Photocatalysis with Reduced TiO2: From Black TiO2 to Cocatalyst-Free Hydrogen Production
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
30701123
PubMed Central
PMC6344061
DOI
10.1021/acscatal.8b04068
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Black TiO2 nanomaterials have recently emerged as promising candidates for solar-driven photocatalytic hydrogen production. Despite the great efforts to synthesize highly reduced TiO2, it is apparent that intermediate degree of reduction (namely, gray titania) brings about the formation of peculiar defective catalytic sites enabling cocatalyst-free hydrogen generation. A precise understanding of the structural and electronic nature of these catalytically active sites is still elusive, as well as the fundamental structure-activity relationships that govern formation of crystal defects, increased light absorption, charge separation, and photocatalytic activity. In this Review, we discuss the basic concepts that underlie an effective design of reduced TiO2 photocatalysts for hydrogen production such as (i) defects formation in reduced TiO2, (ii) analysis of structure deformation and presence of unpaired electrons through electron paramagnetic resonance spectroscopy, (iii) insights from surface science on electronic singularities due to defects, and (iv) the key differences between black and gray titania, that is, photocatalysts that require Pt-modification and cocatalyst-free photocatalytic hydrogen generation. Finally, future directions to improve the performance of reduced TiO2 photocatalysts are outlined.
Zobrazit více v PubMed
Lewis N. S. Toward Cost-Effective Solar Energy Use. Science 2007, 315, 798–801. 10.1126/science.1137014. PubMed DOI
Lewis N. S.; Nocera D. G. Powering the Planet: Chemical Challenges in Solar Energy Utilization. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 15729–15735. 10.1073/pnas.0603395103. PubMed DOI PMC
Shaner M. R.; Atwater H. A.; Lewis N. S.; McFarland E. W. A Comparative Technoeconomic Analysis of Renewable Hydrogen Production Using Solar Energy. Energy Environ. Sci. 2016, 9, 2354–2371. 10.1039/C5EE02573G. DOI
Esposito D. V. Membraneless Electrolyzers for Low-cost Hydrogen Production in a Renewable Energy Future. Joule 2017, 1, 651–658. 10.1016/j.joule.2017.07.003. DOI
Goto Y.; Hisatomi T.; Wang Q.; Higashi T.; Ishikiriyama K.; Maeda T.; Sakata Y.; Okunaka S.; Tokudome H.; Katayama M.; Akiyama S.; Nishiyama H.; Inoue Y.; Takewaki T.; Setoyama T.; Minegishi T.; Takata T.; Yamada T.; Domen K. A Particulate Photocatalyst Water-splitting Panel for Large-scale Solar Hydrogen Generation. Joule 2018, 2, 509–520. 10.1016/j.joule.2017.12.009. DOI
Hisatomi T.; Kubota J.; Domen K. Recent Advances in Semiconductors for Photocatalytic and Photoelectrochemical Water Splitting. Chem. Soc. Rev. 2014, 43, 7520–7535. 10.1039/C3CS60378D. PubMed DOI
Christoforidis K. C.; Fornasiero P. Photocatalytic Hydrogen Production: A Rift into the Future Energy Supply. ChemCatChem 2017, 9, 1523–1544. 10.1002/cctc.201601659. DOI
Fujishima A.; Zhang X.; Tryk D. A. TiO2 Photocatalysis and Related Surface Phenomena. Surf. Sci. Rep. 2008, 63, 515–582. 10.1016/j.surfrep.2008.10.001. DOI
Linsebigler A. L.; Lu G.; Yates J. T. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chem. Rev. 1995, 95, 735–758. 10.1021/cr00035a013. DOI
Schneider J.; Matsuoka M.; Takeuchi M.; Zhang J.; Horiuchi Y.; Anpo M.; Bahnemann D. W. Understanding TiO2 Photocatalysis: Mechanisms and Materials. Chem. Rev. 2014, 114, 9919–9986. 10.1021/cr5001892. PubMed DOI
Nakanishi H.; Iizuka K.; Takayama T.; Iwase A.; Kudo A. Highly Active NaTaO3-Based Photocatalysts for CO2 Reduction to Form CO Using Water as the Electron Donor. ChemSusChem 2017, 10, 112–118. 10.1002/cssc.201601360. PubMed DOI
Kuehnel M. F.; Orchard K. L.; Dalle K. E.; Reisner E. Selective Photocatalytic CO2 Reduction in Water through Anchoring of a Molecular Ni Catalyst on CdS Nanocrystals. J. Am. Chem. Soc. 2017, 139, 7217–7223. 10.1021/jacs.7b00369. PubMed DOI
Chen X.; Li N.; Kong Z.; Ong W.-J.; Zhao X. Photocatalytic Fixation of Nitrogen to Ammonia: State-of-the-art Advancements and Future Prospects. Mater. Horiz. 2018, 5, 9–27. 10.1039/C7MH00557A. DOI
Cargnello M.; Montini T.; Smolin S. Y.; Priebe J. B.; Jaén J. J. D.; Doan-Nguyen V. V. T.; McKay I. S.; Schwalbe J. A.; Pohl M.-M.; Gordon T. R.; Lu Y.; Baxter J. B.; Brückner A.; Fornasiero P.; Murray C. B. Engineering Titania Nanostructure to Tune and Improve Its Photocatalytic Activity. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 3966–3971. 10.1073/pnas.1524806113. PubMed DOI PMC
Chen X.; Shen S.; Guo L.; Mao S. S. Semiconductor-based Photocatalytic Hydrogen Generation. Chem. Rev. 2010, 110, 6503–6570. 10.1021/cr1001645. PubMed DOI
Chen X.; Mao S. S. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications. Chem. Rev. 2007, 107, 2891–2959. 10.1021/cr0500535. PubMed DOI
Asahi R.; Morikawa T.; Ohwaki T.; Aoki K.; Taga Y. Visible-light Photocatalysis in Nitrogen-doped Titanium Oxides. Science 2001, 293, 269–271. 10.1126/science.1061051. PubMed DOI
Murphy A. B. Does Carbon Doping of TiO2 Allow Water Splitting in Visible Light? Comments on “Nanotube Enhanced Photoresponse of Carbon Modified (CM)-n-TiO2 for Efficient Water Splitting. Sol. Energy Mater. Sol. Cells 2008, 92, 363–367. 10.1016/j.solmat.2007.10.007. DOI
Liu G.; Yin L.-C.; Wang J.; Niu P.; Zhen C.; Xie Y.; Cheng H.-M. A Red Anatase TiO2 Photocatalyst for Solar Energy Conversion. Energy Environ. Sci. 2012, 5, 9603–9610. 10.1039/c2ee22930g. DOI
Zhao J.; Zhang L.; Xing W.; Lu K. A Novel Method to Prepare B/N Codoped Anatase TiO2. J. Phys. Chem. C 2015, 119, 7732–7737. 10.1021/jp512837n. DOI
Tian L.; Xu J.; Alnafisah A.; Wang R.; Tan X.; Oyler N. A.; Liu L.; Chen X. A Novel Green TiO2 Photocatalyst with a Surface Charge-transfer Complex of Ti and Hydrazine Groups. Chem. - Eur. J. 2017, 23, 5345–5351. 10.1002/chem.201606027. PubMed DOI
Chen X.; Liu L.; Huang F. Black Titanium Dioxide (TiO2) Nanomaterials. Chem. Soc. Rev. 2015, 44, 1861–1885. 10.1039/C4CS00330F. PubMed DOI
Cronemeyer D. C. Electrical and Optical Properties of Rutile Single Crystals. Phys. Rev. 1952, 87, 876–886. 10.1103/PhysRev.87.876. DOI
Cronemeyer D. C.; Gilleo M. A. The Optical Absorption and Photoconductivity of Rutile. Phys. Rev. 1951, 82, 975–976. 10.1103/PhysRev.82.975. DOI
Chen X.; Liu L.; Yu P. Y.; Mao S. S. Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals. Science 2011, 331, 746–750. 10.1126/science.1200448. PubMed DOI
Wang B.; Shen S.; Mao S. S. Black TiO2 for Solar Hydrogen Conversion. J. Materiomics 2017, 3, 96–111. 10.1016/j.jmat.2017.02.001. DOI
Liu X.; Zhu G.; Wang X.; Yuan X.; Lin T.; Huang F. Progress in Black Titania: A New Material for Advanced Photocatalysis. Adv. Energy Mater. 2016, 6, 1600452.10.1002/aenm.201600452. DOI
Fang W.; Xing M.; Zhang J. Modifications on Reduced Titanium Dioxide Photocatalysts: A Review. J. Photochem. Photobiol., C 2017, 32, 21–39. 10.1016/j.jphotochemrev.2017.05.003. DOI
Liu N.; Zhou X.; Nguyen N. T.; Peters K.; Zoller F.; Hwang I.; Schneider C.; Miehlich M. E.; Freitag D.; Meyer K.; Fattakhova-Rohlfing D.; Schmuki P. Black Magic in Gray Titania: Noble-metal-free Photocatalytic H2 Evolution from Hydrogenated Anatase. ChemSusChem 2017, 10, 62–67. 10.1002/cssc.201601264. PubMed DOI
Liu N.; Schneider C.; Freitag D.; Venkatesan U.; Marthala V. R. R.; Hartmann M.; Winter B.; Spiecker E.; Osvet A.; Zolnhofer E. M.; Meyer K.; Nakajima T.; Zhou X.; Schmuki P. Hydrogenated Anatase: Strong Photocatalytic Dihydrogen Evolution without the Use of a Co-Catalyst. Angew. Chem., Int. Ed. 2014, 53, 14201–14205. 10.1002/anie.201408493. PubMed DOI
Breckenridge R. G.; Hosler W. R. Titanium Dioxide Rectifiers. J. Res. Natl. Bur. Stand. 1952, 49, 65.10.6028/jres.049.009. DOI
Cronemeyer D. C. Infrared Absorption of Reduced Rutile TiO2 Single Crystals. Phys. Rev. 1959, 113, 1222–1226. 10.1103/PhysRev.113.1222. DOI
Hollander L. E. Jr. Piezoresistivity in Reduced Single-Crystal Rutile (TiO2). Phys. Rev. Lett. 1958, 1, 370–371. 10.1103/PhysRevLett.1.370. DOI
Diebold U. The Surface Science of Titanium Dioxide. Surf. Sci. Rep. 2003, 48, 53–229. 10.1016/S0167-5729(02)00100-0. DOI
Liu N.; Schneider C.; Freitag D.; Hartmann M.; Venkatesan U.; Müller J.; Spiecker E.; Schmuki P. Black TiO2 Nanotubes: Cocatalyst-Free Open-Circuit Hydrogen Generation. Nano Lett. 2014, 14, 3309–3313. 10.1021/nl500710j. PubMed DOI
Wu Q.; Huang F.; Zhao M.; Xu J.; Zhou J.; Wang Y. Ultra-small Yellow Defective TiO2 Nanoparticles for Co-catalyst Free Photocatalytic Hydrogen Production. Nano Energy 2016, 24, 63–71. 10.1016/j.nanoen.2016.04.004. DOI
Zhang K.; Wang L.; Kim J. K.; Ma M.; Veerappan G.; Lee C.-L.; Kong K.-j.; Lee H.; Park J. H. An Order/Disorder/Water Junction System for Highly Efficient Co-catalyst-free Photocatalytic Hydrogen Generation. Energy Environ. Sci. 2016, 9, 499–503. 10.1039/C5EE03100A. DOI
Zhou X.; Liu N.; Schmidt J.; Kahnt A.; Osvet A.; Romeis S.; Zolnhofer E. M.; Marthala V. R. R.; Guldi D. M.; Peukert W.; Hartmann M.; Meyer K.; Schmuki P. Noble-metal-free Photocatalytic Hydrogen Evolution Activity: The Impact of Ball Milling Anatase Nanopowders with TiH2. Adv. Mater. 2017, 29, 1604747.10.1002/adma.201604747. PubMed DOI
Liu N.; Häublein V.; Zhou X.; Venkatesan U.; Hartmann M.; Mačković M.; Nakajima T.; Spiecker E.; Osvet A.; Frey L.; Schmuki P. Black” TiO2 Nanotubes Formed by High-energy Proton Implantation Show Noble-metal-co-catalyst Free Photocatalytic H2-Evolution. Nano Lett. 2015, 15, 6815–6820. 10.1021/acs.nanolett.5b02663. PubMed DOI
Zhou X.; Zolnhofer E. M.; Nguyen N. T.; Liu N.; Meyer K.; Schmuki P. Stable Co-catalyst-free Photocatalytic H2 Evolution From Oxidized Titanium Nitride Nanopowders. Angew. Chem., Int. Ed. 2015, 54, 13385–13389. 10.1002/anie.201506797. PubMed DOI
Cui H.; Zhao W.; Yang C.; Yin H.; Lin T.; Shan Y.; Xie Y.; Gu H.; Huang F. Black TiO2 Nanotube Arrays for High-efficiency Photoelectrochemical Water-splitting. J. Mater. Chem. A 2014, 2, 8612–8616. 10.1039/C4TA00176A. DOI
Zhou X.; Liu N.; Schmuki P. Photocatalysis with TiO2 Nanotubes: “Colorful” Reactivity and Designing Site-specific Photocatalytic Centers into TiO2 Nanotubes. ACS Catal. 2017, 7, 3210–3235. 10.1021/acscatal.6b03709. DOI
Xu J.; Tian Z.; Yin G.; Lin T.; Huang F. Controllable Reduced Black Titania with Enhanced Photoelectrochemical Water Splitting Performance. Dalton Trans 2017, 46, 1047–1051. 10.1039/C6DT04060H. PubMed DOI
Mascaretti L.; Ferrulli S.; Mazzolini P.; Casari C. S.; Russo V.; Matarrese R.; Nova I.; Terraneo G.; Liu N.; Schmuki P.; Li Bassi A. Hydrogen-treated Hierarchical Titanium Oxide Nanostructures for Photoelectrochemical Water Splitting. Sol. Energy Mater. Sol. Cells 2017, 169, 19–27. 10.1016/j.solmat.2017.04.045. DOI
Cho I. S.; Logar M.; Lee C. H.; Cai L.; Prinz F. B.; Zheng X. Rapid and Controllable Flame Reduction of TiO2 Nanowires for Enhanced Solar Water-splitting. Nano Lett. 2014, 14, 24–31. 10.1021/nl4026902. PubMed DOI
Wang G.; Wang H.; Ling Y.; Tang Y.; Yang X.; Fitzmorris R. C.; Wang C.; Zhang J. Z.; Li Y. Hydrogen-treated TiO2 Nanowire Arrays for Photoelectrochemical Water Splitting. Nano Lett. 2011, 11, 3026–3033. 10.1021/nl201766h. PubMed DOI
Zhu G.; Yin H.; Yang C.; Cui H.; Wang Z.; Xu J.; Lin T.; Huang F. Black Titania for Superior Photocatalytic Hydrogen Production and Photoelectrochemical Water Splitting. ChemCatChem 2015, 7, 2614–2619. 10.1002/cctc.201500488. DOI
Nakajima T.; Nakamura T.; Shinoda K.; Tsuchiya T. Rapid Formation of Black Titania Photoanodes: Pulsed Laser-induced Oxygen Release and Enhanced Solar Water Splitting Efficiency. J. Mater. Chem. A 2014, 2, 6762–6771. 10.1039/C4TA00557K. DOI
Wang Z.; Yang C.; Lin T.; Yin H.; Chen P.; Wan D.; Xu F.; Huang F.; Lin J.; Xie X.; Jiang M. Visible-light Photocatalytic, Solar Thermal and Photoelectrochemical Properties of Aluminium-reduced Black Titania. Energy Environ. Sci. 2013, 6, 3007–3014. 10.1039/c3ee41817k. DOI
Mohajernia S.; Hejazi S.; Mazare A.; Nguyen N. T.; Schmuki P. Photoelectrochemical H2 Generation from Suboxide TiO2 Nanotubes: Visible-light Absorption versus Conductivity. Chem. - Eur. J. 2017, 23, 12406–12411. 10.1002/chem.201702245. PubMed DOI
Zhang K.; Ravishankar S.; Ma M.; Veerappan G.; Bisquert J.; Fabregat-Santiago F.; Park J. H. Overcoming Charge Collection Limitation at Solid/Liquid Interface by a Controllable Crystal Deficient Overlayer. Adv. Energy Mater. 2017, 7, 1600923.10.1002/aenm.201600923. DOI
Zhang K.; Park J. H. Surface Localization of Defects in Black TiO2: Enhancing Photoactivity or Reactivity. J. Phys. Chem. Lett. 2017, 8, 199–207. 10.1021/acs.jpclett.6b02289. PubMed DOI
Li G.; Blake G. R.; Palstra T. T. M. Vacancies in Functional Materials for Clean Energy Storage and Harvesting: The Perfect Imperfection. Chem. Soc. Rev. 2017, 46, 1693–1706. 10.1039/C6CS00571C. PubMed DOI
Paul A.; Laurila T.; Vuorinen V.; Divinski S. V.. Thermodynamics, Diffusion and the Kirkendall Effect in Solids; Springer International Publishing Switzerland: Basel, Switzerland, 2014; p 530.
Callister W. D. Jr.; Rethwisch D. G.. Materials Science and Engineering: An Introduction, 9th ed.; John Wiley and Sons, Inc.: Hoboken, NJ, 2013; p 992.
Naldoni A.; Allieta M.; Santangelo S.; Marelli M.; Fabbri F.; Cappelli S.; Bianchi C. L.; Psaro R.; Dal Santo V. Effect of Nature and Location of Defects on Bandgap Narrowing in Black TiO2 Nanoparticles. J. Am. Chem. Soc. 2012, 134, 7600–7603. 10.1021/ja3012676. PubMed DOI
Chen X.; Burda C. The Electronic Origin of the Visible-light Absorption Properties of C-, N- and S-doped TiO2 Nanomaterials. J. Am. Chem. Soc. 2008, 130, 5018–5019. 10.1021/ja711023z. PubMed DOI
Naldoni A.; Fabbri F.; Altomare M.; Marelli M.; Psaro R.; Selli E.; Salviati G.; Dal Santo V. The Critical Role of Intragap States in the Energy Transfer from Gold Nanoparticles to TiO2. Phys. Chem. Chem. Phys. 2015, 17, 4864–4869. 10.1039/C4CP05775A. PubMed DOI
Yang H. G.; Sun C. H.; Qiao S. Z.; Zou J.; Liu G.; Smith S. C.; Cheng H. M.; Lu G. Q. Anatase TiO2 Single Crystals with a Large Percentage of Reactive Facets. Nature 2008, 453, 638–641. 10.1038/nature06964. PubMed DOI
Penn R. L.; Banfield J. F. Formation of Rutile Nuclei at Anatase {112} Twin Interfaces and the Phase Transformation Mechanism in Nanocrystalline Titania. Am. Mineral. 1999, 84, 871–876. 10.2138/am-1999-5-621. DOI
Esch F.; Fabris S.; Zhou L.; Montini T.; Africh C.; Fornasiero P.; Comelli G.; Rosei R. Electron Localization Determines Defect Formation on Ceria Substrates. Science 2005, 309, 752–755. 10.1126/science.1111568. PubMed DOI
Campbell C. T.; Peden C. H. F. Oxygen Vacancies and Catalysis on Ceria Surfaces. Science 2005, 309, 713–714. 10.1126/science.1113955. PubMed DOI
Cordero F. Hopping and Clustering of Oxygen Vacancies in SrTiO3 by Anelastic Relaxation. Phys. Rev. B: Condens. Matter Mater. Phys. 2007, 76, 172106.10.1103/PhysRevB.76.172106. DOI
Eom K.; Choi E.; Choi M.; Han S.; Zhou H.; Lee J. Oxygen Vacancy Linear Clustering in a Perovskite Oxide. J. Phys. Chem. Lett. 2017, 8, 3500–3505. 10.1021/acs.jpclett.7b01348. PubMed DOI
Uberuaga B. P.; Pilania G. Effect of Cation Ordering on Oxygen Vacancy Diffusion Pathways in Double Perovskites. Chem. Mater. 2015, 27, 5020–5026. 10.1021/acs.chemmater.5b01474. DOI
Viola M. C.; Martínez-Lope M. J.; Alonso J. A.; Velasco P.; Martínez J. L.; Pedregosa J. C.; Carbonio R. E.; Fernández-Díaz M. T. Induction of Colossal Magnetoresistance in the Double Perovskite Sr2CoMoO6. Chem. Mater. 2002, 14, 812–818. 10.1021/cm011186j. DOI
Pavlenko N.; Kopp T.; Tsymbal E. Y.; Mannhart J.; Sawatzky G. A. Oxygen Vacancies at Titanate Interfaces: Two-dimensional Magnetism and Orbital Reconstruction. Phys. Rev. B: Condens. Matter Mater. Phys. 2012, 86, 064431.10.1103/PhysRevB.86.064431. DOI
He Y.; Dulub O.; Cheng H.; Selloni A.; Diebold U. Evidence for the Predominance of Subsurface Defects on Reduced Anatase TiO2(101). Phys. Rev. Lett. 2009, 102, 106105.10.1103/PhysRevLett.102.106105. PubMed DOI
Sekiya T.; Takeda H.; Kamiya N.; Kurita S.; Kodaira T. EPR of Anatase Titanium Dioxide under UV Light Irradiation. Phys. Status Solidi C 2006, 3, 3603–3606. 10.1002/pssc.200672152. DOI
Chester P. F. Electron Spin Resonance in Semiconducting Rutile. J. Appl. Phys. 1961, 32, 2233–2236. 10.1063/1.1777049. DOI
Aono M.; Hasiguti R. R. Interaction and Ordering of Lattice Defects in Oxygen-deficient Rutile TiO2–x. Phys. Rev. B: Condens. Matter Mater. Phys. 1993, 48, 12406–12414. 10.1103/PhysRevB.48.12406. PubMed DOI
Hasiguti R. R.; Yagi E.; Aono M. Electrical Conductivity of Slightly Reduced Rutile between 2 and 370 K. Radiat. Eff. 1970, 4, 137–140. 10.1080/00337577008234980. DOI
Chiesa M.; Livraghi S.; Giamello E.; Albanese E.; Pacchioni G. Ferromagnetic Interactions in Highly Stable, Partially Reduced TiO2: The S = 2 State in Anatase. Angew. Chem., Int. Ed. 2017, 56, 2604–2607. 10.1002/anie.201610973. PubMed DOI
Brant A. T.; Golden E. M.; Giles N. C.; Yang S.; Sarker M. A. R.; Watauchi S.; Nagao M.; Tanaka I.; Tryk D. A.; Manivannan A.; Halliburton L. E. Triplet Ground State of the Neutral Oxygen-vacancy Donor in Rutile TiO2. Phys. Rev. B: Condens. Matter Mater. Phys. 2014, 89, 115206.10.1103/PhysRevB.89.115206. DOI
Chiesa M.; Paganini M. C.; Livraghi S.; Giamello E. Charge Trapping in TiO2 Polymorphs as Seen by Electron Paramagnetic Resonance Spectroscopy. Phys. Chem. Chem. Phys. 2013, 15, 9435–9447. 10.1039/c3cp50658d. PubMed DOI
Livraghi S.; Chiesa M.; Paganini M. C.; Giamello E. On the Nature of Reduced States in Titanium Dioxide as Monitored by Electron Paramagnetic Resonance. I: The Anatase Case. J. Phys. Chem. C 2011, 115, 25413–25421. 10.1021/jp209075m. DOI
Sun Y.; Egawa T.; Shao C.; Zhang L.; Yao X. Quantitative Study of F Center in High-surface-area Anatase Titania Nanoparticles Prepared by MOCVD. J. Phys. Chem. Solids 2004, 65, 1793–1797. 10.1016/j.jpcs.2004.05.006. DOI
Nakamura I.; Negishi N.; Kutsuna S.; Ihara T.; Sugihara S.; Takeuchi K. Role of Oxygen Vacancy in the Plasma-treated TiO2 Photocatalyst with Visible Light Activity for NO Removal. J. Mol. Catal. A: Chem. 2000, 161, 205–212. 10.1016/S1381-1169(00)00362-9. DOI
Misra S. K.; Andronenko S. I.; Tipikin D.; Freed J. H.; Somani V.; Prakash O. Study of Paramagnetic Defect Centers in As-grown and Annealed TiO2 Anatase and Rutile Nanoparticles by a Variable-temperature X-band and High-frequency (236 GHz) EPR. J. Magn. Magn. Mater. 2016, 401, 495–505. 10.1016/j.jmmm.2015.10.072. PubMed DOI PMC
Baumann S. O.; Elser M. J.; Auer M.; Bernardi J.; Hüsing N.; Diwald O. Solid–Solid Interface Formation in TiO2 Nanoparticle Networks. Langmuir 2011, 27, 1946–1953. 10.1021/la104213d. PubMed DOI
Minnekhanov A. A.; Deygen D. M.; Konstantinova E. A.; Vorontsov A. S.; Kashkarov P. K. Paramagnetic Properties of Carbon-doped Titanium Dioxide. Nanoscale Res. Lett. 2012, 7, 333.10.1186/1556-276X-7-333. PubMed DOI PMC
Kuznetsov V. N.; Serpone N. On the Origin of the Spectral Bands in the Visible Absorption Spectra of Visible-light-active TiO2 Specimens Analysis and Assignments. J. Phys. Chem. C 2009, 113, 15110–15123. 10.1021/jp901034t. DOI
Panarelli E. G.; Livraghi S.; Maurelli S.; Polliotto V.; Chiesa M.; Giamello E. Role of Surface Water Molecules in Stabilizing Trapped Hole Centres in Titanium Dioxide (Anatase) as Monitored by Electron Paramagnetic Resonance. J. Photochem. Photobiol., A 2016, 322–323, 27–34. 10.1016/j.jphotochem.2016.02.015. DOI
Kumar C. P.; Gopal N. O.; Wang T. C.; Wong M.-S.; Ke S. C. EPR Investigation of TiO2 Nanoparticles with Temperature-dependent Properties. J. Phys. Chem. B 2006, 110, 5223–5229. 10.1021/jp057053t. PubMed DOI
Yang S.; Brant A. T.; Halliburton L. E. Photoinduced Self-trapped Hole Center in TiO2 Crystals. Phys. Rev. B: Condens. Matter Mater. Phys. 2010, 82, 035209.10.1103/PhysRevB.82.035209. DOI
Grunin V. S.; Davtyan G. D.; Ioffe V. A.; Patrina I. B. EPR of Cu2+ and Radiation Centres in Anatase (TiO2). Phys. Status Solidi B 1976, 77, 85–92. 10.1002/pssb.2220770107. DOI
Carter E.; Carley A. F.; Murphy D. M. Evidence for O2– Radical Stabilization at Surface Oxygen Vacancies on Polycrystalline TiO2. J. Phys. Chem. C 2007, 111, 10630–10638. 10.1021/jp0729516. DOI
Hurum D. C.; Agrios A. G.; Gray K. A.; Rajh T.; Thurnauer M. C. Explaining the Enhanced Photocatalytic Activity of Degussa P25 Mixed-Phase TiO2 Using EPR. J. Phys. Chem. B 2003, 107, 4545–4549. 10.1021/jp0273934. DOI
Coronado J. M.; Maira A. J.; Conesa J. C.; Yeung K. L.; Augugliaro V.; Soria J. EPR Study of the Surface Characteristics of Nanostructured TiO2 under UV Irradiation. Langmuir 2001, 17, 5368–5374. 10.1021/la010153f. DOI
López-Muñoz M. J.; Soria J.; Conesa J. C.; Augugliaro V. ESR Study of Photo-oxidation of Phenol at Low Temperature on Polycrystalline Titanium Dioxide. Stud. Surf. Sci. Catal. 1994, 82, 693–701. 10.1016/S0167-2991(08)63465-5. DOI
McCain D. C.; Palke W. E. Theory of Electron Spin g-values for Peroxy Radicals. J. Magn. Reson. (1969-1992) 1975, 20, 52–66. 10.1016/0022-2364(75)90149-3. DOI
Chen X.; Liu L.; Huang F. Black Titanium Dioxide (TiO2) Nanomaterials. Chem. Soc. Rev. 2015, 44, 1861–1885. 10.1039/C4CS00330F. PubMed DOI
Wajid Shah M.; Zhu Y.; Fan X.; Zhao J.; Li Y.; Asim S.; Wang C. Facile Synthesis of Defective TiO2–x Nanocrystals with High Surface Area and Tailoring Bandgap for Visible-light Photocatalysis. Sci. Rep. 2015, 5, 15804.10.1038/srep15804. PubMed DOI PMC
Montoya A. T.; Gillan E. G. Enhanced Photocatalytic Hydrogen Evolution from Transition-metal Surface-modified TiO2. ACS Omega 2018, 3, 2947–2955. 10.1021/acsomega.7b02021. PubMed DOI PMC
Cushing S. K.; Meng F.; Zhang J.; Ding B.; Chen C. K.; Chen C.-J.; Liu R.-S.; Bristow A. D.; Bright J.; Zheng P.; Wu N. Effects of Defects on Photocatalytic Activity of Hydrogen-treated Titanium Oxide Nanobelts. ACS Catal. 2017, 7, 1742–1748. 10.1021/acscatal.6b02177. DOI
Henderson M. A.; Lyubinetsky I. Molecular-level Insights into Photocatalysis from Scanning Probe Microscopy Studies on TiO2(110). Chem. Rev. 2013, 113, 4428–4455. 10.1021/cr300315m. PubMed DOI
Vohs J. M. Site Requirements for the Adsorption and Reaction of Oxygenates on Metal Oxide Surfaces. Chem. Rev. 2013, 113, 4136–4163. 10.1021/cr300328u. PubMed DOI
Guo Q.; Zhou C.; Ma Z.; Ren Z.; Fan H.; Yang X. Elementary Photocatalytic Chemistry on TiO2 Surfaces. Chem. Soc. Rev. 2016, 45, 3701–3730. 10.1039/C5CS00448A. PubMed DOI
Li H.; Guo Y.; Robertson J. Calculation of TiO2 Surface and Subsurface Oxygen Vacancy by the Screened Exchange Functional. J. Phys. Chem. C 2015, 119, 18160–18166. 10.1021/acs.jpcc.5b02430. DOI
Malashevich A.; Jain M.; Louie S. G. First-principles DFT + GW Study of Oxygen Vacancies in Rutile TiO2. Phys. Rev. B: Condens. Matter Mater. Phys. 2014, 89, 075205.10.1103/PhysRevB.89.075205. DOI
Mattioli G.; Filippone F.; Alippi P.; Amore Bonapasta A. Ab Initio Study of the Electronic States Induced by Oxygen Vacancies in Rutile and Anatase TiO2. Phys. Rev. B: Condens. Matter Mater. Phys. 2008, 78, 241201.10.1103/PhysRevB.78.241201. DOI
Livraghi S.; Maurelli S.; Paganini M. C.; Chiesa M.; Giamello E. Probing the Local Environment of Ti3+ Ions in TiO2 (Rutile) by 17O HYSCORE. Angew. Chem., Int. Ed. 2011, 50, 8038–8040. 10.1002/anie.201100531. PubMed DOI
Maurelli S.; Livraghi S.; Chiesa M.; Giamello E.; Van Doorslaer S.; Di Valentin C.; Pacchioni G. Hydration Structure of the Ti(III) Cation as Revealed by Pulse EPR and DFT Studies: New Insights into a Textbook Case. Inorg. Chem. 2011, 50, 2385–2394. 10.1021/ic1021802. PubMed DOI
Bilmes S. A.; Mandelbaum P.; Alvarez F.; Victoria N. M. Surface and Electronic Structure of Titanium Dioxide Photocatalysts. J. Phys. Chem. B 2000, 104, 9851–9858. 10.1021/jp0010132. DOI
Justicia I.; Ordejón P.; Canto G.; Mozos J. L.; Fraxedas J.; Battiston G. A.; Gerbasi R.; Figueras A. Designed Self-doped Titanium Oxide Thin Films for Efficient Visible-light Photocatalysis. Adv. Mater. 2002, 14, 1399–1402. 10.1002/1521-4095(20021002)14:19<1399::AID-ADMA1399>3.0.CO;2-C. DOI
Wendt S.; Sprunger P. T.; Lira E.; Madsen G. K. H.; Li Z.; Hansen J. Ø.; Matthiesen J.; Blekinge-Rasmussen A.; Lægsgaard E.; Hammer B.; Besenbacher F. The Role of Interstitial Sites in the Ti3d Defect State in the Band Gap of Titania. Science 2008, 320, 1755–1759. 10.1126/science.1159846. PubMed DOI
He Y.; Tilocca A.; Dulub O.; Selloni A.; Diebold U. Local Ordering and Electronic Signatures of Submonolayer Water on Anatase TiO2(101). Nat. Mater. 2009, 8, 585–589. 10.1038/nmat2466. PubMed DOI
Lira E.; Wendt S.; Huo P.; Hansen J. Ø.; Streber R.; Porsgaard S.; Wei Y.; Bechstein R.; Lægsgaard E.; Besenbacher F. The Importance of Bulk Ti3+ Defects in the Oxygen Chemistry on Titania Surfaces. J. Am. Chem. Soc. 2011, 133, 6529–6532. 10.1021/ja200884w. PubMed DOI
Gong X.-Q.; Selloni A.; Batzill M.; Diebold U. Steps on Anatase TiO2(101). Nat. Mater. 2006, 5, 665–670. 10.1038/nmat1695. PubMed DOI
Li J.; Lazzari R.; Chenot S.; Jupille J. Contributions of Oxygen Vacancies and Titanium Interstitials to Band-gap States of Reduced Titania. Phys. Rev. B: Condens. Matter Mater. Phys. 2018, 97, 041403.10.1103/PhysRevB.97.041403. DOI
Huygh S.; Bogaerts A.; Neyts E. C. How Oxygen Vacancies Activate CO2 Dissociation on TiO2 Anatase (001). J. Phys. Chem. C 2016, 120, 21659–21669. 10.1021/acs.jpcc.6b07459. DOI
Lang X.; Liang Y.; Sun L.; Zhou S.; Lau W.-M. Interplay between Methanol and Anatase TiO2(101) Surface: The Effect of Subsurface Oxygen Vacancy. J. Phys. Chem. C 2017, 121, 6072–6080. 10.1021/acs.jpcc.6b11356. DOI
Martinez U.; Hansen J. Ø.; Lira E.; Kristoffersen H. H.; Huo P.; Bechstein R.; Lægsgaard E.; Besenbacher F.; Hammer B.; Wendt S. Reduced Step Edges on Rutile TiO2(110) as Competing Defects to Oxygen Vacancies on the Terraces and Reactive Sites for Ethanol Dissociation. Phys. Rev. Lett. 2012, 109, 155501.10.1103/PhysRevLett.109.155501. PubMed DOI
Guo Q.; Xu C.; Ren Z.; Yang W.; Ma Z.; Dai D.; Fan H.; Minton T. K.; Yang X. Stepwise Photocatalytic Dissociation of Methanol and Water on TiO2(110). J. Am. Chem. Soc. 2012, 134, 13366–13373. 10.1021/ja304049x. PubMed DOI
Zhou C.; Ren Z.; Tan S.; Ma Z.; Mao X.; Dai D.; Fan H.; Yang X.; LaRue J.; Cooper R.; Wodtke A. M.; Wang Z.; Li Z.; Wang B.; Yang J.; Hou J. Site-specific Photocatalytic Splitting of Methanol on TiO2(110). Chem. Sci. 2010, 1, 575–580. 10.1039/c0sc00316f. DOI
Liu L.; Yu P. Y.; Chen X.; Mao S. S.; Shen D. Z. Hydrogenation and Disorder in Engineered Black TiO2. Phys. Rev. Lett. 2013, 111, 065505.10.1103/PhysRevLett.111.065505. PubMed DOI
Xia T.; Chen X. Revealing the Structural Properties of Hydrogenated Black TiO2 Nanocrystals. J. Mater. Chem. A 2013, 1, 2983–2989. 10.1039/c3ta01589k. DOI
Zheng Z.; Huang B.; Lu J.; Wang Z.; Qin X.; Zhang X.; Dai Y.; Whangbo M.-H. Hydrogenated Titania: Synergy of Surface Modification and Morphology Improvement for Enhanced Photocatalytic Activity. Chem. Commun. 2012, 48, 5733–5735. 10.1039/c2cc32220j. PubMed DOI
Zhu Y.; Liu D.; Meng M. H2 Spillover Enhanced Hydrogenation Capability of TiO2 Used for Photocatalytic Splitting of Water: a Traditional Phenomenon for New Applications. Chem. Commun. 2014, 50, 6049–6051. 10.1039/C4CC01667J. PubMed DOI
Zuo F.; Wang L.; Wu T.; Zhang Z.; Borchardt D.; Feng P. Self-doped Ti3+ Enhanced Photocatalyst for Hydrogen Production under Visible Light. J. Am. Chem. Soc. 2010, 132, 11856–11857. 10.1021/ja103843d. PubMed DOI
Yang C.; Wang Z.; Lin T.; Yin H.; Lü X.; Wan D.; Xu T.; Zheng C.; Lin J.; Huang F.; Xie X.; Jiang M. Core-shell Nanostructured “Black” Rutile Titania as Excellent Catalyst for Hydrogen Production Enhanced by Sulfur Doping. J. Am. Chem. Soc. 2013, 135, 17831–17838. 10.1021/ja4076748. PubMed DOI
Sinhamahapatra A.; Jeon J.-P.; Yu J.-S. A New Approach to Prepare Highly Active and Stable Black Titania for Visible Light-assisted Hydrogen Production. Energy Environ. Sci. 2015, 8, 3539–3544. 10.1039/C5EE02443A. DOI
Zanella R.; Giorgio S.; Henry C. R.; Louis C. Alternative Methods for the Preparation of Gold Nanoparticles Supported on TiO2. J. Phys. Chem. B 2002, 106, 7634–7642. 10.1021/jp0144810. DOI
Corma A.; Garcia H. Supported Gold Nanoparticles as Catalysts for Organic Reactions. Chem. Soc. Rev. 2008, 37, 2096–2126. 10.1039/b707314n. PubMed DOI
Cushing B. L.; Kolesnichenko V. L.; O’Connor C. J. Recent Advances in the Liquid-phase Syntheses of Inorganic Nanoparticles. Chem. Rev. 2004, 104, 3893–3946. 10.1021/cr030027b. PubMed DOI
Zhu Y.; Liu D.; Meng M. H2 Spillover Enhanced Hydrogenation Capability of TiO2 Used for Photocatalytic Splitting of Water: A Traditional Phenomenon for New Applications. Chem. Commun. 2014, 50, 6049–6051. 10.1039/C4CC01667J. PubMed DOI
Liu N.; Schneider C.; Freitag D.; Zolnhofer E. M.; Meyer K.; Schmuki P. Noble-metal-free Photocatalytic H2 Generation: Active and Inactive ‘Black’ TiO2 Nanotubes and Synergistic Effects. Chem. - Eur. J. 2016, 22, 13810–13814. 10.1002/chem.201602714. PubMed DOI
Kong M.; Li Y.; Chen X.; Tian T.; Fang P.; Zheng F.; Zhao X. Tuning the Relative Concentration Ratio of Bulk Defects to Surface Defects in TiO2 Nanocrystals Leads to High Photocatalytic Efficiency. J. Am. Chem. Soc. 2011, 133, 16414–16417. 10.1021/ja207826q. PubMed DOI
Cronemeyer D. C. Infrared Absorption of Reduced Rutile TiO2 Single Crystals. Phys. Rev. 1959, 113, 1222–1226. 10.1103/PhysRev.113.1222. DOI
Xue J.; Zhu X.; Zhang Y.; Wang W.; Xie W.; Zhou J.; Bao J.; Luo Y.; Gao X.; Wang Y.; Jang L.-y.; Sun S.; Gao C. Nature of Conduction Band Tailing in Hydrogenated Titanium Dioxide for Photocatalytic Hydrogen Evolution. ChemCatChem 2016, 8, 2010–2014. 10.1002/cctc.201600237. DOI
Zhang X.; Hu W.; Zhang K.; Wang J.; Sun B.; Li H.; Qiao P.; Wang L.; Zhou W. Ti3+ Self-Doped Black TiO2 Nanotubes with Mesoporous Nanosheet Architecture as Efficient Solar-driven Hydrogen Evolution Photocatalysts. ACS Sustainable Chem. Eng. 2017, 5, 6894–6901. 10.1021/acssuschemeng.7b01114. DOI
Pore V.; Ritala M.; Leskelä M.; Areva S.; Järn M.; Järnström J. H2S Modified Atomic Layer Deposition Process for Photocatalytic TiO2 Thin Films. J. Mater. Chem. 2007, 17, 1361–1371. 10.1039/B617307A. DOI
Prokes S. M.; Gole J. L.; Chen X.; Burda C.; Carlos W. E. Defect-related Optical Behavior in Surface Modified TiO2 Nanostructures. Adv. Funct. Mater. 2005, 15, 161–167. 10.1002/adfm.200305109. DOI
Kroll W. The Production of Ductile Titanium. Trans. Electrochem. Soc. 1940, 78, 35–47. 10.1149/1.3071290. DOI
Bamwenda G. R.; Tsubota S.; Kobayashi T.; Haruta M. Photoinduced Hydrogen Production from an Aqueous Solution of Ethylene Glycol over Ultrafine Gold Supported on TiO2. J. Photochem. Photobiol., A 1994, 77, 59–67. 10.1016/1010-6030(94)80009-X. DOI
Bamwenda G. R.; Tsubota S.; Nakamura T.; Haruta M. Photoassisted Hydrogen Production from a Water-ethanol Solution: A Comparison of Activities of Au–TiO2 and Pt–TiO2. J. Photochem. Photobiol., A 1995, 89, 177–189. 10.1016/1010-6030(95)04039-I. DOI
Spanu D.; Recchia S.; Mohajernia S.; Tomanec O.; Kment Š.; Zboril R.; Schmuki P.; Altomare M. Templated Dewetting–Alloying of NiCu Bilayers on TiO2 Nanotubes Enables Efficient Noble Metal-free Photocatalytic H2 Evolution. ACS Catal. 2018, 8, 5298–5305. 10.1021/acscatal.8b01190. DOI
Naldoni A.; D’Arienzo M.; Altomare M.; Marelli M.; Scotti R.; Morazzoni F.; Selli E.; Dal Santo V. Pt and Au/TiO2 Photocatalysts for Methanol Reforming: Role of Metal Nanoparticles in Tuning Charge Trapping Properties and Photoefficiency. Appl. Catal., B 2013, 130–131, 239–248. 10.1016/j.apcatb.2012.11.006. DOI
Liu N.; Schneider C.; Freitag D.; Hartmann M.; Venkatesan U.; Müller J.; Spiecker E.; Schmuki P. Black TiO2 Nanotubes: Cocatalyst-free Open-circuit Hydrogen Generation. Nano Lett. 2014, 14, 3309–3313. 10.1021/nl500710j. PubMed DOI
Liu N.; Steinrück H.-G.; Osvet A.; Yang Y.; Schmuki P. Noble Metal Free Photocatalytic H2 Generation on Black TiO2: On the Influence of Crystal Facets vs. Crystal Damage. Appl. Phys. Lett. 2017, 110, 072102.10.1063/1.4976010. DOI
Abbaschian R.; Reed-Hill R. E.. Physical Metallurgy Principles; Cengage Learning: Boston, MA, 2010; p 750.
Makin M. J.The Nature of Small Defect Clusters: Report of a Consultants Symposium Held at A. E. R. E., Harwell, on July 4–6th, 1966; H.M. Stationery Office: London, 1966; p 592.
Wei L. H.; Wu S. Y.; Zhang Z. H.; Wang X. F.; Hu Y. X. Investigations on the Local Structure and g Factors for the Interstitial Ti3+ in TiO2. Pramana 2008, 71, 167–173. 10.1007/s12043-008-0149-2. DOI
Kumar C. P.; Gopal N. O.; Wang T. C.; Wong M.-S.; Ke S. C. EPR Investigation of TiO2 Nanoparticles with Temperature-dependent Properties. J. Phys. Chem. B 2006, 110, 5223–5229. 10.1021/jp057053t. PubMed DOI
Pan X.; Yang M.-Q.; Fu X.; Zhang N.; Xu Y.-J. Defective TiO2 with Oxygen Vacancies: Synthesis, Properties and Photocatalytic Applications. Nanoscale 2013, 5, 3601–3614. 10.1039/c3nr00476g. PubMed DOI
Brückner A. In Situ Electron Paramagnetic Resonance: A Unique Tool for Analyzing Structure–reactivity Relationships in Heterogeneous Catalysis. Chem. Soc. Rev. 2010, 39, 4673–4684. 10.1039/b919541f. PubMed DOI
Deskins N. A.; Rousseau R.; Dupuis M. Distribution of Ti3+ Surface Sites in Reduced TiO2. J. Phys. Chem. C 2011, 115, 7562–7572. 10.1021/jp2001139. DOI
Justicia I.; Ordejón P.; Canto G.; Mozos J. L.; Fraxedas J.; Battiston G. A.; Gerbasi R.; Figueras A. Designed Self-doped Titanium Oxide Thin Films for Efficient Visible-light Photocatalysis. Adv. Mater. 2002, 14, 1399–1402. 10.1002/1521-4095(20021002)14:19<1399::AID-ADMA1399>3.0.CO;2-C. DOI
Zhou X.; Liu N.; Schmuki P. Ar+-ion Bombardment of TiO2 Nanotubes Creates Co-catalytic Effect for Photocatalytic Open Circuit Hydrogen Evolution. Electrochem. Commun. 2014, 49, 60–64. 10.1016/j.elecom.2014.09.013. DOI
AlSalka Y.; Hakki A.; Schneider J.; Bahnemann D. W. Co-catalyst-free Photocatalytic Hydrogen Evolution on TiO2: Synthesis of Optimized Photocatalyst through Statistical Material Science. Appl. Catal., B 2018, 238, 422–433. 10.1016/j.apcatb.2018.07.045. DOI
Zhou X.; Häublein V.; Liu N.; Nguyen N. T.; Zolnhofer E. M.; Tsuchiya H.; Killian M. S.; Meyer K.; Frey L.; Schmuki P. TiO2 Nanotubes: Nitrogen-ion Implantation at Low Dose Provides Noble-metal-free Photocatalytic H2-evolution Activity. Angew. Chem., Int. Ed. 2016, 55, 3763–3767. 10.1002/anie.201511580. PubMed DOI
Scanlon D. O.; Dunnill C. W.; Buckeridge J.; Shevlin S. A.; Logsdail A. J.; Woodley S. M.; Catlow C. R. A.; Powell M. J.; Palgrave R. G.; Parkin I. P.; Watson G. W.; Keal T. W.; Sherwood P.; Walsh A.; Sokol A. A. Band Alignment of Rutile and Anatase TiO2. Nat. Mater. 2013, 12, 798–801. 10.1038/nmat3697. PubMed DOI
Hernández S.; Hidalgo D.; Sacco A.; Chiodoni A.; Lamberti A.; Cauda V.; Tresso E.; Saracco G. Comparison of Photocatalytic and Transport Properties of TiO2 and ZnO Nanostructures for Solar-driven Water Splitting. Phys. Chem. Chem. Phys. 2015, 17, 7775–7786. 10.1039/C4CP05857G. PubMed DOI
Single Atom Cocatalysts in Photocatalysis
Enhanced Photocatalytic H2 Generation by Light-Induced Carbon Modification of TiO2 Nanotubes
Interfacial States in Au/Reduced TiO2 Plasmonic Photocatalysts Quench Hot-Carrier Photoactivity
As a single atom Pd outperforms Pt as the most active co-catalyst for photocatalytic H2 evolution