Enhanced Photocatalytic H2 Generation by Light-Induced Carbon Modification of TiO2 Nanotubes
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
DFG
442826449
Higher Education Commission of Pakistan for an IRSIP
1597/38-1
Higher Education Commission of Pakistan for an IRSIP
336/13-1
Higher Education Commission of Pakistan for an IRSIP
PubMed
38088583
PubMed Central
PMC11095147
DOI
10.1002/open.202300185
Knihovny.cz E-zdroje
- Klíčová slova
- TiO2 nanotubes, annealing, hydrogen evolution, organic electrolytes, photoelectrochemical water splitting,
- Publikační typ
- časopisecké články MeSH
Titanium dioxide (TiO2) is the material of choice for photocatalytic and electrochemical applications owing to its outstanding physicochemical properties. However, its wide bandgap and relatively low conductivity limit its practical application. Modifying TiO2 with carbon species is a promising route to overcome these intrinsic complexities. In this work, we propose a facile method to modify TiO2 nanotubes (NTs) based on the remnant organic electrolyte retained inside the nanotubes after the anodization process, that is, without removing it by immersion in ethanol. Carbon-modified TiO2 NTs (C-TiO2 NTs) showed enhanced H2 evolution in photocatalysis under UV illumination in aqueous solutions. When the C-TiO2 NTs were subjected to UV light illumination, the carbon underwent modification, resulting in higher measured photocurrents in the tube layers. After UV illumination, the IPCE of the C-TiO2 NTs was 4.4-fold higher than that of the carbon-free TiO2 NTs.
Pakistan Institute of Engineering and Applied Sciences PO Nilore Islamabad 45650 Pakistan
Regional Centre of Advanced Technologies and Materials Šlechtitel u 27 Olomouc 78371 Czech Republic
Zobrazit více v PubMed
Lee K., Mazare A., Schmuki P., Chem. Rev. 2014, 114, 9385–9454. PubMed
Schneider J., Matsuoka M., Takeuchi M., Zhang J., Horiuchi Y., Anpo M., Bahnemann D. W., Chem. Rev. 2014, 114, 9919–9986. PubMed
Anucha C. B., Altin I., Bacaksiz E., Stathopoulos V. N., Chem. Eng. J. Adv. 2022, 10, 100262.
Naldoni A., Altomare M., Zoppellaro G., Liu N., Kment Š., Zbořil R., Schmuki P., ACS Catal. 2019, 9, 345–364. PubMed PMC
Al-Thabaiti S. A., Hahn R., Liu N., Kirchgeorg R., So S., Schmuki P., Basahel S. N., Bawaked S. M., Chem. Commun. 2014, 50, 7960–7963. PubMed
Kang X., Liu S., Dai Z., He Y., Song X., Tan Z., Catalysts 2019, 9, 191.
Litter M. I., San Román E., Grela M. A., Meichtry J. M., Rodríguez H. B., in Visible Light. Photocatal. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2018, pp. 253–282.
Ge M., Cao C., Huang J., Li S., Chen Z., Zhang K.-Q., Al-Deyab S. S., Lai Y., J. Mater. Chem. A. 2016, 4, 6772–6801.
Park J., Cimpean A., Tesler A. B., Mazare A., Nanomaterials 2021, 11, 2359. PubMed PMC
Hua L., Yin Z., Cao S., Catalysts 2020, 10, 1431.
Xiao F.-X., Miao J., Tao H. B., Hung S.-F., Wang H.-Y., Bin Yang H., Chen J., Chen R., Liu B., Small 2015, 11, 2115–2131. PubMed
Hahn R., Ghicov A., Salonen J., Lehto V.-P., Schmuki P., Nanotechnology 2007, 18, 105604.
Caglar A., Kivrak H., Aktas N., Solak A. O., J. Electron. Mater. 2021, 50, 2242–2253.
Song P., Zhang X., Sun M., Cui X., Lin Y., Nanoscale 2012, 4, 1800. PubMed
Ge M.-Z., Li S.-H., Huang J.-Y., Zhang K.-Q., Al-Deyab S. S., Lai Y.-K., J. Mater. Chem. A. 2015, 3, 3491–3499.
Williams G., Seger B., Kamt P. V., ACS Nano 2008, 2, 1487–1491. PubMed
Lu Z., Chen G., Hao W., Sun G., Li Z., RSC Adv. 2015, 5, 72916–72922.
Radich J. G., Krenselewski A. L., Zhu J., Kamat P. V., Chem. Mater. 2014, 26, 4662–4668.
Akhavan O., Abdolahad M., Esfandiar A., Mohatashamifar M., J. Phys. Chem. C. 2010, 114, 12955–12959.
Yang W.-D., Li Y.-R., Lee Y.-C., Appl. Surf. Sci. 2016, 380, 249–256.
Nasir A., Mazare A., Zhou X., Qin S., Denisov N., Zdrazil L., Kment Š., Zboril R., Yasin T., Schmuki P., ChemPhotoChem. 2022, e202100274.
Shao Y., Cao C., Chen S., He M., Fang J., Chen J., Li X., Li D., Appl. Catal. B. 2015, 179, 344–351.
Tong M.-H., Wang T.-M., Lin S.-W., Chen R., Jiang X., Chen Y.-X., Lu C.-Z., Appl. Surf. Sci. 2023, 623, 156980.
Kong J., Wang Y., Wang Z., Jia H., Superlattices Microstruct. 2016, 89, 252–258.
Wang J., Zeng Y., Wan L., Zhao J., Yang J., Hu J., Miao F., Zhan W., Chen R., Liang F., Appl. Surf. Sci. 2020, 509, 145301.
Mazare A., Paramasivam I., Schmidt-Stein F., Lee K., Demetrescu I., Schmuki P., Electrochim. Acta 2012, 66, 12–21.
Albu S. P., Ghicov A., Aldabergenova S., Drechsel P., LeClere D., Thompson G. E., Macak J. M., Schmuki P., Adv. Mater. 2008, 20, 4135–4139.
Gao Z.-D., Zhu X., Li Y.-H., Zhou X., Song Y.-Y., Schmuki P., Chem. Commun. 2015, 51, 7614–7617. PubMed
Peng X., Fu J., Zhang X., Li Y., Huang M., Huo K., Chu P. K., Nanosci. Nanotechnol. Lett. 2013, 5, 1251–1257.
Mazare A., Paramasivam I., Lee K., Schmuki P., Electrochem. Commun. 2011, 13, 1030–1034.
Murphy A., Sol. Energy Mater. Sol. Cells 2008, 92, 363–367.
Shankar K., Paulose M., Mor G. K., Varghese O. K., Grimes C. A., J. Phys. D. 2005, 38, 3543–3549.
Kulkarni M., Mazare A., Park J., Gongadze E., Killian M. S., Kralj S., von der Mark K., Iglič A., Schmuki P., Acta Biomater. 2016, 45, 357. PubMed
Paramasivam I., Jha H., Liu N., Schmuki P., Small 2012, 8, 3073–3103. PubMed
Tesler A. B., Altomare M., Schmuki P., ACS Appl. Nano Mater. 2020, 3, 10646–10658.
Zhang L., Han L., Hu P., Wang L., Dong S., Chem. Commun. 2013, 49, 10480. PubMed
Hwang I., So S., Mokhtar M., Alshehri A., Al-Thabaiti S. A., Mazare A., Schmuki P., Chem. A Eur. J. 2015, 21, 9204–9208. PubMed
Mirabolghasemi H., Liu N., Lee K., Schmuki P., Chem. Commun. 2013, 49, 2067–2069. PubMed
Liu N., Mirabolghasemi H., Lee K., Albu S. P., Tighineanu A., Altomare M., Schmuki P., Faraday Discuss. 2013, 164, 107. PubMed
So S., Hwang I., Riboni F., Yoo J. E., Schmuki P., Electrochem. Commun. 2016, 71, 73–78.
Blickenstorfer B., Aufmuth W., Adhes. Adhes. 2013, 10, 26–31.
Cha G., Schmuki P., Altomare M., Chem. Asian J. 2016, 11, 789–797. PubMed
Cha G., Schmuki P., Altomare M., Electrochim. Acta 2017, 258, 302–310.
Yu X., Liu J., Yu Y., Zuo S., Li B., Carbon 2014, 68, 718–724.
Metzger M., Walke P., Solchenbach S., Salitra G., Aurbach D., Gasteiger H. A., J. Electrochem. Soc. 2020, 167, 160522.
Wu J.-B., Lin M.-L., Cong X., Liu H.-N., Tan P.-H., Chem. Soc. Rev. 2018, 47, 1822–1873. PubMed
Wei Z., Pan R., Hou Y., Yang Y., Liu Y., Sci. Rep. 2015, 5, 15664. PubMed PMC
Cao S., Liu T., Tsang Y., Chen C., Appl. Surf. Sci. 2016, 382, 225–238.
Ji L., Zhang Y., Miao S., Gong M., Liu X., Carbon 2017, 125, 544–550.
Christie A. B., Lee J., Sutherland I., Walls J. M., Appl. Surf. Sci. 1983, 15, 224–237.
Christie A., Sutherland I., Walls J., Vacuum 1981, 31, 513–517.
Choi Y., Umebayashi T., Yamamoto S., Tanaka S., J. Mater. Sci. Lett. 2003, 22, 1209–1211.
Xie C., Yang S., Shi J., Niu C., Catalysts 2016, 6, 117.
Liu S., Liu C., Wang W., Cheng B., Yu J., Nanoscale 2012, 4, 3193. PubMed
Wang G., Guo W., Xu D., Liu D., Qin M., Symmetry 2020, 12, 1420.
Wu Z. S., Zhou G., Yin L. C., Ren W., Li F., Cheng H. M., Nano Energy 2012, 1, 107–131.
Tsuchiya H., Macak J. M., Ghicov A., Räder A. S., Taveira L., Schmuki P., Corros. Sci. 2007, 49, 203–210.
Motola M., Sopha H., Krbal M., Hromádko L., Zmrhalová Z. O., Plesch G., Macak J. M., Electrochem. Commun. 2018, 97, 1–5.
Zhou X., Denisov N., Cha G., Hwang I., Schmuki P., Electrochem. Commun. 2021, 124, 106937.