MALDI MSI of MeLiM melanoma: Searching for differences in protein profiles

. 2017 ; 12 (12) : e0189305. [epub] 20171208

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29220390

BACKGROUND: Treatment of advanced cutaneous melanoma remains challenging, and new data on melanoma biology are required. The most widely accepted criteria for the prognostic evaluation of melanoma are histopathological and clinical parameters, and the identification of additional tumor markers is thus of paramount importance. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI), an important tool in cancer research, is useful for unraveling the molecular profile of melanoma. METHODOLOGY/PRINCIPAL FINDINGS: In this report, we used the melanoma-bearing Libechov minipig (MeLiM), a unique animal model that allows observation of the complete spontaneous regression of invasive cutaneous melanoma, to investigate i) the differences between melanoma and healthy skin protein profiles and ii) the proteins potentially involved in spontaneous regression. The MeLiM tissues were cryosected, histologically characterized, analyzed by MALDI MSI, and immunohistologically stained. Multivariate statistical analyses of the MALDI MSI data revealed ten relevant m/z ions, of which the expression levels varied significantly among the studied MeLiM tissues. These ion peaks were used to create mass ion images/maps and visualize the differences between tumor and healthy skin specimens, as well as among histologically characterized tissue regions. CONCLUSIONS/SIGNIFICANCE: Protein profiles comprising ten statistically significant mass ion peaks useful for differentiating cutaneous melanoma and healthy skin tissues were determined. Peaks at m/z 3044, 6011, 6140 and 10180 were overexpressed in melanoma compared with healthy skin tissue. More specifically, m/z 6140 was expressed at significantly (p < 0.05) higher levels in normally growing melanoma regions than in regions with early and late spontaneous regression. This study demonstrates the clinical utility of MALDI MSI for the analysis of tissue cryosections at a molecular level.

Zobrazit více v PubMed

Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, Rosso S, Coebergh JWW, Comber H, et al. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries in 2012. Eur J Cancer. 2013;49(6):1374–403. doi: 10.1016/j.ejca.2012.12.027 PubMed PMID: WOS:000317188600024. PubMed DOI

Rodrigo MAM, Zitka O, Krizkova S, Moulick A, Adam V, Kizek R. MALDI-TOF MS as evolving cancer diagnostic tool: A review. J Pharm Biomed Anal. 2014;95:245–55. doi: 10.1016/j.jpba.2014.03.007 PubMed PMID: WOS:000336558600033. PubMed DOI

Sabel MS, Liu Y, Lubman DM. Proteomics in melanoma biomarker discovery: great potential, many obstacles. Int J Proteom. 2011;2011:1–8. PubMed PMC

Stoeckli M, Chaurand P, Hallahan DE, Caprioli RM. Imaging mass spectrometry: A new technology for the analysis of protein expression in mammalian tissues. Nat Med. 2001;7(4):493–6. doi: 10.1038/86573 PubMed PMID: WOS:000167960500047. PubMed DOI

Caprioli RM, Farmer TB, Gile J. Molecular imaging of biological samples: Localization of peptides and proteins using MALDI-TOF MS. Anal Chem. 1997;69(23):4751–60. doi: 10.1021/ac970888i PubMed PMID: WOS:A1997YJ91300009. PubMed DOI

Aichler M, Walch A. MALDI Imaging mass spectrometry: current frontiers and perspectives in pathology research and practice. Lab Invest. 2015;95(4):422–31. doi: 10.1038/labinvest.2014.156 PubMed PMID: WOS:000352208600006. PubMed DOI

Oetjen J, Lachmund D, Palmer A, Alexandrov T, Becker M, Boskamp T, et al. An approach to optimize sample preparation for MALDI imaging MS of FFPE sections using fractional factorial design of experiments. Anal Bioanal Chem. 2016;408(24):6729–40. doi: 10.1007/s00216-016-9793-4 PubMed PMID: WOS:000382883300020. PubMed DOI

Kriegsmann J, Kriegsmann M, Casadonte R. MALDI TOF imaging mass spectrometry in clinical pathology: A valuable tool for cancer diagnostics. Int J Oncol. 2015;46(3):893–906. doi: 10.3892/ijo.2014.2788 PubMed PMID: WOS:000349061800001. PubMed DOI

Elsner M, Rauser S, Maier S, Schone C, Balluff B, Meding S, et al. MALDI imaging mass spectrometry reveals COX7A2, TAGLN2 and S100-A10 as novel prognostic markers in Barrett's adenocarcinoma. J Proteomics. 2012;75(15):4693–704. doi: 10.1016/j.jprot.2012.02.012 PubMed PMID: WOS:000307609500013. PubMed DOI

Rauser S, Marquardt C, Balluff B, Deininger SO, Albers C, Belau E, et al. Classification of HER2 Receptor Status in Breast Cancer Tissues by MALDI Imaging Mass Spectrometry. J Proteome Res. 2010;9(4):1854–63. doi: 10.1021/pr901008d PubMed PMID: WOS:000276215700021. PubMed DOI

Pote N, Alexandrov T, Le Faouder J, Laouirem S, Leger T, Mebarki M, et al. Imaging Mass Spectrometry Reveals Modified Forms of Histone H4 as New Biomarkers of Microvascular Invasion in Hepatocellular Carcinomas. Hepatology. 2013;58(3):983–94. doi: 10.1002/hep.26433 PubMed PMID: WOS:000329284000020. PubMed DOI

Veselkov KA, Mirnezami R, Strittmatter N, Goldin RD, Kinross J, Speller AVM, et al. Chemo-informatic strategy for imaging mass spectrometry-based hyperspectral profiling of lipid signatures in colorectal cancer. Proc Natl Acad Sci U S A. 2014;111(3):1216–21. doi: 10.1073/pnas.1310524111 PubMed PMID: WOS:000329928400076. PubMed DOI PMC

Cazares LH, Troyer D, Mendrinos S, Lance RA, Nyalwidhe JO, Beydoun HA, et al. Imaging Mass Spectrometry of a Specific Fragment of Mitogen-Activated Protein Kinase/Extracellular Signal-Regulated Kinase Kinase Kinase 2 Discriminates Cancer from Uninvolved Prostate Tissue. Clin Cancer Res. 2009;15(17):5541–51. doi: 10.1158/1078-0432.CCR-08-2892 PubMed PMID: WOS:000269565800031. PubMed DOI

Casadonte R, Kriegsmann M, Zweynert F, Friedrich K, Bretton G, Otto M, et al. Imaging mass spectrometry to discriminate breast from pancreatic cancer metastasis in formalin- fixed paraffin- embedded tissues. Proteomics. 2014;14(7–8):956–64. doi: 10.1002/pmic.201300430 PubMed PMID: WOS:000333691400016. PubMed DOI

Vincent-Naulleau S, Le Chalony C, Leplat JJ, Bouet S, Bailly C, Spatz A, et al. Clinical and histopathological characterization of cutaneous melanomas in the melanoblastoma-bearing Libechov minipig model. Pigm Cell Res. 2004;17(1):24–35. doi: 10.1046/j.1600-0749.2003.00101.x PubMed PMID: WOS:000187960500004. PubMed DOI

Geffrotin C, Horak V, Crechet F, Tricaud Y, Lethias C, Vincent-Naulleau S, et al. Opposite regulation of tenascin-C and tenascin-X in MeLiM swine heritable cutaneous malignant melanoma. Biochim Biophys Acta-Gen Subj. 2000;1524(2–3):196–202. doi: 10.1016/s0304-4165(00)00158-6 PubMed PMID: WOS:000165978700015. PubMed DOI

Borovansky J, Horak V, Elleder M, Fortyn K, Smit NPM, Kolb AM. Biochemical characterization of a new melanoma model the minipig MeLiM strain. Melanoma Res. 2003;13(6):543–8. doi: 10.1097/01.cmr.0000056276.15046.21 PubMed PMID: WOS:000220973600001. PubMed DOI

Anyz J, Vyslouzilova L, Vaculovic T, Tvrdonova M, Kanicky V, Haase H, et al. Spatial mapping of metals in tissue-sections using combination of mass-spectrometry and histology through image registration. Sci Rep. 2017;7:1–13. doi: 40169.10.1038/srep40169. PubMed PMID: WOS:000392234200001. doi: 10.1038/s41598-016-0028-x PubMed DOI PMC

Hardesty WM, Kelley MC, Mi DM, Low RL, Caprioli RM. Protein signatures for survival and recurrence in metastatic melanoma. J Proteomics. 2011;74(7):1002–14. doi: 10.1016/j.jprot.2011.04.013 PubMed PMID: WOS:000292440400011. PubMed DOI PMC

Tomalova I, Foltynova P, Kanicky V, Preisler J. MALDI MS and ICP MS Detection of a Single CE Separation Record: A Tool for Metalloproteomics. Anal Chem. 2014;86(1):647–54. doi: 10.1021/ac402941e PubMed PMID: WOS:000329548700068. PubMed DOI

Sasaki M, Kizawa K, Igarashi S, Horikoshi T, Uchiwa H, Miyachi Y. Suppression of melanogenesis by induction of endogenous intracellular metallothionein in human melanocytes. Exp Dermatol. 2004;13(8):465–71. doi: 10.1111/j.0906-6705.2004.00204.x PubMed PMID: WOS:000222717800001. PubMed DOI

Weinlich G, Topar G, Eisendle K, Fritsch PO, Zelger B. Comparison of metallothionein-overexpression with sentinel lymph node biopsy as prognostic factors in melanoma. J Eur Acad Dermatol Venereol. 2007;21(5):669–77. doi: 10.1111/j.1468-3083.2006.02051.x PubMed PMID: WOS:000245744000013. PubMed DOI

Weinlich G, Eisendle K, Hassler E, Baltaci M, Fritsch PO, Zelger B. Metallothionein—overexpression as a highly significant prognostic factor in melanoma: a prospective study on 1270 patients. Br J Cancer. 2006;94(6):835–41. doi: 10.1038/sj.bjc.6603028 PubMed PMID: WOS:000236170700011. PubMed DOI PMC

Sugita K, Yamamoto O, Asahi M. Immunohistochemical analysis of metallothionein expression in malignant melanoma in Japanese patients. Am J Dermatopathol. 2001;23(1):29–35. doi: 10.1097/00000372-200102000-00005 PubMed PMID: WOS:000166679900005. PubMed DOI

Weinlich G. Metallothionein-overexpression as a prognostic marker in melanoma. G Ital Dermatol Venereol. 2009;144(1):27–38. . PubMed

Emri E, Egervari K, Varvolgyi T, Rozsa D, Miko E, Dezso B, et al. Correlation among metallothionein expression, intratumoural macrophage infiltration and the risk of metastasis in human cutaneous malignant melanoma. J Eur Acad Dermatol Venereol. 2013;27(3):e320–e7. doi: 10.1111/j.1468-3083.2012.04653.x PubMed PMID: WOS:000315115900018. PubMed DOI

Nylund C, Rappu P, Pakula E, Heino A, Laato L, Elo LL, et al. Melanoma-Associated Cancer-Testis Antigen 16 (CT16) Regulates the Expression of Apoptotic and Antiapoptotic Genes and Promotes Cell Survival. PLoS One. 2012;7(9):1–12. doi: e45382.10.1371/journal.pone.0045382. PubMed PMID: WOS:000309392800044. PubMed PMC

Krizkova S, Fabrik I, Adam V, Kukacka J, Prusa R, Chavis GJ, et al. Utilizing of adsorptive transfer stripping technique Brdica reaction for determination of metallothioneins level in melanoma cells, blood serum and tissues. Sensors. 2008;8:3106–22. doi: 10.3390/s8053106 PubMed DOI PMC

Shen HW, Wu WQ. Study of Melanin Bleaching After Immunohistochemistry of Melanin-containing Tissues. Appl Immunohistochem. 2015;23(4):303–7. PubMed PMID: WOS:000352259500009. PubMed PMC

Moncayo S, Trichard F, Busser B, Sabatier-Vincent M, Pelascini F, Pinel N, et al. Multi-elemental imaging of paraffin-embedded human samples by laser-induced breakdown spectroscopy. Spectroc Acta Pt B-Atom Spectr. 2017;133:40–4. doi: 10.1016/j.sab.2017.04.013 PubMed PMID: WOS:000403859500007. DOI

Mueller L, Herrmann AJ, Techritz S, Panne U, Jakubowski N. Quantitative characterization of single cells by use of immunocytochemistry combined with multiplex LA-ICP-MS. Anal Bioanal Chem. 2017;409(14):3667–76. doi: 10.1007/s00216-017-0310-1 PubMed PMID: WOS:000401408300016. PubMed DOI

Konecna M, Novotny K, Krizkova S, Blazkova I, Kopel P, Kaiser J, et al. Identification of quantum dots labeled metallothionein by fast scanning laser-induced breakdown spectroscopy. Spectroc Acta Pt B-Atom Spectr. 2014;101:220–5. doi: 10.1016/j.sab.2014.08.037 PubMed PMID: WOS:000344440300031. DOI

Maelandsmo GM, Florenes VA, Mellingsaeter T, Hovig E, Kerbel RS, Fodstad O. Differential expression patterns of S100A2, S100A4 and S100A6 during progression of human malignant melanoma. Int J Cancer. 1997;74(4):464–9. doi: 10.1002/(sici)1097-0215(19970822)74:4<464::aid-ijc19>3.3.co;2-g PubMed PMID: WOS:A1997XU12400019. PubMed DOI

Donato R. Intracellular and extracellular roles of s100 proteins. Microsc Res Tech. 2003;60(6):540–51. doi: 10.1002/jemt.10296 PubMed PMID: WOS:000181885200002. PubMed DOI

Lesniak W, Slomnicki LP, Filipek A. S100A6-New facts and features. Biochem Biophys Res Commun. 2009;390(4):1087–92. doi: 10.1016/j.bbrc.2009.10.150 PubMed PMID: WOS:000272650800002. PubMed DOI

Weterman MAJ, Ajubi N, Vandinter IMR, Degen WGJ, Vanmuijen GNP, Ruiter DJ, et al. NMB, a novel gene, is expressed in low-metastatic human-melanoma cell-lines and xenografts. Int J Cancer. 1995;60(1):73–81. doi: 10.1002/ijc.2910600111 PubMed PMID: WOS:A1995QF91800010. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace