• This record comes from PubMed

Dysbiosis of skin microbiome and gut microbiome in melanoma progression

. 2022 Feb 25 ; 22 (1) : 63. [epub] 20220225

Language English Country England, Great Britain Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 35216552
PubMed Central PMC8881828
DOI 10.1186/s12866-022-02458-5
PII: 10.1186/s12866-022-02458-5
Knihovny.cz E-resources

BACKGROUND: The microbiome alterations are associated with cancer growth and may influence the immune system and response to therapy. Particularly, the gut microbiome has been recently shown to modulate response to melanoma immunotherapy. However, the role of the skin microbiome has not been well explored in the skin tumour microenvironment and the link between the gut microbiome and skin microbiome has not been investigated in melanoma progression. Therefore, the aim of the present study was to examine associations between dysbiosis in the skin and gut microbiome and the melanoma growth using MeLiM porcine model of melanoma progression and spontaneous regression. RESULTS: Parallel analysis of cutaneous microbiota and faecal microbiota of the same individuals was performed in 8 to 12 weeks old MeLiM piglets. The bacterial composition of samples was analysed by high throughput sequencing of the V4-V5 region of the 16S rRNA gene. A significant difference in microbiome diversity and richness between melanoma tissue and healthy skin and between the faecal microbiome of MeLiM piglets and control piglets were observed. Both Principal Coordinate Analysis and Non-metric multidimensional scaling revealed dissimilarities between different bacterial communities. Linear discriminant analysis effect size at the genus level determined different potential biomarkers in multiple bacterial communities. Lactobacillus, Clostridium sensu stricto 1 and Corynebacterium 1 were the most discriminately higher genera in the healthy skin microbiome, while Fusobacterium, Trueperella, Staphylococcus, Streptococcus and Bacteroides were discriminately abundant in melanoma tissue microbiome. Bacteroides, Fusobacterium and Escherichia-Shigella were associated with the faecal microbiota of MeLiM piglets. Potential functional pathways analysis based on the KEGG database indicated significant differences in the predicted profile metabolisms between the healthy skin microbiome and melanoma tissue microbiome. The faecal microbiome of MeLiM piglets was enriched by genes related to membrane transports pathways allowing for the increase of intestinal permeability and alteration of the intestinal mucosal barrier. CONCLUSION: The associations between melanoma progression and dysbiosis in the skin microbiome as well as dysbiosis in the gut microbiome were identified. Results provide promising information for further studies on the local skin and gut microbiome involvement in melanoma progression and may support the development of new therapeutic approaches.

See more in PubMed

Cummins DL, Cummins JM, Pantle H, Silverman MA, Leonard AL, Chanmugam A. Cutaneous malignant melanoma. Mayo Clin Proc. 2006;81(4):500–507. doi: 10.4065/81.4.500. PubMed DOI

da Costa NF, Fernandes NC, Borges MRMM. Study of the histopathological types of cutaneous melanoma in palmas-TO from 2001 to 2011. An Bras Dermatol. 2015;90(5):638–645. doi: 10.1590/abd1806-4841.20153528. PubMed DOI PMC

Gershenwald JE, Guy GP. Stemming the rising incidence of melanoma: calling prevention to action. J Natl Cancer Inst. 2016;108(1):2015–2017. doi: 10.1093/jnci/djv381. PubMed DOI PMC

Carr S, Smith C, Wernberg J. Epidemiology and risk factors of melanoma. Surg Clin North Am. 2020;100(1):1–12. doi: 10.1016/j.suc.2019.09.005. PubMed DOI

Conforti C, Zalaudek I. Epidemiology and risk factors of melanoma: a review. Dermatol Pract Concept. 2021;11:2021161S. doi: 10.5826/dpc.11s1a161s. PubMed DOI PMC

Belbasis L, Stefanaki I, Stratigos AJ, Evangelou E. Non-genetic risk factors for cutaneous melanoma and keratinocyte skin cancers: an umbrella review of meta-analyses. J Dermatol Sci. 2016;84(3):330–339. doi: 10.1016/j.jdermsci.2016.09.003. PubMed DOI

Kovács T, Mikó E, Ujlaki G, Sári Z, Bai P. The microbiome as a component of the tumor microenvironment. Adv Exp Med Biol. 2020;1225:137–153. doi: 10.1007/978-3-030-35727-6_10. PubMed DOI

Zhao K, Hu Y. Microbiome harbored within tumors: a new chance to revisit our understanding of cancer pathogenesis and treatment. Signal Transduct Target Ther. 2020;5(1):2–4. doi: 10.1038/s41392-020-00244-1. PubMed DOI PMC

Xavier JB, Young VB, Skufca J, et al. The cancer microbiome: distinguishing direct and indirect effects requires a systemic view. Trends in Cancer. 2020;6(3):192–204. doi: 10.1016/j.trecan.2020.01.004. PubMed DOI PMC

Nakatsuji T, Chen TH, Butcher AM, et al. A commensal strain of Staphylococcus epidermidis protects against skin neoplasia. Sci Adv. 2018;4(2):eaao4502. doi: 10.1126/sciadv.aao4502. PubMed DOI PMC

Byrd AL, Belkaid Y, Segre JA. The human skin microbiome. Nat Rev Microbiol. 2018;16(3):143–155. doi: 10.1038/nrmicro.2017.157. PubMed DOI

Chen YE, Tsao H. The skin microbiome: current perspectives and future challenges. J Am Acad Dermatol. 2013;69(1):143–155.e3. doi: 10.1016/j.jaad.2013.01.016. PubMed DOI PMC

Stacy A, Belkaid Y. Microbial guardians of skin health. Science. 2019;363(6424):227–228. doi: 10.1126/science.aat4326. PubMed DOI

Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014;157(1):121–141. doi: 10.1016/j.cell.2014.03.011. PubMed DOI PMC

Schommer NN, Gallo RL. Structure and function of the human skin microbiome. Trends Microbiol. 2013;21(12):660–668. doi: 10.1016/j.tim.2013.10.001. PubMed DOI PMC

Ansaldo E, Farley TK, Belkaid Y. Control of immunity by the microbiota. Annu Rev Immunol. 2021;39:449–479. doi: 10.1146/annurev-immunol-093019-112348. PubMed DOI

Fyhrquist N, Salava A, Auvinen P, Lauerma A. Skin biomes. Curr Allergy Asthma Rep. 2016;16(5):40. doi: 10.1007/s11882-016-0618-5. PubMed DOI

Zhou H, Shi L, Ren Y, Tan X, Liu W, Liu Z. Applications of human skin microbiota in the cutaneous disorders for ecology-based therapy. Front Cell Infect Microbiol. 2020;10:1–12. doi: 10.3389/fcimb.2020.570261. PubMed DOI PMC

Erin Chen Y, Fischbach MA, Belkaid Y. Skin microbiota-host interactions. Nature. 2018;553(7689):427–436. doi: 10.1038/nature25177. PubMed DOI PMC

Coggshall K, Brooks L, Nagarajan P, Arron ST. The microbiome and its contribution to skin cancer. Curr Cancer Res. 2019:87–106. 10.1007/978-3-030-04155-7_5

Sacksteder MR. Brief communication: occurrence of spontaneous tumors in the germfree F344 Rat. J Natl Cancer Inst. 1976;57(6):1371–1373. doi: 10.1093/jnci/57.6.1371. PubMed DOI

Mittal D, Saccheri F, Vénéreau E, Pusterla T, Bianchi ME, Rescigno M. TLR4-mediated skin carcinogenesis is dependent on immune and radioresistant cells. EMBO J. 2010;29(13):2242–2252. doi: 10.1038/emboj.2010.94. PubMed DOI PMC

Sherwani MA, Tufail S, Muzaffar AF, Yusuf N. The skin microbiome and immune system: potential target for chemoprevention? Photodermatol Photoimmunol Photomed. 2018;34(1):25–34. doi: 10.1111/phpp.12334. PubMed DOI PMC

Schwabe RF, Jobin C. The microbiome and cancer. Nat Rev Cancer. 2013;13(11):800–812. doi: 10.1038/nrc3610. PubMed DOI PMC

O’Neill CA, Monteleone G, McLaughlin JT, Paus R. The gut-skin axis in health and disease: a paradigm with therapeutic implications. BioEssays. 2016;38(11):1167–1176. doi: 10.1002/bies.201600008. PubMed DOI

De PB, Grine L, Debaere M, Maes A, Paetzold B, Callewaert C. Gut–skin axis: current knowledge of the interrelationship between microbial dysbiosis and skin conditions. Microorganisms. 2021;9(2):1–33. doi: 10.3390/microorganisms9020353. PubMed DOI PMC

Salem I, Ramser A, Isham N, Ghannoum MA. The gut microbiome as a major regulator of the gut-skin axis. Front Microbiol. 2018;9(JUL):1–14. doi: 10.3389/fmicb.2018.01459. PubMed DOI PMC

Frankel AE, Coughlin LA, Kim J, et al. Metagenomic shotgun sequencing and unbiased metabolomic profiling identify specific human gut microbiota and metabolites associated with immune checkpoint therapy efficacy in melanoma patients. Neoplasia (United States) 2017;19(10):848–855. doi: 10.1016/j.neo.2017.08.004. PubMed DOI PMC

Davar D, Dzutsev AK, McCulloch JA, et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science. 2021;371(6529):595–602. doi: 10.1126/science.abf3363. PubMed DOI PMC

Gopalakrishnan V, Spencer CN, Nezi L, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 2018;359(6371):97–103. doi: 10.1126/science.aan4236. PubMed DOI PMC

Dai Z, Zhang J, Wu Q, et al. Intestinal microbiota: a new force in cancer immunotherapy. Cell Commun Signal. 2020;18(1):1–16. doi: 10.1186/s12964-020-00599-6. PubMed DOI PMC

Matson V, Fessler J, Bao R, et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science. 2018;359(6371):104–108. doi: 10.1126/science.aao3290. PubMed DOI PMC

Ansaldo BE, Belkaid Y. How microbiota improve immunotherapy. Science. 2021;373:966–967. doi: 10.1126/science.abl3656. PubMed DOI

Baruch EN, Youngster I, Ben-betzalel G, Ortenberg R, Lahat A, Katz L. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science. 2020;5920(December):1–16. PubMed

Limeta A, Ji B, Levin M, Gatto F, Nielsen J. Meta-analysis of the gut microbiota in predicting response to cancer immunotherapy in metastatic melanoma. JCI Insight. 2020;5(23):e140940. doi: 10.1172/jci.insight.140940. PubMed DOI PMC

Warner AB, McQuade JL. Modifiable Host Factors in Melanoma: Emerging Evidence for Obesity, Diet, Exercise, and the Microbiome. Curr Oncol Rep. 2019;21(8):72. doi: 10.1007/s11912-019-0814-2. PubMed DOI PMC

Shaikh FY, Gills JJ, Sears CL. Impact of the microbiome on checkpoint inhibitor treatment in patients with non-small cell lung cancer and melanoma. EBioMedicine. 2019;48:642–647. doi: 10.1016/j.ebiom.2019.08.076. PubMed DOI PMC

Li Y, Tinoco R, Elmén L, et al. Gut microbiota dependent anti-tumor immunity restricts melanoma growth in Rnf5 −/− mice. Nat Commun. 2019;10(1):1492. doi: 10.1038/s41467-019-09525-y. PubMed DOI PMC

Wang M, Donovan SM. Human microbiota-associated swine: current progress and future opportunities. ILAR J. 2015;56(1):63–73. doi: 10.1093/ilar/ilv006. PubMed DOI PMC

Guilloteau P, Zabielski R, Hammon HM, Metges CC. Nutritional programming of gastrointestinal tract development. Is the pig a good model for man? Nutr Res Rev. 2010;23(1):4–22. doi: 10.1017/S0954422410000077. PubMed DOI

Meurens F, Summerfield A, Nauwynck H, Saif L, Gerdts V. The pig: a model for human infectious diseases. Trends Microbiol. 2012;20(1):50–57. doi: 10.1016/j.tim.2011.11.002. PubMed DOI PMC

Bourneuf E, Du ZQ, Estellé J, et al. Genetic and functional evaluation of MITF as a candidate gene for cutaneous melanoma predisposition in pigs. Mamm Genome. 2011;22(9–10):602–612. doi: 10.1007/s00335-011-9334-6. PubMed DOI

Horak V, Palanova A, Cizkova J, Miltrova V, Vodicka P, Skalnikova HK. Melanoma-bearing libechov minipig (MeLiM): the unique swine model of hereditary metastatic melanoma. Genes (Basel) 2019;10(11):915. doi: 10.3390/genes10110915. PubMed DOI PMC

Planska D, Burocziova M, Strnadel J, Horak V. Immunohistochemical analysis of collagen IV and laminin expression in spontaneous melanoma regression in the melanoma-bearing libechov minipig. Acta Histochem Cytochem. 2015;48(1):15–26. doi: 10.1267/ahc.14020. PubMed DOI PMC

Guran R, Vanickova L, Horak V, et al. MALDI MSI of MeLiM melanoma: searching for differences in protein profiles. PLoS One. 2017;12(12):e0189305. doi: 10.1371/journal.pone.0189305. PubMed DOI PMC

Planska D, Kovalska J, Cizkova J, Horak V. Tissue rebuilding during spontaneous regression of melanoma in the melanoma-bearing libechov minipig. Anticancer Res. 2018;38(8):4629–4636. doi: 10.21873/anticanres.12767. PubMed DOI

Fortyn K, et al. Exceptional occurrence and extent of malignant melanoma in pig. Veterinární medicína. 1998;43(3):97–91.

Tilg H, Adolph TE, Gerner RR, Moschen AR. The intestinal microbiota in colorectal cancer. Cancer Cell. 2018;33(6):954–964. doi: 10.1016/j.ccell.2018.03.004. PubMed DOI

Cheng Y, Ling Z, Li L. The intestinal microbiota and colorectal cancer. Front Immunol. 2020;11:1–13. doi: 10.3389/fimmu.2020.615056. PubMed DOI PMC

Gagnière J, Raisch J, Veziant J, et al. Gut microbiota imbalance and colorectal cancer. World J Gastroenterol. 2016;22(2):501–518. doi: 10.3748/wjg.v22.i2.501. PubMed DOI PMC

Janney A, Powrie F, Mann EH. Host–microbiota maladaptation in colorectal cancer. Nature. 2020;585(7826):509–517. doi: 10.1038/s41586-020-2729-3. PubMed DOI

Meng C, Bai C, Brown TD, Hood LE, Tian Q. Human gut microbiota and gastrointestinal cancer. Genomics, Proteomics Bioinforma. 2018;16(1):33–49. doi: 10.1016/j.gpb.2017.06.002. PubMed DOI PMC

Engstrand L, Graham DY. Microbiome and gastric cancer. Dig Dis Sci. 2020;65(3):865–873. doi: 10.1007/s10620-020-06101-z. PubMed DOI PMC

Yu LX, Schwabe RF. The gut microbiome and liver cancer: mechanisms and clinical translation. Nat Rev Gastroenterol Hepatol. 2017;14(9):527–539. doi: 10.1038/nrgastro.2017.72. PubMed DOI PMC

McAllister F, Khan MAW, Helmink B, Wargo JA. The tumor microbiome in pancreatic cancer: bacteria and beyond. Cancer Cell. 2019;36(6):577–579. doi: 10.1016/j.ccell.2019.11.004. PubMed DOI

Li Q, Jin M, Liu Y, Jin L. Gut microbiota: its potential roles in pancreatic cancer. Front Cell Infect Microbiol. 2020;10(10):1–9. doi: 10.3389/fcimb.2020.572492. PubMed DOI PMC

Zheng Y, Fang Z, Xue Y, et al. Specific gut microbiome signature predicts the early-stage lung cancer. Gut Microbes. 2020;11(4):1030–1042. doi: 10.1080/19490976.2020.1737487. PubMed DOI PMC

Liu X, Cheng Y, Zang D, et al. The role of gut microbiota in lung cancer: from carcinogenesis to immunotherapy. Front Oncol. 2021;11(August):1–13. doi: 10.3389/fonc.2021.720842. PubMed DOI PMC

Zhou H, Liu J, Shen J, Fang W, Zhang L. Gut microbiota and lung cancer: a mendelian randomization study. JTO Clin Res Reports. 2020;1(3):100042. doi: 10.1016/j.jtocrr.2020.100042. PubMed DOI PMC

Ingman WV. The gut microbiome: a new player in breast cancer metastasis. Cancer Res. 2019;79(14):3539–3541. doi: 10.1158/0008-5472.CAN-19-1698. PubMed DOI

Zhang J, Xia Y, Sun J. Breast and gut microbiome in health and cancer. Genes Dis. 2021;8(5):581–589. doi: 10.1016/j.gendis.2020.08.002. PubMed DOI PMC

Bajic P, Wolfe AJ, Gupta GN. The urinary microbiome: implications in bladder cancer pathogenesis and therapeutics. Urology. 2019;126:10–15. doi: 10.1016/j.urology.2018.12.034. PubMed DOI

He C, Li B, Huang L, et al. Gut microbial composition changes in bladder cancer patients: a case-control study in Harbin China. Asia Pac J Clin Nutr. 2020; 29(2):395–403. doi: 10.6133/apjcn.202007_29(2).0022. PubMed DOI

Andreeva NV, Gabbasova RR, Grivennikov SI. Microbiome in cancer progression and therapy. Curr Opin Microbiol. 2020;56:118–126. doi: 10.1016/j.mib.2020.09.001. PubMed DOI PMC

Cheng WY, Wu CY, Yu J. The role of gut microbiota in cancer treatment: friend or foe? Gut. 2020;69(10):1867–1876. doi: 10.1136/gutjnl-2020-321153. PubMed DOI PMC

Lopez LR, Bleich RM, Arthur JC. Microbiota effects on carcinogenesis: initiation, promotion, and progression. Annu Rev Med. 2021;72:243–261. doi: 10.1146/annurev-med-080719-091604. PubMed DOI PMC

Raza MH, Gul K, Arshad A, et al. Microbiota in cancer development and treatment. J Cancer Res Clin Oncol. 2019;145(1):49–63. doi: 10.1007/s00432-018-2816-0. PubMed DOI PMC

Belkaid Y, Segre JA. Dialogue between skin microbiota and immunity. Science. 2014;346(6212):954–959. doi: 10.1126/science.1260144. PubMed DOI

Skowron K, Bauza-kaszewska J, Kraszewska Z, et al. Human skin microbiome: impact of intrinsic and extrinsic factors on skin microbiota. Microorganisms. 2021;9(3):1–20. doi: 10.3390/microorganisms9030543. PubMed DOI PMC

Iida N, Dzutsev A, Stewart CA, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science. 2013;342(6161):967–970. doi: 10.1126/science.1240527. PubMed DOI PMC

Belkaid Y, Tamoutounour S. The influence of skin microorganisms on cutaneous immunity. Nat Rev Immunol. 2016;16(6):353–366. doi: 10.1038/nri.2016.48. PubMed DOI

McQuade JL, Ologun GO, Arora R, Wargo JA. Gut Microbiome Modulation Via Fecal Microbiota Transplant to Augment Immunotherapy in Patients with Melanoma or Other Cancers. Curr Oncol Rep. 2020;22(7):74. 10.1007/s11912-020-00913-y. PubMed PMC

Baruch EN, Youngster I, Ben-Betzalel G, et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science. 2021;371(6529):602–609. doi: 10.1126/science.abb5920. PubMed DOI

Heinritz SN, Mosenthin R, Weiss E. Use of pigs as a potential model for research into dietary modulation of the human gut microbiota. Nutr Res Rev. 2013;26(2):191–209. doi: 10.1017/S0954422413000152. PubMed DOI

Gonzalez LM, Moeser AJ, Blikslager AT. Porcine models of digestive disease: the future of large animal translational research. Transl Res. 2015;166(1):12–27. doi: 10.1016/j.trsl.2015.01.004. PubMed DOI PMC

McIntyre MK, Peacock TJ, Akers KS, Burmeister DM. Initial characterization of the pig skin bacteriome and its effect on in vitro models of wound healing. PLoS One. 2016;11(11):e0166176. doi: 10.1371/journal.pone.0166176. PubMed DOI PMC

Coates M, Lee MJ, Norton D, MacLeod AS. The skin and intestinal microbiota and their specific innate immune systems. Front Immunol. 2019;10:1–11. doi: 10.3389/fimmu.2019.02950. PubMed DOI PMC

Yu Y, Champer J, Beynet D, Kim J, Friedman AJ. The role of the cutaneous microbiome in skin cancer: lessons learned from the gut. J Drugs Dermatol. 2015;14(5):461–465. doi: 10.1016/j.jaad.2015.02.628. PubMed DOI

Ellis SR, Nguyen M, Vaughn AR, et al. The skin and gut microbiome and its role in common dermatologic conditions. Microorganisms. 2019;7(11):1–19. doi: 10.3390/microorganisms7110550. PubMed DOI PMC

Shinno-Hashimoto H, Hashimoto Y, Wei Y, et al. Abnormal composition of microbiota in the gut and skin of imiquimod-treated mice. Sci Rep. 2021;11(1):1–11. doi: 10.1038/s41598-021-90480-4. PubMed DOI PMC

Salava A, Aho V, Pereira P, et al. Skin microbiome in melanomas and melanocytic nevi. Eur J Dermatology. 2016;26(1):49–55. doi: 10.1684/ejd.2015.2696. PubMed DOI

Mizuhashi S, Kajihara I, Sawamura S, et al. Skin microbiome in acral melanoma: corynebacterium is associated with advanced melanoma. J Dermatol. 2021;48(1):e15–e16. doi: 10.1111/1346-8138.15633. PubMed DOI

Mrázek J, Mekadim C, Kučerová P, et al. Melanoma-related changes in skin microbiome. Folia Microbiol. 2019;64(3):435–442. doi: 10.1007/s12223-018-00670-3. PubMed DOI

Mosca A, Leclerc M, Hugot JP. Gut microbiota diversity and human diseases: should we reintroduce key predators in our ecosystem? Front Microbiol. 2016;7(MAR):1–12. doi: 10.3389/fmicb.2016.00455. PubMed DOI PMC

Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489(7415):220–230. doi: 10.1038/nature11550. PubMed DOI PMC

Le Chatelier E, Nielsen T, Qin J, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500(7464):541–546. doi: 10.1038/nature12506. PubMed DOI

Nagaraja TG, Narayanan SK, Stewart GC, Chengappa MM. Fusobacterium necrophorum infections in animals: pathogenesis and pathogenic mechanisms. Anaerobe. 2005;11(4):239–246. doi: 10.1016/j.anaerobe.2005.01.007. PubMed DOI

Riordan T. Human infection with Fusobacterium necrophorum (Necrobacillosis), with a focus on Lemierre’s syndrome. Clin Microbiol Rev. 2007;20(4):622–659. doi: 10.1128/CMR.00011-07. PubMed DOI PMC

Kumar A, Anderson D, Amachawadi RG, Nagaraja TG, Narayanan SK. Characterization of Fusobacterium necrophorum isolated from llama and alpaca. J Vet Diagnostic Investig. 2013;25(4):502–507. doi: 10.1177/1040638713491407. PubMed DOI

Narayanan SK, Nagaraja TG, Chengappa MM, Stewart GC. Cloning, sequencing, and expression of the leukotoxin gene from Fusobacterium necrophorum. Infect Immun. 2001;69(9):5447–5455. doi: 10.1128/IAI.69.9.5447-5455.2001. PubMed DOI PMC

Kostic AD, Gevers D, Pedamallu CS, et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 2012;22(2):292–298. doi: 10.1101/gr.126573.111. PubMed DOI PMC

Kelly D, Yang L, Pei Z. Gut microbiota, Fusobacteria, and colorectal cancer. Diseases. 2018;6(4):109. doi: 10.3390/diseases6040109. PubMed DOI PMC

Abed J, Maalouf N, Parhi L, Chaushu S, Mandelboim O, Bachrach G. Tumor targeting by Fusobacterium nucleatum: a pilot study and future perspectives. Front Cell Infect Microbiol. 2017;7(JUN):1–5. doi: 10.3389/fcimb.2017.00295. PubMed DOI PMC

Kaplan CW, Lux R, Huynh T, Jewett A, Shi W, Haake SK. Fusobacterium nucleatum apoptosis-inducing outer membrane protein. J Dent Res. 2005;84(8):700–704. doi: 10.1177/154405910508400803. PubMed DOI PMC

Hamada T, Zhang X, Mima K, et al. Fusobacterium nucleatum in colorectal cancer relates to immune response differentially by tumor microsatellite instability status. Cancer Immunol Res. 2018;6(11):1327–1336. doi: 10.1158/2326-6066.CIR-18-0174. PubMed DOI PMC

Mima K, Nishihara R, Qian ZR, et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut. 2016;65(12):1973–1980. doi: 10.1136/gutjnl-2015-310101. PubMed DOI PMC

Parhi L, Alon-Maimon T, Sol A, et al. Breast cancer colonization by Fusobacterium nucleatum accelerates tumor growth and metastatic progression. Nat Commun. 2020;11(1):1–12. doi: 10.1038/s41467-020-16967-2. PubMed DOI PMC

Gur C, Ibrahim Y, Isaacson B, et al. Binding of the Fap2 protein of fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity. 2015;42(2):344–355. doi: 10.1016/j.immuni.2015.01.010. PubMed DOI PMC

Kalaora S, Nagler A, Nejman D, et al. Identification of bacteria-derived HLA-bound peptides in melanoma. Nature. 2021;592(7852):138–143. doi: 10.1038/s41586-021-03368-8. PubMed DOI PMC

Jain T, Sharma P, Are AC, Vickers SM, Dudeja V. New insights into the cancer–microbiome–immune axis: decrypting a decade of discoveries. Front Immunol. 2021;12(February):622064. doi: 10.3389/fimmu.2021.622064. PubMed DOI PMC

Sato H, Tanabe T, Nakanowatari M, et al. Isolation of Staphylococcus hyicus subsp. hyicus from pigs affected with exudative epidermitis and experimental infection of piglets with isolates. Kitasato Arch Exp Med. 1990;63(2–3):119–30. PubMed

Andresen LO, Ahrens P, Daugaard L, Bille-Hansen V. Exudative epidermitis in pigs caused by toxigenic Staphylococcus chromogenes. Vet Microbiol. 2005;105(3–4):291–300. doi: 10.1016/j.vetmic.2004.12.006. PubMed DOI

Huebner R, Mugabi R, Hetesy G, et al. Characterization of genetic diversity and population structure within staphylococcus chromogenes by multilocus sequence typing. PLoS One. 2021;16(3 March):1–17. doi: 10.1371/journal.pone.0243688. PubMed DOI PMC

Azamgarhi T, Warren S. A case of Trueperella pyogene causing prosthetic joint infection. J Bone Jt Infect. 2020;6(3):47–50. doi: 10.5194/jbji-6-47-2020. PubMed DOI PMC

Ribeiro MG, Risseti RM, Bolaños CAD, et al. Trueperella pyogenes multispecies infections in domestic animals: a retrospective study of 144 cases (2002 to 2012) Vet Q. 2015;35(2):82–87. doi: 10.1080/01652176.2015.1022667. PubMed DOI

Rzewuska M, Kwiecień E, Chrobak-Chmiel D, Kizerwetter-Świda M, Stefańska I, Gieryńska M. Pathogenicity and virulence of trueperella pyogenes: a review. Int J Mol Sci. 2019;20(11):2737. doi: 10.3390/ijms20112737. PubMed DOI PMC

Mager LF, Burkhard R, Pett N, et al. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science. 2020;369(6509):1481–1489. doi: 10.1126/SCIENCE.ABC3421. PubMed DOI

Behzadi E, Mahmoodzadeh Hosseini H, Imani Fooladi AA. The inhibitory impacts of Lactobacillus rhamnosus GG-derived extracellular vesicles on the growth of hepatic cancer cells. Microb Pathog. 2017;110:1–6. doi: 10.1016/j.micpath.2017.06.016. PubMed DOI

Friedrich AD, Campo VE, Cela EM, et al. Oral administration of lipoteichoic acid from Lactobacillus rhamnosus GG overcomes UVB-induced immunosuppression and impairs skin tumor growth in mice. Eur J Immunol. 2019;49(11):2095–2102. doi: 10.1002/eji.201848024. PubMed DOI PMC

McIntosh GH, Royle PJ, Playne MJ. A probiotic strain of L. acidophilus reduces DMH-induced large intestinal tumors in male sprague-dawley rats. Nutr Cancer. 1999;35(2):153–9. doi: 10.1207/S15327914NC352_9. PubMed DOI

Halpern B, Biozzi G, Stiffel C, et al. Inhibition of tumour growth by administration of killed Corynebacterium parvum. Nature. 1966;212:853–854. doi: 10.1038/212853a0. PubMed DOI

Woodruff MF, Boak JL. Inhibitory effect of injection of Corynebacterium parvum on the growth of tumour transplants in isogenic hosts. Br J Cancer. 1966;20(2):345–355. doi: 10.1038/bjc.1966.42. PubMed DOI PMC

Baum M, Breese M. Antitumour effect of Corynebacterium parvum. Possible mode of action. Br J Cancer. 1976;33(4):468–473. doi: 10.1038/bjc.1976.73. PubMed DOI PMC

Dimitrov N V., Chouroulinkov I, Israel L, O’Rangers JJ. Regression of hamster melanoma by Corynebacterium parvum. Corynebacterium parvum. 1975:276–283. doi:10.1007/978-1-4613-4428-5_31

Paslin D, Dimitrov NV, Heaton C. Regression of a transplantable hamster melanoma by intralesional injections of Corynebacterium granulosum. J Natl Cancer Inst. 1974;52(2):571–573. doi: 10.1093/jnci/52.2.571. PubMed DOI

Lipton A, Harvey HA, Lawrence B, et al. Corynebacterium parvum versus BCG adjuvant immunotherapy in human malignant melanoma. Cancer. 1983;51(1):57–60. doi: 10.1002/1097-0142(19830101)51:1<57::aid-cncr2820510114>3.0.co;2-v. PubMed DOI

Thatcher N, Wagstaff J, Mene A, Smith D, Orton C, Craig P. Corynebacterium parvum followed by chemotherapy (actinomycin D and DTIC) compared with chemotherapy alone for metastatic malignant melanoma. Eur J Cancer Clin Oncol. 1986;22(8):1009–1014. doi: 10.1016/0277-5379(86)90069-6. PubMed DOI

Arthur JC, Perez-chanona E, Mühlbauer M, et al. NIH Public Access. 2013;338(6103):120–123. doi: 10.1126/science.1224820.Intestinal. PubMed DOI PMC

Wu S, Rhee KJ, Albesiano E, et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med. 2009;15(9):1016–1022. doi: 10.1038/nm.2015. PubMed DOI PMC

Ma C, Han M, Heinrich B, et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science. 2018;360(6391):eaan5931. doi: 10.1126/science.aan5931. PubMed DOI PMC

Van Mellaert L, Wei MQ, Anné J. Live Clostridia: A Powerful Tool in Tumor Biotherapy. Emerg Cancer Ther Microb Approaches Biotechnol Tools. 2010:71–97. doi:10.1002/9780470626528.ch4

Chaput N, Lepage P, Coutzac C, et al. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann Oncol. 2017;28(6):1368–1379. doi: 10.1093/annonc/mdx108. PubMed DOI

Tsvetikova SA, Koshel EI. Microbiota and cancer: host cellular mechanisms activated by gut microbial metabolites. Int J Med Microbiol. 2020;310(4):151425. doi: 10.1016/j.ijmm.2020.151425. PubMed DOI

Luengo A, Gui DY, Vander Heiden MG. Targeting metabolism for cancer therapy. Cell Chem Biol. 2017;24(9):1161–1180. doi: 10.1016/j.chembiol.2017.08.028. PubMed DOI PMC

Hajam IA, Dar PA, Shahnawaz I, Jaume JC, Lee JH. Bacterial flagellin-a potent immunomodulatory agent. Exp Mol Med. 2017;49(9):1–15. doi: 10.1038/emm.2017.172. PubMed DOI PMC

Sfondrini L, Rossini A, Besusso D, et al. Antitumor activity of the TLR-5 ligand flagellin in mouse models of cancer. J Immunol. 2006;176(11):6624–6630. doi: 10.4049/jimmunol.176.11.6624. PubMed DOI

De Melo FM, Braga CJM, Pereira FV, et al. Anti-metastatic immunotherapy based on mucosal administration of flagellin and immunomodulatory P10. Immunol Cell Biol. 2015;93(1):86–98. doi: 10.1038/icb.2014.74. PubMed DOI

Duong MTQ, Qin Y, You SH, Min JJ. Bacteria-cancer interactions: bacteria-based cancer therapy. Exp Mol Med. 2019;51(12):1. doi: 10.1038/s12276-019-0297-0. PubMed DOI PMC

Sasaki Y, Kojima A, Aoki H, Ogikubo Y, Takikawa N, Tamura Y. Phylogenetic analysis and PCR detection of Clostridium chauvoei, Clostridium haemolyticum, Clostridium novyi types A and B, and Clostridium septicum based on the flagellin gene. Vet Microbiol. 2002;86(3):257–267. doi: 10.1016/S0378-1135(02)00002-0. PubMed DOI

Rhee SH, Im E, Pothoulakis C. Toll-like receptor 5 engagement modulates tumor development and growth in a mouse xenograft model of human colon cancer. Gastroenterology. 2008;135(2):518–528. doi: 10.1053/j.gastro.2008.04.022. PubMed DOI PMC

Faham A, Altin JG. Antigen-containing liposomes engrafted with flagellin-related peptides are effective vaccines that can induce potent antitumor immunity and immunotherapeutic effect. J Immunol. 2010;185(3):1744–1754. doi: 10.4049/jimmunol.1000027. PubMed DOI

Roberts NJ, Zhang L, Janku F, et al. Intratumoral injection of Clostridium novyi-NT spores induces antitumor responses. Sci Transl Med. 2014;6(249):249ra111. doi: 10.1126/scitranslmed.3008982. PubMed DOI PMC

Minton NP. Clostridia in cancer therapy. Nat Rev Microbiol. 2003;1(3):237–242. doi: 10.1038/nrmicro777. PubMed DOI

Catez F, Dalla Venezia N, Marcel V, Zorbas C, Lafontaine DLJ, Diaz JJ. Ribosome biogenesis: an emerging druggable pathway for cancer therapeutics. Biochem Pharmacol. 2018;2019(159):74–81. doi: 10.1016/j.bcp.2018.11.014. PubMed DOI

Sveen K. The capacity of lipopolysaccharides from bacteroides, fusobacterium and veillonella to produce skin inflammation and the local and generalized Shwartzman reaction in rabbits. J Periodontal Res. 1977;12(5):340–350. doi: 10.1111/j.1600-0765.1977.tb01525.x. PubMed DOI

Hoshino K, Takeuchi O, Kawai T, et al. Pillars article: cutting edge: Toll-Like Receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol. 1999;162:3749–3752. PubMed

Tsukamoto H, Fukudome K, Takao S, Tsuneyoshi N, Kimoto M. Lipopolysaccharide-binding protein-mediated Toll-like receptor 4 dimerization enables rapid signal transduction against lipopolysaccharide stimulation on membrane-associated CD14-expressing cells. Int Immunol. 2010;22(4):271–280. doi: 10.1093/intimm/dxq005. PubMed DOI

Park GS, Kim JH. Myeloid differentiation primary response gene 88-leukotriene B4 receptor 2 cascade mediates lipopolysaccharide-potentiated invasiveness of breast cancer cells. Oncotarget. 2015;6(8):5749–5759. doi: 10.18632/oncotarget.3304. PubMed DOI PMC

Jain S, Dash P, Minz AP, et al. Lipopolysaccharide (LPS) enhances prostate cancer metastasis potentially through NF-κB activation and recurrent dexamethasone administration fails to suppress it in vivo. Prostate. 2019;79(2):168–182. doi: 10.1002/pros.23722. PubMed DOI

Li H, Xia J-Q, Zhu F-S, et al. LPS promotes the expression of PD-L1 in gastric cancer cells through NF-κB activation. J Cell Biochem. 2018;119:9997–10004. doi: 10.1002/jcb.27329. PubMed DOI

Deng YL, Tang DR, Hou PF, et al. Dysbiosis of gut microbiota in patients with esophageal cancer. Microb Pathog. 2020;2021(150):104709. doi: 10.1016/j.micpath.2020.104709. PubMed DOI

Qi M, Liu J, Jiang Q, et al. Trueperella pyogenes pyolysin inhibits lipopolysaccharide-induced inflammatory response in endometrium stromal cells via autophagy- and ATF6-dependent mechanism. Brazilian J Microbiol. 2021;52(2):939–952. doi: 10.1007/s42770-021-00422-5. PubMed DOI PMC

Vettore L, Westbrook RL, Tennant DA. New aspects of amino acid metabolism in cancer. Br J Cancer. 2020;122(2):150–156. doi: 10.1038/s41416-019-0620-5. PubMed DOI PMC

Wei Z, Liu X, Cheng C, Yu W, Yi P. Metabolism of amino acids in cancer. Front Cell Dev Biol. 2021;8(January):603837. doi: 10.3389/fcell.2020.603837. PubMed DOI PMC

Ananieva E. Targeting amino acid metabolism in cancer growth and anti-tumor immune response. World J Biol Chem. 2015;6(4):281. doi: 10.4331/wjbc.v6.i4.281. PubMed DOI PMC

Roomi MW, Ivanov V, Kalinovsky T, Niedzwiecki A, Rath M. Effect of ascorbic acid, lysine, proline, and green tea extract on human osteosarcoma cell line MNNG-HOS xenografts in nude mice: evaluation of tumor growth and immunohistochemistry. Med Oncol. 2006;23(3):411–417. doi: 10.1385/MO:23:3:411. PubMed DOI

Phillips MM, Sheaff MT, Szlosarek PW. Targeting arginine-dependent cancers with arginine-degrading enzymes: opportunities and challenges. Cancer Res Treat. 2013;45(4):251–262. doi: 10.4143/crt.2013.45.4.251. PubMed DOI PMC

Grzywa TM, Sosnowska A, Matryba P, et al. Myeloid cell-derived arginase in cancer immune response. Front Immunol. 2020;11:938. doi: 10.3389/fimmu.2020.00938. PubMed DOI PMC

Kertys M, Grendar M, Horak V, Zidekova N, Kupcova Skalnikova H, Mokry J, Halasova E, Strnadel J. Metabolomic characterisation of progression and spontaneous regression of melanoma in the melanoma-bearing Libechov minipig model. Melanoma Res. 2021;31(2):140–151. doi: 10.1097/CMR.0000000000000722. PubMed DOI

de Ingeniis J, Ratnikov B, Richardson AD, et al. Functional specialization in proline biosynthesis of melanoma. PLoS One. 2012;7(9):1–9. doi: 10.1371/journal.pone.0045190. PubMed DOI PMC

Kardos GR, Wastyk HC, Robertson GP. Disruption of proline synthesis in melanoma inhibits protein production mediated by the GCN2 pathway. Mol Cancer Res. 2015;13(10):1408–1420. doi: 10.1158/1541-7786.MCR-15-0048. PubMed DOI PMC

Phang JM. Proline metabolism in cell regulation and cancer biology: recent advances and hypotheses. Antioxidants Redox Signal. 2019;30(4):635–649. doi: 10.1089/ars.2017.7350. PubMed DOI PMC

Siddiqui A, Ceppi P. A non-proliferative role of pyrimidine metabolism in cancer. Mol Metab. 2020;35(2):100962. doi: 10.1016/j.molmet.2020.02.005. PubMed DOI PMC

Wang W, Cui J, Ma H, Lu W, Huang J. Targeting pyrimidine metabolism in the era of precision cancer medicine. Front Oncol. 2021;11(5):1–17. doi: 10.3389/fonc.2021.684961. PubMed DOI PMC

Wang H, Wang X, Xu L, Zhang J, Cao H. High expression levels of pyrimidine metabolic rate–limiting enzymes are adverse prognostic factors in lung adenocarcinoma: a study based on the cancer genome atlas and gene expression omnibus datasets. Purinergic Signal. 2020;16(3):347–366. doi: 10.1007/s11302-020-09711-4. PubMed DOI PMC

Galmarini CM, Jordheim L, Dumontet C. Pyrimidine nucleoside analogs in cancer treatment. Expert Rev Anticancer Ther. 2003;3(5):717–728. doi: 10.1586/14737140.3.5.717. PubMed DOI

Christman JK. 5-Azacytidine and 5-aza-2'-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene. 2002;21(35):5483–5495. doi: 10.1038/sj.onc.1205699. PubMed DOI

Yin J, Ren W, Huang X, Deng J, Li T, Yin Y. Potential mechanisms connecting purine metabolism and cancer therapy. Front Immunol. 2018;9(July):1–8. doi: 10.3389/fimmu.2018.01697. PubMed DOI PMC

Su WJ, Lu PZ, Wu Y, Kalpana K, Yang CK, Lu GD. Identification of key genes in purine metabolism as prognostic biomarker for hepatocellular carcinoma. Front Oncol. 2021;10(January):1–13. doi: 10.3389/fonc.2020.583053. PubMed DOI PMC

Song J, Zhang Y, Zhang C, et al. A microfluidic device for studying chemotaxis mechanism of bacterial cancer targeting. Sci Rep. 2018;8(1):1–9. doi: 10.1038/s41598-018-24748-7. PubMed DOI PMC

Chen Y, Li P. Fatty acid metabolism and cancer development. Science Bulletin. 2016;61(19):1473–1479. doi: 10.1007/s11434-016-1129-4. DOI

Röhrig F, Schulze A. The multifaceted roles of fatty acid synthesis in cancer. Nat Rev Cancer. 2016;16(11):732–749. doi: 10.1038/nrc.2016.89. PubMed DOI

Koundouros N, Poulogiannis G. Reprogramming of fatty acid metabolism in cancer. Br J Cancer. 2020;122(1):4–22. doi: 10.1038/s41416-019-0650-z. PubMed DOI PMC

Muinonen-Martin AJ, Susanto O, Zhang Q, et al. Melanoma cells break down LPA to establish local gradients that drive chemotactic dispersal. PLoS Biol. 2014;12(10):e1001966. doi: 10.1371/journal.pbio.1001966. PubMed DOI PMC

Saksena S, Dudeja PK. Role of membrane transporters in intestinal cancers. Cmgh. 2019;7(1):241–242. doi: 10.1016/j.jcmgh.2018.09.016. PubMed DOI PMC

Yarwood R, Hellicar J, Woodman PG, Lowe M. Membrane trafficking in health and disease. DMM Dis Model Mech. 2020;13(4):dmm043448. doi: 10.1242/dmm.043448. PubMed DOI PMC

Samuelson DR, Welsh DA, Shellito JE. Regulation of lung immunity and host defense by the intestinal microbiota. Front Microbiol. 2015;6(OCT):1–14. doi: 10.3389/fmicb.2015.01085. PubMed DOI PMC

Komiya Y, Shimomura Y, Higurashi T, et al. Patients with colorectal cancer have identical strains of Fusobacterium nucleatum in their colorectal cancer and oral cavity. Gut. 2019;68(7):1335–1337. doi: 10.1136/gutjnl-2018-316661. PubMed DOI PMC

Abed J, Maalouf N, Manson AL, et al. Colon cancer-associated Fusobacterium nucleatum may originate from the oral cavity and reach colon tumors via the circulatory system. Front Cell Infect Microbiol. 2020;10(August):1–12. doi: 10.3389/fcimb.2020.00400. PubMed DOI PMC

Bullman S, Pedamallu CS, Sicinska E, et al. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science. 2017;358(6369):1443–1448. doi: 10.1126/science.aal5240. PubMed DOI PMC

Bennett KW, Eley A. Fusobacteria: new taxonomy and related diseases. J Med Microbiol. 1993;39(4):246–254. doi: 10.1099/00222615-39-4-246. PubMed DOI

Darenfed H, Grenier D, Mayrand D. Acquisition of plasmin activity by Fusobacterium nucleatum subsp, nucleatum and potential contribution to tissue destruction during periodontitis. Infect Immun. 1999;67(12):6439–6444. doi: 10.1128/iai.67.12.6439-6444.1999. PubMed DOI PMC

Wang S, Liu Y, Li J, et al. Fusobacterium nucleatum acts as a pro-carcinogenic bacterium in colorectal cancer: from association to causality. Front Cell Dev Biol. 2021;9(August):1–15. doi: 10.3389/fcell.2021.710165. PubMed DOI PMC

Pignatelli P, Iezzi L, Pennese M, et al. The potential of colonic tumor tissue fusobacterium nucleatum to predict staging and its interplay with oral abundance in colon cancer patients. Cancers (Basel) 2021;13(5):1–19. doi: 10.3390/cancers13051032. PubMed DOI PMC

Abed J, Emgård JEM, Zamir G, et al. Fap2 mediates Fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to tumor-expressed Gal-GalNAc. Cell Host Microbe. 2016;20(2):215–225. doi: 10.1016/j.chom.2016.07.006. PubMed DOI PMC

Fliegerova K, Tapio I, Bonin A, et al. Effect of DNA extraction and sample preservation method on rumen bacterial population. Anaerobe. 2014;29:80–84. doi: 10.1016/j.anaerobe.2013.09.015. PubMed DOI

Bolyen E, Rideout JR, Dillon MR, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37(8):852–857. doi: 10.1038/s41587-019-0209-9. PubMed DOI PMC

Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581–583. doi: 10.1038/nmeth.3869. PubMed DOI PMC

Katoh K, Misawa K, Kuma KI, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast fourier transform. Nucleic Acids Res. 2002;30(14):3059–3066. doi: 10.1093/nar/gkf436. PubMed DOI PMC

Price MN, Dehal PS, Arkin AP. FastTree 2 - approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5(3):e9490. doi: 10.1371/journal.pone.0009490. PubMed DOI PMC

Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;2016(10):1–22. doi: 10.7717/peerj.2584. PubMed DOI PMC

RStudio Team . RStudio: integrated development for R. Boston MA: RStudio PBC; 2020.

Jordan E Bisanz (2018) qiime2R: Importing QIIME2 artifacts and associated data into R sessions. https://github.com/jbisanz/qiime2R.

Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. ISBN 978–3–319–24277–4, https://ggplot2.tidyverse.org.

McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8(4):e61217. doi: 10.1371/journal.pone.0061217. PubMed DOI PMC

Segata N, Izard J, Waldron L, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12(6):1–18. doi: 10.1186/gb-2011-12-6-r60. PubMed DOI PMC

Langille MGI, Zaneveld J, Caporaso JG, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. 2013;31(9):814–821. doi: 10.1038/nbt.2676. PubMed DOI PMC

Parks DH, Tyson GW, Hugenholtz P, Beiko RG. STAMP: Statistical analysis of taxonomic and functional profiles. Bioinformatics. 2014;30(21):3123–3124. doi: 10.1093/bioinformatics/btu494. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...