of various ages (from 3 weeks to 8 months) we implemented a long-term monitoring of melanoma growth and SR. We focused on immunohistochemical detection of two important extracellular matrix proteins, collagen IV and laminin, which are associated with cancer. We showed that SR of melanoma is a highly dynamic process. The expression of collagen IV and laminin correlated with changes in population of melanoma cells. Tumours of 3-week-old animals consisted primarily of melanoma cells with a granular expression of collagen IV and laminin around them. Thereafter, melanoma cells were gradually destroyed and tumour tissue was rebuilt into the connective tissue. Collagen IV expression slightly increased in tumours of 10-week-old pigs showing extracellular fibrous appearance. In tumours of older animals, areas lacking melanoma cells demonstrated a low expression and areas still containing melanoma cells a high expression of both proteins. We considered the age of 10 weeks as a turning point in the transition between tumour growth and SR of the MeLiM melanoma.
Zobrazit více v PubMed
Arpaia N., Cassano N. and Vena G. A. (2006) Regressing cutaneous malignant melanoma and vitiligo-like depigmentation. Int. J. Dermatol. 45; 952–956. PubMed
Aznavoorian S., Stracke M. L., Krutzsch H., Schiffmann E. and Liotta L. A. (1990) Signal transduction for chemotaxis and haptotaxis by matrix molecules in tumor cells. J. Cell Biol. 110; 1427–1438. PubMed PMC
Borovansky J., Horak V., Elleder M., Fortyn K., Smit N. P. and Kolb A. M. (2003) Biochemical characterization of a new melanoma model—the minipig MeLiM strain. Melanoma Res. 13; 543–548. PubMed
Bramhall R. J., Mahady K. and Peach A. H. (2014) Spontaneous regression of metastatic melanoma—clinical evidence of the abscopal effect. Eur. J. Surg. Oncol. 40; 34–41. PubMed
Chen Y., Chen Y., Huang L. and Yu J. (2012) Evaluation of heparanase and matrix metalloproteinase-9 in patients with cutaneous malignant melanoma. J. Dermatol. 39; 339–343. PubMed
Condeelis J. and Segall J. E. (2003) Intravital imaging of cell movement in tumours. Nat. Rev. Cancer 3; 921–930. PubMed
Cui J., Chen D., Misfeldt M. L., Swinfard R. W. and Bystryn J. C. (1995) Antimelanoma antibodies in swine with spontaneously regressing melanoma. Pigment Cell Res. 8; 60–63. PubMed
Egeblad M., Rasch M. G. and Weaver V. M. (2010) Dynamic interplay between the collagen scaffold and tumor evolution. Curr. Opin. Cell Biol. 22; 697–706. PubMed PMC
El Sayegh T. Y., Kapus A. and McCulloch C. A. (2007) Beyond the epithelium: cadherin function in fibrous connective tissues. FEBS Let. 581; 167–174. PubMed
Engbring J. A. and Kleinman H. K. (2003) The basement membrane matrix in malignancy. J. Pathol. 200; 465–470. PubMed
Fang L., Lonsdorf A. S. and Hwang S. T. (2008) Immunotherapy for advanced melanoma. J. Invest. Dermatol. 128; 2596–2605. PubMed PMC
Firth N. A. and Reade P. C. (1996) The prognosis of oral mucosal squamous cell carcinomas: a comparison of clinical and histopathological grading and of laminin and type IV collagen staining. Aust. Dent. J. 41; 83–86. PubMed
Fortyn K., Hruban V., Horak V., Hradecky J. and Tichy J. (1994) Melanoblastoma in laboratory minipigs: A model for studying human malignant melanoma. Vet. Med.-Czech 39; 597–604. PubMed
Fortyn K., Hruban V., Horak V. and Tichy J. (1998) Exceptional occurrence and extent of malignant melanoma in pig. Vet. Med.-Czech 43; 87–91.
Geffrotin C., Horak V., Crechet F., Tricaud Y., Lethias C., Vincent-Naulleau S. and Vielh P. (2000) Opposite regulation of tenascin-C and tenascin-X in MeLiM swine heritable cutaneous malignant melanoma. Biochim. Biophys. Acta 1524; 196–202. PubMed
Havenith M. G., van Zandvoort E. H., Cleutjens J. P. and Bosman F. T. (1989) Basement membrane deposition in benign and malignant naevo-melanocytic lesions: an immunohistochemical study with antibodies to type IV collagen and laminin. Histopathology 15; 137–146. PubMed
High W. A., Stewart D., Wilbers C. R., Cockerell C. J., Hoang M. P. and Fitzpatrick J. E. (2005) Completely regressed primary cutaneous malignant melanoma with nodal and/or visceral metastases: A report of 5 cases and assessment of the literature and diagnostic criteria. J. Am. Acad. Dermatol. 53; 89–100. PubMed
Hirota J., Yoneda K. and Osaki T. (1990) Basement membrane type IV collagen in oral squamous cell carcinoma. Head Neck 12; 400–405. PubMed
Hodgson L. and Dong C. (2001) [Ca2+]i as a potential downregulator of alpha2beta1-integrin-mediated A2058 tumor cell migration to type IV collagen. Am. J. Physiol. 281; C106–C113. PubMed PMC
Hodgson L., Henderson A. J. and Dong C. (2003) Melanoma cell migration to type IV collagen requires activation of NK-κB. Oncogene 22; 98–108. PubMed PMC
Hook R. R. Jr., Berkelhammer J. and Oxenhandler R. W. (1982) Melanoma: Sinclair swine melanoma. Am. J. Pathol. 108; 130–133. PubMed PMC
Horak V., Fortyn K., Hruban V. and Klaudy J. (1999) Hereditary melanoblastoma in miniature pigs and its successful therapy by devitalization technique. Cell. Mol. Biol. 45; 1119–1129. PubMed
Hruban V., Horak V., Fortyn K., Hradecky J., Klaudy J., Smith D. M., Reisnerova H. and Majzlik I. (2004) Inheritance of malignant melanoma in the MeLiM strain of miniature pigs. Vet. Med.-Czech 49; 453–459.
Ioachim E., Michael M., Stavropoulos N. E., Kitsiou E., Salmas M. and Malamou-Mitsi V. (2005) A clinicopathological study of the expression of extracellular matrix components in urothelial carcinoma. BJU Int. 95; 655–659. PubMed
Jarvelainen H., Sainio A., Koulu M., Wight T. N. and Penttinen R. (2009) Extracellular matrix molecules: Potential targets in pharmacotherapy. Pharmacol. Rev. 61; 198–223. PubMed PMC
Kalluri R. and Cosgrove D. (2000) Assembly of type IV collagen. Insights from alpha3 (IV) collagen-deficient mice. J. Biol. Chem. 275; 12719–12724. PubMed
Kiyoshima T., Kobayashi I., Matsuo K., Ishibashi Y., Miyoshi A., Akashi Y. and Sakai H. (1998) Immunohistochemical localization of laminin, collagen type IV and heparan sulfate proteoglycan in human colorectal adenocarcinoma: correlation with local invasive pattern and lymph node metastasis. Acta Histochem. Cytochem. 31; 39–47.
Kumagai Y., Miura K., Nishida T., Igari K., Ochiai T., Iida M., Yamazaki S., Odajima H., Kawano T. and Takubo K. (2012) Simultaneous resection of metastatic melanoma in the esophagus and primary cutaneous melanoma showing partial regression: report of a case. Surg. Today 42; 884–890. PubMed
LeBleu V. S., Macdonald B. and Kalluri R. (2007) Structure and function of basement membranes. Exp. Biol. Med. 232; 1121–1129. PubMed
Levental K. R., Yu H., Kass L., Lakins J. N., Egeblad M., Erler J. T., Fong S. F., Csiszar K., Giaccia A., Weninger W., Yamauchi M., Gasser D. L. and Weaver V. M. (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139; 891–906. PubMed PMC
McCardle T. W., Messina J. L. and Sondak V. K. (2009) Completely regressed cutaneous melanocytic lesion revisited. Semin. Oncol. 36; 498–503. PubMed
Menzies S. W. and McCarthy W. H. (1997) Complete regression of primary cutaneous malignant melanoma. Arch. Surg. 132; 553–556. PubMed
Misfeldt M. L. and Grimm D. R. (1994) Sinclair miniature swine: An animal model of human melanoma. Vet. Immunol. Immunopathol. 43; 167–175. PubMed
Oxenhandler R. W., Berkelhammer J., Smith G. D. and Hook R. R., Jr. (1982) Growth and regression of cutaneous melanomas in Sinclair miniature swine. Am. J. Pathol. 109; 259–269. PubMed PMC
Palmer S. R., Erickson L. A., Ichetovkin I., Knauer D. J. and Markovic S. N. (2011) Circulating serologic and molecular biomarkers in malignant melanoma. Mayo. Clin. Proc. 86; 981–990. PubMed PMC
Paredes B. E. (2007) Regression in malignant melanoma. Definition, etiopathogenesis, morphology and differential diagnosis. Pathologe 28; 453–463. PubMed
Pasco S., Brassart B., Ramont L., Maquart F. X. and Monboisse J. C. (2005) Control of melanoma cell invasion by type IV collagen. Cancer Detect. Prev. 29; 260–266. PubMed
Pasco S., Ramont L., Maquart F. X. and Monboisse J. C. (2004) Control of melanoma progression by various matrikines from basement membrane macromolecules. Crit. Rev. Oncol. Hematol. 49; 221–233. PubMed
Pohlreich P., Stribrna J., Kleibl Z., Horak V. and Klaudy J. (2001) Detection of neoplastic cells in blood of miniature pigs with hereditary melanoma. Vet. Med.-Czech 46; 199–204.
Provenzano P. P., Eliceiri K. W., Campbell J. M., Inman D. R., White J. G. and Keely P. J. (2006) Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med. 4; 38. PubMed PMC
Rintoul R. C. and Sethi T. (2002) Extracellular matrix regulation of drug resistance in small-cell lung cancer. Clin. Sci. 102; 417–424. PubMed
Soucy P. A. and Romer L. H. (2009) Endothelial cell adhesion, signaling, and morphogenesis in fibroblast-derived matrix. Matrix Biol. 28; 273–283. PubMed
Speeckaert R., van Geel N., Vermaelen K. V., Lambert J., van Gele M., Speeckaert M. M. and Brochez L. (2011) Immune reactions in benign and malignant melanocytic lesions: lessons for immunotherapy. Pigment Cell Melanoma Res. 24; 334–344. PubMed
Sund M., Xie L. and Kalluri R. (2004) The contribution of vascular basement membranes and extracellular matrix to the mechanics of tumor angiogenesis. Apmis 112; 450–462. PubMed
Tzu J. and Marinkovich M. P. (2008) Bridging structure with function: Structural, regulatory, and developmental role of laminins. Int. J. Biochem. Cell Biol. 40; 199–214. PubMed PMC
Uitto, J., Mauviel, A. and McGrath, J. (1996) The Molecular and Cellular Biology of Wound Repair, second edition, ed. by R. A. F. Clark, Plenum Publishing Corporation, New York, pp. 513–553.
Vincent-Naulleau S., Le Chalony C., Leplat J. J., Bouet S., Bailly C., Spatz A., Vielh P., Avril M. F., Tricaud Y., Gruand J., Horak V., Frelat G. and Geffrotin C. (2004) Clinical and histopathological characterization of cutaneous melanomas in the melanoblastoma-bearing Libechov minipig model. Pigment Cell. Res. 17; 24–35. PubMed
Wang T. W., Sun J. S., Huang Y. C., Wu H. C., Chen L. T. and Lin F. H. (2006) Skin basement membrane and extracellular matrix proteins characterization and quantification by real time RT-PCR. Biomaterials 27; 5059–5068. PubMed
Wang W., Wyckoff J. B., Frohlich V. C., Oleynikov Y., Huttelmaier S., Zavadil J., Cermak L., Bottinger E. P., Singer R. H., White J. G., Segall J. E. and Condeelis J. S. (2002) Single cell behavior in metastatic primary mammary tumors correlated with gene expression patterns revealed by molecular profiling. Cancer Res. 62; 6278–6288. PubMed
Wyckoff J. B., Wang Y., Lin E. Y., Li J. F., Goswami S., Stanley E. R., Segall J. E., Pollard J. W. and Condeelis J. (2007) Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res. 67; 2649–2656. PubMed
Dysbiosis of skin microbiome and gut microbiome in melanoma progression
Melanoma-Bearing Libechov Minipig (MeLiM): The Unique Swine Model of Hereditary Metastatic Melanoma
Enamel apatite crystallinity significantly contributes to mammalian dental adaptations
Mammalian enamel maturation: Crystallographic changes prior to tooth eruption