Photocatalysis with Reduced TiO2: From Black TiO2 to Cocatalyst-Free Hydrogen Production

. 2019 Jan 04 ; 9 (1) : 345-364. [epub] 20181130

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid30701123

Black TiO2 nanomaterials have recently emerged as promising candidates for solar-driven photocatalytic hydrogen production. Despite the great efforts to synthesize highly reduced TiO2, it is apparent that intermediate degree of reduction (namely, gray titania) brings about the formation of peculiar defective catalytic sites enabling cocatalyst-free hydrogen generation. A precise understanding of the structural and electronic nature of these catalytically active sites is still elusive, as well as the fundamental structure-activity relationships that govern formation of crystal defects, increased light absorption, charge separation, and photocatalytic activity. In this Review, we discuss the basic concepts that underlie an effective design of reduced TiO2 photocatalysts for hydrogen production such as (i) defects formation in reduced TiO2, (ii) analysis of structure deformation and presence of unpaired electrons through electron paramagnetic resonance spectroscopy, (iii) insights from surface science on electronic singularities due to defects, and (iv) the key differences between black and gray titania, that is, photocatalysts that require Pt-modification and cocatalyst-free photocatalytic hydrogen generation. Finally, future directions to improve the performance of reduced TiO2 photocatalysts are outlined.

Zobrazit více v PubMed

Lewis N. S. Toward Cost-Effective Solar Energy Use. Science 2007, 315, 798–801. 10.1126/science.1137014. PubMed DOI

Lewis N. S.; Nocera D. G. Powering the Planet: Chemical Challenges in Solar Energy Utilization. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 15729–15735. 10.1073/pnas.0603395103. PubMed DOI PMC

Shaner M. R.; Atwater H. A.; Lewis N. S.; McFarland E. W. A Comparative Technoeconomic Analysis of Renewable Hydrogen Production Using Solar Energy. Energy Environ. Sci. 2016, 9, 2354–2371. 10.1039/C5EE02573G. DOI

Esposito D. V. Membraneless Electrolyzers for Low-cost Hydrogen Production in a Renewable Energy Future. Joule 2017, 1, 651–658. 10.1016/j.joule.2017.07.003. DOI

Goto Y.; Hisatomi T.; Wang Q.; Higashi T.; Ishikiriyama K.; Maeda T.; Sakata Y.; Okunaka S.; Tokudome H.; Katayama M.; Akiyama S.; Nishiyama H.; Inoue Y.; Takewaki T.; Setoyama T.; Minegishi T.; Takata T.; Yamada T.; Domen K. A Particulate Photocatalyst Water-splitting Panel for Large-scale Solar Hydrogen Generation. Joule 2018, 2, 509–520. 10.1016/j.joule.2017.12.009. DOI

Hisatomi T.; Kubota J.; Domen K. Recent Advances in Semiconductors for Photocatalytic and Photoelectrochemical Water Splitting. Chem. Soc. Rev. 2014, 43, 7520–7535. 10.1039/C3CS60378D. PubMed DOI

Christoforidis K. C.; Fornasiero P. Photocatalytic Hydrogen Production: A Rift into the Future Energy Supply. ChemCatChem 2017, 9, 1523–1544. 10.1002/cctc.201601659. DOI

Fujishima A.; Zhang X.; Tryk D. A. TiO DOI

Linsebigler A. L.; Lu G.; Yates J. T. Photocatalysis on TiO DOI

Schneider J.; Matsuoka M.; Takeuchi M.; Zhang J.; Horiuchi Y.; Anpo M.; Bahnemann D. W. Understanding TiO PubMed DOI

Nakanishi H.; Iizuka K.; Takayama T.; Iwase A.; Kudo A. Highly Active NaTaO PubMed DOI

Kuehnel M. F.; Orchard K. L.; Dalle K. E.; Reisner E. Selective Photocatalytic CO PubMed DOI

Chen X.; Li N.; Kong Z.; Ong W.-J.; Zhao X. Photocatalytic Fixation of Nitrogen to Ammonia: State-of-the-art Advancements and Future Prospects. Mater. Horiz. 2018, 5, 9–27. 10.1039/C7MH00557A. DOI

Cargnello M.; Montini T.; Smolin S. Y.; Priebe J. B.; Jaén J. J. D.; Doan-Nguyen V. V. T.; McKay I. S.; Schwalbe J. A.; Pohl M.-M.; Gordon T. R.; Lu Y.; Baxter J. B.; Brückner A.; Fornasiero P.; Murray C. B. Engineering Titania Nanostructure to Tune and Improve Its Photocatalytic Activity. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 3966–3971. 10.1073/pnas.1524806113. PubMed DOI PMC

Chen X.; Shen S.; Guo L.; Mao S. S. Semiconductor-based Photocatalytic Hydrogen Generation. Chem. Rev. 2010, 110, 6503–6570. 10.1021/cr1001645. PubMed DOI

Chen X.; Mao S. S. Titanium Dioxide Nanomaterials:  Synthesis, Properties, Modifications, and Applications. Chem. Rev. 2007, 107, 2891–2959. 10.1021/cr0500535. PubMed DOI

Asahi R.; Morikawa T.; Ohwaki T.; Aoki K.; Taga Y. Visible-light Photocatalysis in Nitrogen-doped Titanium Oxides. Science 2001, 293, 269–271. 10.1126/science.1061051. PubMed DOI

Murphy A. B. Does Carbon Doping of TiO DOI

Liu G.; Yin L.-C.; Wang J.; Niu P.; Zhen C.; Xie Y.; Cheng H.-M. A Red Anatase TiO DOI

Zhao J.; Zhang L.; Xing W.; Lu K. A Novel Method to Prepare B/N Codoped Anatase TiO DOI

Tian L.; Xu J.; Alnafisah A.; Wang R.; Tan X.; Oyler N. A.; Liu L.; Chen X. A Novel Green TiO PubMed DOI

Chen X.; Liu L.; Huang F. Black Titanium Dioxide (TiO PubMed DOI

Cronemeyer D. C. Electrical and Optical Properties of Rutile Single Crystals. Phys. Rev. 1952, 87, 876–886. 10.1103/PhysRev.87.876. DOI

Cronemeyer D. C.; Gilleo M. A. The Optical Absorption and Photoconductivity of Rutile. Phys. Rev. 1951, 82, 975–976. 10.1103/PhysRev.82.975. DOI

Chen X.; Liu L.; Yu P. Y.; Mao S. S. Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals. Science 2011, 331, 746–750. 10.1126/science.1200448. PubMed DOI

Wang B.; Shen S.; Mao S. S. Black TiO DOI

Liu X.; Zhu G.; Wang X.; Yuan X.; Lin T.; Huang F. Progress in Black Titania: A New Material for Advanced Photocatalysis. Adv. Energy Mater. 2016, 6, 1600452. 10.1002/aenm.201600452. DOI

Fang W.; Xing M.; Zhang J. Modifications on Reduced Titanium Dioxide Photocatalysts: A Review. J. Photochem. Photobiol., C 2017, 32, 21–39. 10.1016/j.jphotochemrev.2017.05.003. DOI

Liu N.; Zhou X.; Nguyen N. T.; Peters K.; Zoller F.; Hwang I.; Schneider C.; Miehlich M. E.; Freitag D.; Meyer K.; Fattakhova-Rohlfing D.; Schmuki P. Black Magic in Gray Titania: Noble-metal-free Photocatalytic H PubMed DOI

Liu N.; Schneider C.; Freitag D.; Venkatesan U.; Marthala V. R. R.; Hartmann M.; Winter B.; Spiecker E.; Osvet A.; Zolnhofer E. M.; Meyer K.; Nakajima T.; Zhou X.; Schmuki P. Hydrogenated Anatase: Strong Photocatalytic Dihydrogen Evolution without the Use of a Co-Catalyst. Angew. Chem., Int. Ed. 2014, 53, 14201–14205. 10.1002/anie.201408493. PubMed DOI

Breckenridge R. G.; Hosler W. R. Titanium Dioxide Rectifiers. J. Res. Natl. Bur. Stand. 1952, 49, 65. 10.6028/jres.049.009. DOI

Cronemeyer D. C. Infrared Absorption of Reduced Rutile TiO DOI

Hollander L. E. Jr. Piezoresistivity in Reduced Single-Crystal Rutile (TiO DOI

Diebold U. The Surface Science of Titanium Dioxide. Surf. Sci. Rep. 2003, 48, 53–229. 10.1016/S0167-5729(02)00100-0. DOI

Liu N.; Schneider C.; Freitag D.; Hartmann M.; Venkatesan U.; Müller J.; Spiecker E.; Schmuki P. Black TiO PubMed DOI

Wu Q.; Huang F.; Zhao M.; Xu J.; Zhou J.; Wang Y. Ultra-small Yellow Defective TiO DOI

Zhang K.; Wang L.; Kim J. K.; Ma M.; Veerappan G.; Lee C.-L.; Kong K.-j.; Lee H.; Park J. H. An Order/Disorder/Water Junction System for Highly Efficient Co-catalyst-free Photocatalytic Hydrogen Generation. Energy Environ. Sci. 2016, 9, 499–503. 10.1039/C5EE03100A. DOI

Zhou X.; Liu N.; Schmidt J.; Kahnt A.; Osvet A.; Romeis S.; Zolnhofer E. M.; Marthala V. R. R.; Guldi D. M.; Peukert W.; Hartmann M.; Meyer K.; Schmuki P. Noble-metal-free Photocatalytic Hydrogen Evolution Activity: The Impact of Ball Milling Anatase Nanopowders with TiH PubMed DOI

Liu N.; Häublein V.; Zhou X.; Venkatesan U.; Hartmann M.; Mačković M.; Nakajima T.; Spiecker E.; Osvet A.; Frey L.; Schmuki P. Black” TiO PubMed DOI

Zhou X.; Zolnhofer E. M.; Nguyen N. T.; Liu N.; Meyer K.; Schmuki P. Stable Co-catalyst-free Photocatalytic H PubMed DOI

Cui H.; Zhao W.; Yang C.; Yin H.; Lin T.; Shan Y.; Xie Y.; Gu H.; Huang F. Black TiO DOI

Zhou X.; Liu N.; Schmuki P. Photocatalysis with TiO DOI

Xu J.; Tian Z.; Yin G.; Lin T.; Huang F. Controllable Reduced Black Titania with Enhanced Photoelectrochemical Water Splitting Performance. Dalton Trans 2017, 46, 1047–1051. 10.1039/C6DT04060H. PubMed DOI

Mascaretti L.; Ferrulli S.; Mazzolini P.; Casari C. S.; Russo V.; Matarrese R.; Nova I.; Terraneo G.; Liu N.; Schmuki P.; Li Bassi A. Hydrogen-treated Hierarchical Titanium Oxide Nanostructures for Photoelectrochemical Water Splitting. Sol. Energy Mater. Sol. Cells 2017, 169, 19–27. 10.1016/j.solmat.2017.04.045. DOI

Cho I. S.; Logar M.; Lee C. H.; Cai L.; Prinz F. B.; Zheng X. Rapid and Controllable Flame Reduction of TiO PubMed DOI

Wang G.; Wang H.; Ling Y.; Tang Y.; Yang X.; Fitzmorris R. C.; Wang C.; Zhang J. Z.; Li Y. Hydrogen-treated TiO PubMed DOI

Zhu G.; Yin H.; Yang C.; Cui H.; Wang Z.; Xu J.; Lin T.; Huang F. Black Titania for Superior Photocatalytic Hydrogen Production and Photoelectrochemical Water Splitting. ChemCatChem 2015, 7, 2614–2619. 10.1002/cctc.201500488. DOI

Nakajima T.; Nakamura T.; Shinoda K.; Tsuchiya T. Rapid Formation of Black Titania Photoanodes: Pulsed Laser-induced Oxygen Release and Enhanced Solar Water Splitting Efficiency. J. Mater. Chem. A 2014, 2, 6762–6771. 10.1039/C4TA00557K. DOI

Wang Z.; Yang C.; Lin T.; Yin H.; Chen P.; Wan D.; Xu F.; Huang F.; Lin J.; Xie X.; Jiang M. Visible-light Photocatalytic, Solar Thermal and Photoelectrochemical Properties of Aluminium-reduced Black Titania. Energy Environ. Sci. 2013, 6, 3007–3014. 10.1039/c3ee41817k. DOI

Mohajernia S.; Hejazi S.; Mazare A.; Nguyen N. T.; Schmuki P. Photoelectrochemical H PubMed DOI

Zhang K.; Ravishankar S.; Ma M.; Veerappan G.; Bisquert J.; Fabregat-Santiago F.; Park J. H. Overcoming Charge Collection Limitation at Solid/Liquid Interface by a Controllable Crystal Deficient Overlayer. Adv. Energy Mater. 2017, 7, 1600923. 10.1002/aenm.201600923. DOI

Zhang K.; Park J. H. Surface Localization of Defects in Black TiO PubMed DOI

Li G.; Blake G. R.; Palstra T. T. M. Vacancies in Functional Materials for Clean Energy Storage and Harvesting: The Perfect Imperfection. Chem. Soc. Rev. 2017, 46, 1693–1706. 10.1039/C6CS00571C. PubMed DOI

Paul A.; Laurila T.; Vuorinen V.; Divinski S. V.. Thermodynamics, Diffusion and the Kirkendall Effect in Solids; Springer International Publishing Switzerland: Basel, Switzerland, 2014; p 530.

Callister W. D. Jr.; Rethwisch D. G.. Materials Science and Engineering: An Introduction, 9th ed.; John Wiley and Sons, Inc.: Hoboken, NJ, 2013; p 992.

Naldoni A.; Allieta M.; Santangelo S.; Marelli M.; Fabbri F.; Cappelli S.; Bianchi C. L.; Psaro R.; Dal Santo V. Effect of Nature and Location of Defects on Bandgap Narrowing in Black TiO PubMed DOI

Chen X.; Burda C. The Electronic Origin of the Visible-light Absorption Properties of C-, N- and S-doped TiO PubMed DOI

Naldoni A.; Fabbri F.; Altomare M.; Marelli M.; Psaro R.; Selli E.; Salviati G.; Dal Santo V. The Critical Role of Intragap States in the Energy Transfer from Gold Nanoparticles to TiO PubMed DOI

Yang H. G.; Sun C. H.; Qiao S. Z.; Zou J.; Liu G.; Smith S. C.; Cheng H. M.; Lu G. Q. Anatase TiO PubMed DOI

Penn R. L.; Banfield J. F. Formation of Rutile Nuclei at Anatase {112} Twin Interfaces and the Phase Transformation Mechanism in Nanocrystalline Titania. Am. Mineral. 1999, 84, 871–876. 10.2138/am-1999-5-621. DOI

Esch F.; Fabris S.; Zhou L.; Montini T.; Africh C.; Fornasiero P.; Comelli G.; Rosei R. Electron Localization Determines Defect Formation on Ceria Substrates. Science 2005, 309, 752–755. 10.1126/science.1111568. PubMed DOI

Campbell C. T.; Peden C. H. F. Oxygen Vacancies and Catalysis on Ceria Surfaces. Science 2005, 309, 713–714. 10.1126/science.1113955. PubMed DOI

Cordero F. Hopping and Clustering of Oxygen Vacancies in SrTiO DOI

Eom K.; Choi E.; Choi M.; Han S.; Zhou H.; Lee J. Oxygen Vacancy Linear Clustering in a Perovskite Oxide. J. Phys. Chem. Lett. 2017, 8, 3500–3505. 10.1021/acs.jpclett.7b01348. PubMed DOI

Uberuaga B. P.; Pilania G. Effect of Cation Ordering on Oxygen Vacancy Diffusion Pathways in Double Perovskites. Chem. Mater. 2015, 27, 5020–5026. 10.1021/acs.chemmater.5b01474. DOI

Viola M. C.; Martínez-Lope M. J.; Alonso J. A.; Velasco P.; Martínez J. L.; Pedregosa J. C.; Carbonio R. E.; Fernández-Díaz M. T. Induction of Colossal Magnetoresistance in the Double Perovskite Sr DOI

Pavlenko N.; Kopp T.; Tsymbal E. Y.; Mannhart J.; Sawatzky G. A. Oxygen Vacancies at Titanate Interfaces: Two-dimensional Magnetism and Orbital Reconstruction. Phys. Rev. B: Condens. Matter Mater. Phys. 2012, 86, 064431. 10.1103/PhysRevB.86.064431. DOI

He Y.; Dulub O.; Cheng H.; Selloni A.; Diebold U. Evidence for the Predominance of Subsurface Defects on Reduced Anatase TiO PubMed DOI

Sekiya T.; Takeda H.; Kamiya N.; Kurita S.; Kodaira T. EPR of Anatase Titanium Dioxide under UV Light Irradiation. Phys. Status Solidi C 2006, 3, 3603–3606. 10.1002/pssc.200672152. DOI

Chester P. F. Electron Spin Resonance in Semiconducting Rutile. J. Appl. Phys. 1961, 32, 2233–2236. 10.1063/1.1777049. DOI

Aono M.; Hasiguti R. R. Interaction and Ordering of Lattice Defects in Oxygen-deficient Rutile TiO PubMed DOI

Hasiguti R. R.; Yagi E.; Aono M. Electrical Conductivity of Slightly Reduced Rutile between 2 and 370 K. Radiat. Eff. 1970, 4, 137–140. 10.1080/00337577008234980. DOI

Chiesa M.; Livraghi S.; Giamello E.; Albanese E.; Pacchioni G. Ferromagnetic Interactions in Highly Stable, Partially Reduced TiO PubMed DOI

Brant A. T.; Golden E. M.; Giles N. C.; Yang S.; Sarker M. A. R.; Watauchi S.; Nagao M.; Tanaka I.; Tryk D. A.; Manivannan A.; Halliburton L. E. Triplet Ground State of the Neutral Oxygen-vacancy Donor in Rutile TiO DOI

Chiesa M.; Paganini M. C.; Livraghi S.; Giamello E. Charge Trapping in TiO PubMed DOI

Livraghi S.; Chiesa M.; Paganini M. C.; Giamello E. On the Nature of Reduced States in Titanium Dioxide as Monitored by Electron Paramagnetic Resonance. I: The Anatase Case. J. Phys. Chem. C 2011, 115, 25413–25421. 10.1021/jp209075m. DOI

Sun Y.; Egawa T.; Shao C.; Zhang L.; Yao X. Quantitative Study of F Center in High-surface-area Anatase Titania Nanoparticles Prepared by MOCVD. J. Phys. Chem. Solids 2004, 65, 1793–1797. 10.1016/j.jpcs.2004.05.006. DOI

Nakamura I.; Negishi N.; Kutsuna S.; Ihara T.; Sugihara S.; Takeuchi K. Role of Oxygen Vacancy in the Plasma-treated TiO DOI

Misra S. K.; Andronenko S. I.; Tipikin D.; Freed J. H.; Somani V.; Prakash O. Study of Paramagnetic Defect Centers in As-grown and Annealed TiO PubMed DOI PMC

Baumann S. O.; Elser M. J.; Auer M.; Bernardi J.; Hüsing N.; Diwald O. Solid–Solid Interface Formation in TiO PubMed DOI

Minnekhanov A. A.; Deygen D. M.; Konstantinova E. A.; Vorontsov A. S.; Kashkarov P. K. Paramagnetic Properties of Carbon-doped Titanium Dioxide. Nanoscale Res. Lett. 2012, 7, 333. 10.1186/1556-276X-7-333. PubMed DOI PMC

Kuznetsov V. N.; Serpone N. On the Origin of the Spectral Bands in the Visible Absorption Spectra of Visible-light-active TiO DOI

Panarelli E. G.; Livraghi S.; Maurelli S.; Polliotto V.; Chiesa M.; Giamello E. Role of Surface Water Molecules in Stabilizing Trapped Hole Centres in Titanium Dioxide (Anatase) as Monitored by Electron Paramagnetic Resonance. J. Photochem. Photobiol., A 2016, 322–323, 27–34. 10.1016/j.jphotochem.2016.02.015. DOI

Kumar C. P.; Gopal N. O.; Wang T. C.; Wong M.-S.; Ke S. C. EPR Investigation of TiO PubMed DOI

Yang S.; Brant A. T.; Halliburton L. E. Photoinduced Self-trapped Hole Center in TiO DOI

Grunin V. S.; Davtyan G. D.; Ioffe V. A.; Patrina I. B. EPR of Cu DOI

Carter E.; Carley A. F.; Murphy D. M. Evidence for O DOI

Hurum D. C.; Agrios A. G.; Gray K. A.; Rajh T.; Thurnauer M. C. Explaining the Enhanced Photocatalytic Activity of Degussa P25 Mixed-Phase TiO DOI

Coronado J. M.; Maira A. J.; Conesa J. C.; Yeung K. L.; Augugliaro V.; Soria J. EPR Study of the Surface Characteristics of Nanostructured TiO DOI

López-Muñoz M. J.; Soria J.; Conesa J. C.; Augugliaro V. ESR Study of Photo-oxidation of Phenol at Low Temperature on Polycrystalline Titanium Dioxide. Stud. Surf. Sci. Catal. 1994, 82, 693–701. 10.1016/S0167-2991(08)63465-5. DOI

McCain D. C.; Palke W. E. Theory of Electron Spin DOI

Chen X.; Liu L.; Huang F. Black Titanium Dioxide (TiO PubMed DOI

Wajid Shah M.; Zhu Y.; Fan X.; Zhao J.; Li Y.; Asim S.; Wang C. Facile Synthesis of Defective TiO PubMed DOI PMC

Montoya A. T.; Gillan E. G. Enhanced Photocatalytic Hydrogen Evolution from Transition-metal Surface-modified TiO PubMed DOI PMC

Cushing S. K.; Meng F.; Zhang J.; Ding B.; Chen C. K.; Chen C.-J.; Liu R.-S.; Bristow A. D.; Bright J.; Zheng P.; Wu N. Effects of Defects on Photocatalytic Activity of Hydrogen-treated Titanium Oxide Nanobelts. ACS Catal. 2017, 7, 1742–1748. 10.1021/acscatal.6b02177. DOI

Henderson M. A.; Lyubinetsky I. Molecular-level Insights into Photocatalysis from Scanning Probe Microscopy Studies on TiO PubMed DOI

Vohs J. M. Site Requirements for the Adsorption and Reaction of Oxygenates on Metal Oxide Surfaces. Chem. Rev. 2013, 113, 4136–4163. 10.1021/cr300328u. PubMed DOI

Guo Q.; Zhou C.; Ma Z.; Ren Z.; Fan H.; Yang X. Elementary Photocatalytic Chemistry on TiO PubMed DOI

Li H.; Guo Y.; Robertson J. Calculation of TiO DOI

Malashevich A.; Jain M.; Louie S. G. First-principles DFT + DOI

Mattioli G.; Filippone F.; Alippi P.; Amore Bonapasta A. DOI

Livraghi S.; Maurelli S.; Paganini M. C.; Chiesa M.; Giamello E. Probing the Local Environment of Ti PubMed DOI

Maurelli S.; Livraghi S.; Chiesa M.; Giamello E.; Van Doorslaer S.; Di Valentin C.; Pacchioni G. Hydration Structure of the Ti(III) Cation as Revealed by Pulse EPR and DFT Studies: New Insights into a Textbook Case. Inorg. Chem. 2011, 50, 2385–2394. 10.1021/ic1021802. PubMed DOI

Bilmes S. A.; Mandelbaum P.; Alvarez F.; Victoria N. M. Surface and Electronic Structure of Titanium Dioxide Photocatalysts. J. Phys. Chem. B 2000, 104, 9851–9858. 10.1021/jp0010132. DOI

Justicia I.; Ordejón P.; Canto G.; Mozos J. L.; Fraxedas J.; Battiston G. A.; Gerbasi R.; Figueras A. Designed Self-doped Titanium Oxide Thin Films for Efficient Visible-light Photocatalysis. Adv. Mater. 2002, 14, 1399–1402. 10.1002/1521-4095(20021002)14:19<1399::AID-ADMA1399>3.0.CO;2-C. DOI

Wendt S.; Sprunger P. T.; Lira E.; Madsen G. K. H.; Li Z.; Hansen J. Ø.; Matthiesen J.; Blekinge-Rasmussen A.; Lægsgaard E.; Hammer B.; Besenbacher F. The Role of Interstitial Sites in the Ti PubMed DOI

He Y.; Tilocca A.; Dulub O.; Selloni A.; Diebold U. Local Ordering and Electronic Signatures of Submonolayer Water on Anatase TiO PubMed DOI

Lira E.; Wendt S.; Huo P.; Hansen J. Ø.; Streber R.; Porsgaard S.; Wei Y.; Bechstein R.; Lægsgaard E.; Besenbacher F. The Importance of Bulk Ti PubMed DOI

Gong X.-Q.; Selloni A.; Batzill M.; Diebold U. Steps on Anatase TiO PubMed DOI

Li J.; Lazzari R.; Chenot S.; Jupille J. Contributions of Oxygen Vacancies and Titanium Interstitials to Band-gap States of Reduced Titania. Phys. Rev. B: Condens. Matter Mater. Phys. 2018, 97, 041403. 10.1103/PhysRevB.97.041403. DOI

Huygh S.; Bogaerts A.; Neyts E. C. How Oxygen Vacancies Activate CO DOI

Lang X.; Liang Y.; Sun L.; Zhou S.; Lau W.-M. Interplay between Methanol and Anatase TiO DOI

Martinez U.; Hansen J. Ø.; Lira E.; Kristoffersen H. H.; Huo P.; Bechstein R.; Lægsgaard E.; Besenbacher F.; Hammer B.; Wendt S. Reduced Step Edges on Rutile TiO PubMed DOI

Guo Q.; Xu C.; Ren Z.; Yang W.; Ma Z.; Dai D.; Fan H.; Minton T. K.; Yang X. Stepwise Photocatalytic Dissociation of Methanol and Water on TiO PubMed DOI

Zhou C.; Ren Z.; Tan S.; Ma Z.; Mao X.; Dai D.; Fan H.; Yang X.; LaRue J.; Cooper R.; Wodtke A. M.; Wang Z.; Li Z.; Wang B.; Yang J.; Hou J. Site-specific Photocatalytic Splitting of Methanol on TiO DOI

Liu L.; Yu P. Y.; Chen X.; Mao S. S.; Shen D. Z. Hydrogenation and Disorder in Engineered Black TiO PubMed DOI

Xia T.; Chen X. Revealing the Structural Properties of Hydrogenated Black TiO DOI

Zheng Z.; Huang B.; Lu J.; Wang Z.; Qin X.; Zhang X.; Dai Y.; Whangbo M.-H. Hydrogenated Titania: Synergy of Surface Modification and Morphology Improvement for Enhanced Photocatalytic Activity. Chem. Commun. 2012, 48, 5733–5735. 10.1039/c2cc32220j. PubMed DOI

Zhu Y.; Liu D.; Meng M. H PubMed DOI

Zuo F.; Wang L.; Wu T.; Zhang Z.; Borchardt D.; Feng P. Self-doped Ti PubMed DOI

Yang C.; Wang Z.; Lin T.; Yin H.; Lü X.; Wan D.; Xu T.; Zheng C.; Lin J.; Huang F.; Xie X.; Jiang M. Core-shell Nanostructured “Black” Rutile Titania as Excellent Catalyst for Hydrogen Production Enhanced by Sulfur Doping. J. Am. Chem. Soc. 2013, 135, 17831–17838. 10.1021/ja4076748. PubMed DOI

Sinhamahapatra A.; Jeon J.-P.; Yu J.-S. A New Approach to Prepare Highly Active and Stable Black Titania for Visible Light-assisted Hydrogen Production. Energy Environ. Sci. 2015, 8, 3539–3544. 10.1039/C5EE02443A. DOI

Zanella R.; Giorgio S.; Henry C. R.; Louis C. Alternative Methods for the Preparation of Gold Nanoparticles Supported on TiO DOI

Corma A.; Garcia H. Supported Gold Nanoparticles as Catalysts for Organic Reactions. Chem. Soc. Rev. 2008, 37, 2096–2126. 10.1039/b707314n. PubMed DOI

Cushing B. L.; Kolesnichenko V. L.; O’Connor C. J. Recent Advances in the Liquid-phase Syntheses of Inorganic Nanoparticles. Chem. Rev. 2004, 104, 3893–3946. 10.1021/cr030027b. PubMed DOI

Zhu Y.; Liu D.; Meng M. H PubMed DOI

Liu N.; Schneider C.; Freitag D.; Zolnhofer E. M.; Meyer K.; Schmuki P. Noble-metal-free Photocatalytic H PubMed DOI

Kong M.; Li Y.; Chen X.; Tian T.; Fang P.; Zheng F.; Zhao X. Tuning the Relative Concentration Ratio of Bulk Defects to Surface Defects in TiO PubMed DOI

Cronemeyer D. C. Infrared Absorption of Reduced Rutile TiO DOI

Xue J.; Zhu X.; Zhang Y.; Wang W.; Xie W.; Zhou J.; Bao J.; Luo Y.; Gao X.; Wang Y.; Jang L.-y.; Sun S.; Gao C. Nature of Conduction Band Tailing in Hydrogenated Titanium Dioxide for Photocatalytic Hydrogen Evolution. ChemCatChem 2016, 8, 2010–2014. 10.1002/cctc.201600237. DOI

Zhang X.; Hu W.; Zhang K.; Wang J.; Sun B.; Li H.; Qiao P.; Wang L.; Zhou W. Ti DOI

Pore V.; Ritala M.; Leskelä M.; Areva S.; Järn M.; Järnström J. H DOI

Prokes S. M.; Gole J. L.; Chen X.; Burda C.; Carlos W. E. Defect-related Optical Behavior in Surface Modified TiO DOI

Kroll W. The Production of Ductile Titanium. Trans. Electrochem. Soc. 1940, 78, 35–47. 10.1149/1.3071290. DOI

Bamwenda G. R.; Tsubota S.; Kobayashi T.; Haruta M. Photoinduced Hydrogen Production from an Aqueous Solution of Ethylene Glycol over Ultrafine Gold Supported on TiO DOI

Bamwenda G. R.; Tsubota S.; Nakamura T.; Haruta M. Photoassisted Hydrogen Production from a Water-ethanol Solution: A Comparison of Activities of Au–TiO DOI

Spanu D.; Recchia S.; Mohajernia S.; Tomanec O.; Kment Š.; Zboril R.; Schmuki P.; Altomare M. Templated Dewetting–Alloying of NiCu Bilayers on TiO DOI

Naldoni A.; D’Arienzo M.; Altomare M.; Marelli M.; Scotti R.; Morazzoni F.; Selli E.; Dal Santo V. Pt and Au/TiO DOI

Liu N.; Schneider C.; Freitag D.; Hartmann M.; Venkatesan U.; Müller J.; Spiecker E.; Schmuki P. Black TiO PubMed DOI

Liu N.; Steinrück H.-G.; Osvet A.; Yang Y.; Schmuki P. Noble Metal Free Photocatalytic H DOI

Abbaschian R.; Reed-Hill R. E.. Physical Metallurgy Principles; Cengage Learning: Boston, MA, 2010; p 750.

Makin M. J.The Nature of Small Defect Clusters: Report of a Consultants Symposium Held at A. E. R. E., Harwell, on July 4–6th, 1966; H.M. Stationery Office: London, 1966; p 592.

Wei L. H.; Wu S. Y.; Zhang Z. H.; Wang X. F.; Hu Y. X. Investigations on the Local Structure and DOI

Kumar C. P.; Gopal N. O.; Wang T. C.; Wong M.-S.; Ke S. C. EPR Investigation of TiO PubMed DOI

Pan X.; Yang M.-Q.; Fu X.; Zhang N.; Xu Y.-J. Defective TiO PubMed DOI

Brückner A. PubMed DOI

Deskins N. A.; Rousseau R.; Dupuis M. Distribution of Ti DOI

Justicia I.; Ordejón P.; Canto G.; Mozos J. L.; Fraxedas J.; Battiston G. A.; Gerbasi R.; Figueras A. Designed Self-doped Titanium Oxide Thin Films for Efficient Visible-light Photocatalysis. Adv. Mater. 2002, 14, 1399–1402. 10.1002/1521-4095(20021002)14:19<1399::AID-ADMA1399>3.0.CO;2-C. DOI

Zhou X.; Liu N.; Schmuki P. Ar DOI

AlSalka Y.; Hakki A.; Schneider J.; Bahnemann D. W. Co-catalyst-free Photocatalytic Hydrogen Evolution on TiO DOI

Zhou X.; Häublein V.; Liu N.; Nguyen N. T.; Zolnhofer E. M.; Tsuchiya H.; Killian M. S.; Meyer K.; Frey L.; Schmuki P. TiO PubMed DOI

Scanlon D. O.; Dunnill C. W.; Buckeridge J.; Shevlin S. A.; Logsdail A. J.; Woodley S. M.; Catlow C. R. A.; Powell M. J.; Palgrave R. G.; Parkin I. P.; Watson G. W.; Keal T. W.; Sherwood P.; Walsh A.; Sokol A. A. Band Alignment of Rutile and Anatase TiO PubMed DOI

Hernández S.; Hidalgo D.; Sacco A.; Chiodoni A.; Lamberti A.; Cauda V.; Tresso E.; Saracco G. Comparison of Photocatalytic and Transport Properties of TiO PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Cation Vacancies in Ti-Deficient TiO2 Nanosheets Enable Highly Stable Trapping of Pt Single Atoms for Persistent Photocatalytic Hydrogen Evolution

. 2025 Jul ; 21 (29) : e2502428. [epub] 20250602

p-Type TiO2 Nanotubes: Quantum Confinement and Pt Single Atom Decoration Enable High Selectivity Photocatalytic Nitrate Reduction to Ammonia

. 2025 May 26 ; 64 (22) : e202415865. [epub] 20250330

Single Atom Cocatalysts in Photocatalysis

. 2025 Feb ; 37 (7) : e2414889. [epub] 20241229

Enhanced Photocatalytic H2 Generation by Light-Induced Carbon Modification of TiO2 Nanotubes

. 2024 May ; 13 (5) : e202300185. [epub] 20231213

Metastable Ni(I)-TiO2-x Photocatalysts: Self-Amplifying H2 Evolution from Plain Water without Noble Metal Co-Catalyst and Sacrificial Agent

. 2023 Dec 06 ; 145 (48) : 26122-26132. [epub] 20231120

Interfacial States in Au/Reduced TiO2 Plasmonic Photocatalysts Quench Hot-Carrier Photoactivity

. 2023 Aug 17 ; 127 (32) : 15861-15870. [epub] 20230807

Ultrasound-Driven Defect Engineering in TiO2-x Nanotubes─Toward Highly Efficient Platinum Single Atom-Enhanced Photocatalytic Water Splitting

. 2023 Aug 09 ; 15 (31) : 37976-37985. [epub] 20230725

As a single atom Pd outperforms Pt as the most active co-catalyst for photocatalytic H2 evolution

. 2021 Aug 20 ; 24 (8) : 102938. [epub] 20210731

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...