Disruption of millipede-gut microbiota in E. pulchripes and G. connexa highlights the limited role of litter fermentation and the importance of litter-associated microbes for nutrition

. 2024 Sep 28 ; 7 (1) : 1204. [epub] 20240928

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39342029

Grantová podpora
19-24309Y Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
19-24309Y Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
19-24309Y Grantová Agentura České Republiky (Grant Agency of the Czech Republic)

Odkazy

PubMed 39342029
PubMed Central PMC11438867
DOI 10.1038/s42003-024-06821-2
PII: 10.1038/s42003-024-06821-2
Knihovny.cz E-zdroje

Millipedes are thought to depend on their gut microbiome for processing plant-litter-cellulose through fermentation, similar to many other arthropods. However, this hypothesis lacks sufficient evidence. To investigate this, we used inhibitors to disrupt the gut microbiota of juvenile Epibolus pulchripes (tropical, CH4-emitting) and Glomeris connexa (temperate, non-CH4-emitting) and isotopic labelling. Feeding the millipedes sterile or antibiotics-treated litter reduced faecal production and microbial load without major impacts on survival or weight. Bacterial diversity remained similar, with Bacteroidota dominant in E. pulchripes and Pseudomonadota in G. connexa. Sodium-2-bromoethanesulfonate treatment halted CH4 emissions in E. pulchripes, but it resumed after returning to normal feeding. Employing 13C-labeled leaf litter and RNA-SIP revealed a slow and gradual prokaryote labelling, indicating a significant density shift only by day 21. Surprisingly, labelling of the fungal biomass was somewhat quicker. Our findings suggest that fermentation by the gut microbiota is likely not essential for the millipede's nutrition.

Zobrazit více v PubMed

Petersen, J. M. & Osvatic, J. Microbiomes in nature: Importance of invertebrates in understanding the natural variety of animal-microbe interactions. mSystems3, e00179–17 (2018). PubMed PMC

Moran, N. A., Ochman, H. & Hammer, T. J. Evolutionary and ecological consequences of gut microbial communities. Annu Rev. Ecol. Evol. Syst.50, 451–475 (2019). PubMed PMC

Bordenstein, S. R. & Theis, K. R. Host biology in light of the microbiome: ten principles of holobionts and hologenomes. PLoS Biol.13, e1002226 (2015). PubMed PMC

Zilber-Rosenberg, I. & Rosenberg, E. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol. Rev.32, 723–735 (2008). PubMed

Russell, J. A., Dubilier, N. & Rudgers, J. A. Nature’s microbiome: introduction. Mol. Ecol.23, 1225–1237 (2014). PubMed

Vavre, F. & Kremer, N. Microbial impacts on insect evolutionary diversification: from patterns to mechanisms. Curr. Opin. Insect Sci.4, 29–34 (2014). PubMed

Brune, A. Symbiotic digestion of lignocellulose in termite guts. Nat. Rev. Microbiol.12, 168–180 (2014). 3. PubMed

Hammer, T. J., Sanders, J. G. & Fierer, N. Not all animals need a microbiome. FEMS Microbiol. Lett.366, fnz117 (2019). PubMed

Mikaelyan, A., Thompson, C. L., Hofer, M. J. & Brune, A. Deterministic assembly of complex bacterial communities in guts of germ-free cockroaches. Appl. Environ. Microbiol.82, 1256–1263 (2016). PubMed PMC

Tinker, K. A. & Ottesen, E. A. The core gut microbiome of the American cockroach, Periplaneta americana, is stable and resilient to dietary shifts. Appl. Environ. Microbiol.82, 6603–6610 (2016). PubMed PMC

Bouchon, D., Zimmer, M. & Dittmer, J. The terrestrial isopod microbiome: An all-in-one toolbox for animal–microbe interactions of ecological relevance. Front. Microbiol.7, 1472 (2016). PubMed PMC

Mattila, J. M., Zimmer, M., Vesakoski, O. & Jormalainen, V. Habitat-specific gut microbiota of the marine herbivore Idotea balthica (Isopoda). J. Exp. Mar. Biol. Ecol.455, 22–28 (2014).

Watanabe, H. & Tokuda, G. Animal cellulases. Cell Mol. Life Sci.58, 1167–1178 (2001). PubMed PMC

Schmidt, K. & Engel, P. Mechanisms underlying gut microbiota–host interactions in insects. J. Exp. Biol.224, jeb207696 (2021). PubMed

Kime, R. D. & Golovatch, S. I. Trends in the ecological strategies and evolution of millipedes (Diplopoda). Biol. J. Linn. Soc.69, 333–349 (2000).

Crawford C. S. Millipedes As Model Detritivores. Ber Nat-med Verein Innsbruck 12 (1992).

David, J.-F. The role of litter-feeding macroarthropods in decomposition processes: a reappraisal of common views. Soil Biol. Biochem.76, 109–118 (2014).

Byzov B. A. Intestinal Microorganisms Of Termites And Other Invertebrates, p. 89–114. (eds. König, H., Varma, A.) (Springer-Verlag, 2006).

Nardi, J. B., Bee, C. M. & Taylor, S. J. Compartmentalization of microbial communities that inhabit the hindguts of millipedes. Arthropod. Struct. Dev.45, 462–474 (2016). PubMed

Koubová, A., Lorenc, F., Horváthová, T., Chroňáková, A. & Šustr, V. Millipede gut-derived microbes as a potential source of cellulolytic enzymes. World J. Microbiol. Biotechnol.39, 169 (2023). PubMed

Nweze, J. E., Šustr, V., Brune, A. & Angel, R. Functional similarity, despite taxonomical divergence in the millipede gut microbiota, points to a common trophic strategy. Microbiome12, 16 (2024). PubMed PMC

Ramanathan, B. & Alagesan, P. Isolation, characterization and role of gut bacteria of three different millipede species. Indian J. Sci. Res.3, 55–61 (2012).

Sardar, P., Šustr, V., Chroňáková, A., Lorenc, F. & Faktorová, L. De novo metatranscriptomic exploration of gene function in the millipede holobiont. Sci. Rep.12, 16173 (2022). 1. PubMed PMC

Taylor E. C. Role of aerobic microbial populations in cellulose digestion by desert millipedes. Appl. Environ. Microbiol.11 (1982). PubMed PMC

Khairunisa, B. H., Heryakusuma, C., Ike, K., Mukhopadhyay, B. & Susanti, D. Evolving understanding of rumen methanogen ecophysiology. Front. Microbiol.14, 1296008 (2023). PubMed PMC

Šustr, V., Chroňáková, A., Semanová, S., Tajovský, K. & Šimek, M. Methane production and methanogenic archaea in the digestive tracts of millipedes (Diplopoda). PLoS ONE9, e102659 (2014). PubMed PMC

Bignell, D. Relative assimilations of 14C-labelled microbial tissues and 14C-plant fibre ingested with leaf litter by the millipede Glomeris marginata under experimental conditions. Soil Biol. Biochem.21, 819–827 (1989).

Enghoff, H. East African giant millipedes of the tribe Pachybolini (Diplopoda, Spirobolida, Pachybolidae). Zootaxa2753, 1–41 (2011). 1.

Hoess, R. & Scholl, A. Allozyme and literature study of Glomeris guttata Risso, 1826, and G. connexa Koch, 1847, a case of taxonomic confusion (diplopoda: glomeridae). Zool. Anz.240, 15–33 (2001).

Rymer, T. L. & Pillay, N. The effects of antibiotics and illness on gut microbial composition in the fawn-footed mosaic-tailed rat (Melomys cervinipes). PLoS ONE18, e0281533 (2023). PubMed PMC

Elbehiry, A. et al. Proteomics-based screening and antibiotic resistance assessment of clinical and sub-clinical Brucella species: an evolution of brucellosis infection control. PLoS ONE17, e0262551 (2022). PubMed PMC

Vaz-Moreira, I., Nunes, O. C. & Manaia, C. M. Diversity and antibiotic resistance in Pseudomonas spp. from drinking water. Sci. Total Environ.426, 366–374 (2012). PubMed

Hedderich R., Whitman W. B. Physiology And Biochemistry Of The Methane-producing Archaea, p. 1050–1079. (eds. Rosenberg, E., DeLong, E. F., Lory, S., Stackebrandt, E., Thompson, F.) (The Prokaryotes. Springer, 2006).

Schapheer, C., Pellens, R. & Scherson, R. Arthropod-microbiota integration: its importance for ecosystem conservation. Front. Microbiol.12, 702763 (2021). PubMed PMC

Dhivya, A. & Alagesan, P. Millipedes as host for microbes - a review. Int. J. Microbiol. Res.8, 19–24 (2017).

Nweze, J. E., Schweichhart, J. S. & Angel, R. Viral communities in millipede guts: Insights into the diversity and potential role in modulating the microbiome. Environ. Microbiol.26, e16586 (2024). PubMed

Sardar P., Šustr V., Chroňáková A. & Lorenc F. Metatranscriptomic holobiont analysis of carbohydrate-active enzymes in the millipede Telodeinopus aoutii (Diplopoda, Spirostreptida). Front. Ecol. Evol.10 (2022).

Engel, P. & Moran, N. A. The gut microbiota of insects – diversity in structure and function. FEMS Microbiol. Rev.37, 699–735 (2013). PubMed

Ebert, A. & Brune, A. Hydrogen concentration profiles at the oxic-anoxic interface: a microsensor study of the hindgut of the wood-feeding lower termite Reticulitermes flavipes (Kollar). Appl Environ. Microbiol.63, 4039–4046 (1997). PubMed PMC

Lundgren, J. G. & Lehman, R. M. Bacterial gut symbionts contribute to seed digestion in an omnivorous beetle. PLoS ONE5, e10831 (2010). PubMed PMC

Tegtmeier, D., Thompson, C. L., Schauer, C. & Brune, A. Oxygen affects gut bacterial colonization and metabolic activities in a gnotobiotic cockroach model. Appl. Environ. Microbiol.82, 1080–1089 (2016). PubMed PMC

Hammer, T. J., Janzen, D. H., Hallwachs, W., Jaffe, S. P. & Fierer, N. Caterpillars lack a resident gut microbiome. Proc. Natl Acad. Sci. USA114, 9641–9646 (2017). PubMed PMC

Jabeen I., Islam S., Hassan AKMI, Tasnim Z., Shuvo S. R. A brief insight into Citrobacter species - a growing threat to public health. Front. Antibiot.2 (2023).

Rasmussen, B. A., Bush, K. & Tally, F. P. Antimicrobial resistance in bacteroides. Clin. Infect. Dis.16, S390–S400 (1993). PubMed

Horváthová, T. et al. Methanogenesis in the digestive tracts of the tropical millipedes Archispirostreptus gigas (Diplopoda, Spirostreptidae) and Epibolus pulchripes (Diplopoda, Pachybolidae). Appl. Environ. Microbiol.87, e00614–e00621 (2021). PubMed PMC

Gijzen, H. J. Methanogenic bacteria as endosymbionts of the ciliate Nyctotherus ovalis in the Cockroach Hindgut. Appl. Environ. Microbiol.57, 5 (1991). PubMed PMC

Zhou, Z., Meng, Q. & Yu, Z. Effects of methanogenic inhibitors on methane production and abundances of methanogens and cellulolytic bacteria in in vitro ruminal cultures. Appl. Environ. Microbiol.77, 2634–2639 (2011). PubMed PMC

Pereira, A. M., de Lurdes Nunes Enes Dapkevicius, M. & Borba, A. E. S. Alternative pathways for hydrogen sink originated from the ruminal fermentation of carbohydrates: which microorganisms are involved in lowering methane emission? Anim. Microbiome4, 5 (2022). PubMed PMC

Husseneder, C. Symbiosis in subterranean termites: a review of insights from molecular studies. Environ. Entomol.39, 378–388 (2010). PubMed

Messer, A. C. & Lee, M. J. Effect of chemical treatments on methane emission by the hindgut microbiota in the termite Zootermopsis angusticollis. Micro Ecol.18, 275–284 (1989). PubMed

Štursová, M., Žifčáková, L., Leigh, M. B., Burgess, R. & Baldrian, P. Cellulose utilization in forest litter and soil: identification of bacterial and fungal decomposers. FEMS Microbiol. Ecol.80, 735–746 (2012). PubMed

Pepe-Ranney, C., Campbell, A. N., Koechli, C. N., Berthrong, S. & Buckley, D. H. Unearthing the ecology of soil microorganisms using a high resolution DNA-SIP approach to explore cellulose and xylose metabolism in soil. Front. Microbiol.7, 703 (2016). PubMed PMC

Schneider, T. et al. Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions. ISME J.6, 1749–1762 (2012). PubMed PMC

Tláskal, V., Voříšková, J. & Baldrian, P. Bacterial succession on decomposing leaf litter exhibits a specific occurrence pattern of cellulolytic taxa and potential decomposers of fungal mycelia. FEMS Microbiol. Ecol.92, fiw177 (2016). PubMed

Purahong, W. et al. Life in leaf litter: novel insights into community dynamics of bacteria and fungi during litter decomposition. Mol. Ecol.25, 4059–4074 (2016). PubMed

Voříšková, J. & Baldrian, P. Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J.7, 477–486 (2013). 3. PubMed PMC

Geib, S. M. et al. Lignin degradation in wood-feeding insects. Proc. Natl Acad. Sci. USA105, 12932–12937 (2008). PubMed PMC

Nunez, F. S. & Crawford, C. S. Digestive enzymes of the desert millipede Orthoporus ornatus (Girard) (Diplopoda: Spirostreptidae). Comp. Biochem Physiol. Part A Mol. Integr. Physiol.55, 141–145 (1976). PubMed

Hackstein, J. H. & Stumm, C. K. Methane production in terrestrial arthropods. Proc. Natl Acad. Sci. USA91, 5441–5445 (1994). PubMed PMC

Šustr, V., Šimek, M., Faktorová, L., Macková, J. & Tajovský, K. Release of greenhouse gases from millipedes as related to food, body size, and other factors. Soil Biol. Biochem.144, 107765 (2020).

Alonso-Pernas, P. et al. In vivo isotopic labeling of symbiotic bacteria involved in cellulose degradation and nitrogen recycling within the gut of the forest cockchafer (Melolontha hippocastani). Front. Microbiol.8, 1970 (2017). PubMed PMC

Sariyildiz, T. & Anderson, J. M. Variation in the chemical composition of green leaves and leaf litters from three deciduous tree species growing on different soil types. Ecol. Manag.210, 303–319 (2005).

Horváthová T., Babik W. & Bauchinger U. Biofilm feeding: microbial colonization of food promotes the growth of a detritivorous arthropod. ZooKeys25, 25–41 (2016). PubMed PMC

Ihnen, K. & Zimmer, M. Selective consumption and digestion of litter microbes by Porcellio scaber (Isopoda: Oniscidea). Pedobiologia51, 335–342 (2008).

Maraun, M. & Scheu, S. Changes in microbial biomass, respiration and nutrient status of beech (Fagus sylvatica) leaf litter processed by millipedes (Glomeris marginata). Oecologia107, 131–140 (1996). PubMed

Semenyuk, I. I. & Tiunov, A. V. Foraging behaviour as a mechanism for trophic niche separation in a millipede community of southern Vietnam. Eur. J. Soil Biol.90, 36–43 (2019).

Byzov, B. A. et al. Killing and hydrolytic activities of the gut fluid of the millipede Pachyiulus flavipes C.L. koch on yeast cells. Soil Biol. Biochem.30, 1137–1145 (1998).

Joly, F.-X. et al. Detritivore conversion of litter into faeces accelerates organic matter turnover. Commun. Biol.3, 660 (2020). PubMed PMC

Kania, G. & Klapeć, T. Seasonal activity of millipedes (diplopoda) - their economic and medical signicance. Ann. Agric. Environ. Med.19, 646–650 (2012). PubMed

Hammer, T. J. & Bowers, M. D. Gut microbes may facilitate insect herbivory of chemically defended plants. Oecologia179, 1–14 (2015). PubMed

So, W. L. et al. Myriapod genomes reveal ancestral horizontal gene transfer and hormonal gene loss in millipedes. Nat. Commun.13, 3010 (2022). PubMed PMC

Gerstaecker, A. Die Gliederthier-fauna Des Sansibar-gebietes (CF Winter, 1873).

Kocourek, P., Tajovský K. & Dolejš, P. New species of millipedes occurring in the czech republic: species discovered in the period 2003–2017. Schubartiana6, 27–30 (2017).

Zimmer, M. & Bartholmé, S. Bacterial endosymbionts in Asellus aquaticus (Isopoda) and Gammarus pulex (Amphipoda) and their contribution to digestion. Limnol. Oceanogr.48, 2208–2213 (2003).

Hayes, J. M. 2004. An Introduction To Isotopic Calculations. Retrieved 11 October 2023 (Woods Hole Oceanographic Institution, 2004).

Angel, R., Petrova E., & Lara-Rodriguez, A. Total Nucleic Acids Extraction From Soil V.6. protocols.io 6 (2021).

Angel, R., Petrova E. & Lara A. RNA-Stable Isotope Probing V.3. protocols.io 3 (2020).

Yu, Y., Lee, C., Kim, J. & Hwang, S. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol. Bioeng.89, 670–679 (2005). PubMed

Angel, R., Matthies, D. & Conrad, R. Activation of methanogenesis in arid biological soil crusts despite the presence of oxygen. PLoS ONE6, e20453 (2011). PubMed PMC

Liu, C. M. et al. FungiQuant: a broad-coverage fungal quantitative real-time PCR assay. BMC Microbiol.12, 1–11 (2012). PubMed PMC

Naqib, A., Poggi, S. & Green, S. J. Deconstructing the polymerase chain reaction II: an improved workflow and effects on artifact formation and primer degeneracy. PeerJ7, e7121 (2019). PubMed PMC

Walters, W. et al. Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems1, e00009–e00015 (2016). PubMed PMC

RCore T. R: A Language And Environment For Statistical Computing (R Foundation for Statistical Computing, 2016).

Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw.67, 1–48 (2015).

Girden, E. R. ANOVA: Repeated Measures (sage, 1992).

Keselman, H. J. & Rogan, J. C. The Tukey multiple comparison test: 1953–1976. Psychol. Bull.84, 1050 (1977).

Goel, M. K., Khanna, P. & Kishore, J. Understanding survival analysis: Kaplan-Meier estimate. Int J. Ayurveda Res1, 274–278 (2010). PubMed PMC

Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J.17, 10–12 (2011).

Callahan, B. J., Sankaran, K., Fukuyama, J. A., McMurdie, P. J. & Holmes, S. P. Bioconductor Workflow for Microbiome Data Analysis: from raw reads to community analyses. F1000Res5, 1492 (2016). PubMed PMC

Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res.41, D590–D596 (2013). PubMed PMC

Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome6, 226 (2018). PubMed PMC

McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE8, e61217 (2013). PubMed PMC

Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci.14, 927–930 (2003).

McKight, P. E., Najab J. 2010. Kruskal‐wallis test. The Corsini Encyclopedia Of Psychology 1–1 (John Wiley & Sons, Inc, 2010).

Dinno, A. & Dinno, M. A. Package ‘dunn. test.’. CRAN Repos.10, 1–7 (2017).

Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc., Ser. B Methodol.57, 289–300 (1995).

Mangiafico, S. & Mangiafico, M. S. Package ‘rcompanion.’. CRAN Repos.20, 1–71 (2017).

Anderson, M. J. & Willis, T. J. Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology84, 511–525 (2003).

Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol.26, 32–46 (2001).

Martinez Arbizu P. pairwiseAdonis: Pairwise multilevel comparison using adonis. R package version 04 1 (2020).

Lin, H. & Peddada, S. D. Analysis of compositions of microbiomes with bias correction. Nat. Commun.11, 3514 (2020). PubMed PMC

Angel, R. Methods in Molecular Biology: Stable Isotope Probing (Springer, 2019). PubMed

Pruesse, E., Peplies, J. & Glöckner, F. O. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics28, 1823–1829 (2012). PubMed PMC

Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol.37, 1530–1534 (2020). PubMed PMC

Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol.15, 550 (2014). PubMed PMC

Zhu, A., Ibrahim, J. G. & Love, M. I. Heavy-tailed prior distributions for sequence count data: removing the noise and preserving large differences. Bioinformatics35, 2084–2092 (2019). PubMed PMC

Nweze, J. E. julipeale2001/Active-microbial-community-pre--and-post-inhibition: Microbial community analyses (v1.1). Zenodo10.5281/zenodo.13383697 (2024).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...