Disruption of millipede-gut microbiota in E. pulchripes and G. connexa highlights the limited role of litter fermentation and the importance of litter-associated microbes for nutrition
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-24309Y
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
19-24309Y
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
19-24309Y
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
PubMed
39342029
PubMed Central
PMC11438867
DOI
10.1038/s42003-024-06821-2
PII: 10.1038/s42003-024-06821-2
Knihovny.cz E-zdroje
- MeSH
- Bacteria metabolismus genetika MeSH
- členovci * mikrobiologie metabolismus MeSH
- feces mikrobiologie MeSH
- fermentace * MeSH
- listy rostlin metabolismus mikrobiologie MeSH
- střevní mikroflóra * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Millipedes are thought to depend on their gut microbiome for processing plant-litter-cellulose through fermentation, similar to many other arthropods. However, this hypothesis lacks sufficient evidence. To investigate this, we used inhibitors to disrupt the gut microbiota of juvenile Epibolus pulchripes (tropical, CH4-emitting) and Glomeris connexa (temperate, non-CH4-emitting) and isotopic labelling. Feeding the millipedes sterile or antibiotics-treated litter reduced faecal production and microbial load without major impacts on survival or weight. Bacterial diversity remained similar, with Bacteroidota dominant in E. pulchripes and Pseudomonadota in G. connexa. Sodium-2-bromoethanesulfonate treatment halted CH4 emissions in E. pulchripes, but it resumed after returning to normal feeding. Employing 13C-labeled leaf litter and RNA-SIP revealed a slow and gradual prokaryote labelling, indicating a significant density shift only by day 21. Surprisingly, labelling of the fungal biomass was somewhat quicker. Our findings suggest that fermentation by the gut microbiota is likely not essential for the millipede's nutrition.
Department of Aquatic Ecology EAWAG Dübendorf Switzerland
Faculty of Science University of South Bohemia in České Budějovice České Budějovice Czechia
Institute of Hydrobiology Biology Centre CAS České Budějovice Czechia
Institute of Soil Biology and Biogeochemistry Biology Centre CAS České Budějovice Czechia
Zobrazit více v PubMed
Petersen, J. M. & Osvatic, J. Microbiomes in nature: Importance of invertebrates in understanding the natural variety of animal-microbe interactions. mSystems3, e00179–17 (2018). PubMed PMC
Moran, N. A., Ochman, H. & Hammer, T. J. Evolutionary and ecological consequences of gut microbial communities. Annu Rev. Ecol. Evol. Syst.50, 451–475 (2019). PubMed PMC
Bordenstein, S. R. & Theis, K. R. Host biology in light of the microbiome: ten principles of holobionts and hologenomes. PLoS Biol.13, e1002226 (2015). PubMed PMC
Zilber-Rosenberg, I. & Rosenberg, E. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol. Rev.32, 723–735 (2008). PubMed
Russell, J. A., Dubilier, N. & Rudgers, J. A. Nature’s microbiome: introduction. Mol. Ecol.23, 1225–1237 (2014). PubMed
Vavre, F. & Kremer, N. Microbial impacts on insect evolutionary diversification: from patterns to mechanisms. Curr. Opin. Insect Sci.4, 29–34 (2014). PubMed
Brune, A. Symbiotic digestion of lignocellulose in termite guts. Nat. Rev. Microbiol.12, 168–180 (2014). 3. PubMed
Hammer, T. J., Sanders, J. G. & Fierer, N. Not all animals need a microbiome. FEMS Microbiol. Lett.366, fnz117 (2019). PubMed
Mikaelyan, A., Thompson, C. L., Hofer, M. J. & Brune, A. Deterministic assembly of complex bacterial communities in guts of germ-free cockroaches. Appl. Environ. Microbiol.82, 1256–1263 (2016). PubMed PMC
Tinker, K. A. & Ottesen, E. A. The core gut microbiome of the American cockroach, Periplaneta americana, is stable and resilient to dietary shifts. Appl. Environ. Microbiol.82, 6603–6610 (2016). PubMed PMC
Bouchon, D., Zimmer, M. & Dittmer, J. The terrestrial isopod microbiome: An all-in-one toolbox for animal–microbe interactions of ecological relevance. Front. Microbiol.7, 1472 (2016). PubMed PMC
Mattila, J. M., Zimmer, M., Vesakoski, O. & Jormalainen, V. Habitat-specific gut microbiota of the marine herbivore Idotea balthica (Isopoda). J. Exp. Mar. Biol. Ecol.455, 22–28 (2014).
Watanabe, H. & Tokuda, G. Animal cellulases. Cell Mol. Life Sci.58, 1167–1178 (2001). PubMed PMC
Schmidt, K. & Engel, P. Mechanisms underlying gut microbiota–host interactions in insects. J. Exp. Biol.224, jeb207696 (2021). PubMed
Kime, R. D. & Golovatch, S. I. Trends in the ecological strategies and evolution of millipedes (Diplopoda). Biol. J. Linn. Soc.69, 333–349 (2000).
Crawford C. S. Millipedes As Model Detritivores. Ber Nat-med Verein Innsbruck 12 (1992).
David, J.-F. The role of litter-feeding macroarthropods in decomposition processes: a reappraisal of common views. Soil Biol. Biochem.76, 109–118 (2014).
Byzov B. A. Intestinal Microorganisms Of Termites And Other Invertebrates, p. 89–114. (eds. König, H., Varma, A.) (Springer-Verlag, 2006).
Nardi, J. B., Bee, C. M. & Taylor, S. J. Compartmentalization of microbial communities that inhabit the hindguts of millipedes. Arthropod. Struct. Dev.45, 462–474 (2016). PubMed
Koubová, A., Lorenc, F., Horváthová, T., Chroňáková, A. & Šustr, V. Millipede gut-derived microbes as a potential source of cellulolytic enzymes. World J. Microbiol. Biotechnol.39, 169 (2023). PubMed
Nweze, J. E., Šustr, V., Brune, A. & Angel, R. Functional similarity, despite taxonomical divergence in the millipede gut microbiota, points to a common trophic strategy. Microbiome12, 16 (2024). PubMed PMC
Ramanathan, B. & Alagesan, P. Isolation, characterization and role of gut bacteria of three different millipede species. Indian J. Sci. Res.3, 55–61 (2012).
Sardar, P., Šustr, V., Chroňáková, A., Lorenc, F. & Faktorová, L. De novo metatranscriptomic exploration of gene function in the millipede holobiont. Sci. Rep.12, 16173 (2022). 1. PubMed PMC
Taylor E. C. Role of aerobic microbial populations in cellulose digestion by desert millipedes. Appl. Environ. Microbiol.11 (1982). PubMed PMC
Khairunisa, B. H., Heryakusuma, C., Ike, K., Mukhopadhyay, B. & Susanti, D. Evolving understanding of rumen methanogen ecophysiology. Front. Microbiol.14, 1296008 (2023). PubMed PMC
Šustr, V., Chroňáková, A., Semanová, S., Tajovský, K. & Šimek, M. Methane production and methanogenic archaea in the digestive tracts of millipedes (Diplopoda). PLoS ONE9, e102659 (2014). PubMed PMC
Bignell, D. Relative assimilations of 14C-labelled microbial tissues and 14C-plant fibre ingested with leaf litter by the millipede Glomeris marginata under experimental conditions. Soil Biol. Biochem.21, 819–827 (1989).
Enghoff, H. East African giant millipedes of the tribe Pachybolini (Diplopoda, Spirobolida, Pachybolidae). Zootaxa2753, 1–41 (2011). 1.
Hoess, R. & Scholl, A. Allozyme and literature study of Glomeris guttata Risso, 1826, and G. connexa Koch, 1847, a case of taxonomic confusion (diplopoda: glomeridae). Zool. Anz.240, 15–33 (2001).
Rymer, T. L. & Pillay, N. The effects of antibiotics and illness on gut microbial composition in the fawn-footed mosaic-tailed rat (Melomys cervinipes). PLoS ONE18, e0281533 (2023). PubMed PMC
Elbehiry, A. et al. Proteomics-based screening and antibiotic resistance assessment of clinical and sub-clinical Brucella species: an evolution of brucellosis infection control. PLoS ONE17, e0262551 (2022). PubMed PMC
Vaz-Moreira, I., Nunes, O. C. & Manaia, C. M. Diversity and antibiotic resistance in Pseudomonas spp. from drinking water. Sci. Total Environ.426, 366–374 (2012). PubMed
Hedderich R., Whitman W. B. Physiology And Biochemistry Of The Methane-producing Archaea, p. 1050–1079. (eds. Rosenberg, E., DeLong, E. F., Lory, S., Stackebrandt, E., Thompson, F.) (The Prokaryotes. Springer, 2006).
Schapheer, C., Pellens, R. & Scherson, R. Arthropod-microbiota integration: its importance for ecosystem conservation. Front. Microbiol.12, 702763 (2021). PubMed PMC
Dhivya, A. & Alagesan, P. Millipedes as host for microbes - a review. Int. J. Microbiol. Res.8, 19–24 (2017).
Nweze, J. E., Schweichhart, J. S. & Angel, R. Viral communities in millipede guts: Insights into the diversity and potential role in modulating the microbiome. Environ. Microbiol.26, e16586 (2024). PubMed
Sardar P., Šustr V., Chroňáková A. & Lorenc F. Metatranscriptomic holobiont analysis of carbohydrate-active enzymes in the millipede Telodeinopus aoutii (Diplopoda, Spirostreptida). Front. Ecol. Evol.10 (2022).
Engel, P. & Moran, N. A. The gut microbiota of insects – diversity in structure and function. FEMS Microbiol. Rev.37, 699–735 (2013). PubMed
Ebert, A. & Brune, A. Hydrogen concentration profiles at the oxic-anoxic interface: a microsensor study of the hindgut of the wood-feeding lower termite Reticulitermes flavipes (Kollar). Appl Environ. Microbiol.63, 4039–4046 (1997). PubMed PMC
Lundgren, J. G. & Lehman, R. M. Bacterial gut symbionts contribute to seed digestion in an omnivorous beetle. PLoS ONE5, e10831 (2010). PubMed PMC
Tegtmeier, D., Thompson, C. L., Schauer, C. & Brune, A. Oxygen affects gut bacterial colonization and metabolic activities in a gnotobiotic cockroach model. Appl. Environ. Microbiol.82, 1080–1089 (2016). PubMed PMC
Hammer, T. J., Janzen, D. H., Hallwachs, W., Jaffe, S. P. & Fierer, N. Caterpillars lack a resident gut microbiome. Proc. Natl Acad. Sci. USA114, 9641–9646 (2017). PubMed PMC
Jabeen I., Islam S., Hassan AKMI, Tasnim Z., Shuvo S. R. A brief insight into Citrobacter species - a growing threat to public health. Front. Antibiot.2 (2023).
Rasmussen, B. A., Bush, K. & Tally, F. P. Antimicrobial resistance in bacteroides. Clin. Infect. Dis.16, S390–S400 (1993). PubMed
Horváthová, T. et al. Methanogenesis in the digestive tracts of the tropical millipedes Archispirostreptus gigas (Diplopoda, Spirostreptidae) and Epibolus pulchripes (Diplopoda, Pachybolidae). Appl. Environ. Microbiol.87, e00614–e00621 (2021). PubMed PMC
Gijzen, H. J. Methanogenic bacteria as endosymbionts of the ciliate Nyctotherus ovalis in the Cockroach Hindgut. Appl. Environ. Microbiol.57, 5 (1991). PubMed PMC
Zhou, Z., Meng, Q. & Yu, Z. Effects of methanogenic inhibitors on methane production and abundances of methanogens and cellulolytic bacteria in in vitro ruminal cultures. Appl. Environ. Microbiol.77, 2634–2639 (2011). PubMed PMC
Pereira, A. M., de Lurdes Nunes Enes Dapkevicius, M. & Borba, A. E. S. Alternative pathways for hydrogen sink originated from the ruminal fermentation of carbohydrates: which microorganisms are involved in lowering methane emission? Anim. Microbiome4, 5 (2022). PubMed PMC
Husseneder, C. Symbiosis in subterranean termites: a review of insights from molecular studies. Environ. Entomol.39, 378–388 (2010). PubMed
Messer, A. C. & Lee, M. J. Effect of chemical treatments on methane emission by the hindgut microbiota in the termite Zootermopsis angusticollis. Micro Ecol.18, 275–284 (1989). PubMed
Štursová, M., Žifčáková, L., Leigh, M. B., Burgess, R. & Baldrian, P. Cellulose utilization in forest litter and soil: identification of bacterial and fungal decomposers. FEMS Microbiol. Ecol.80, 735–746 (2012). PubMed
Pepe-Ranney, C., Campbell, A. N., Koechli, C. N., Berthrong, S. & Buckley, D. H. Unearthing the ecology of soil microorganisms using a high resolution DNA-SIP approach to explore cellulose and xylose metabolism in soil. Front. Microbiol.7, 703 (2016). PubMed PMC
Schneider, T. et al. Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions. ISME J.6, 1749–1762 (2012). PubMed PMC
Tláskal, V., Voříšková, J. & Baldrian, P. Bacterial succession on decomposing leaf litter exhibits a specific occurrence pattern of cellulolytic taxa and potential decomposers of fungal mycelia. FEMS Microbiol. Ecol.92, fiw177 (2016). PubMed
Purahong, W. et al. Life in leaf litter: novel insights into community dynamics of bacteria and fungi during litter decomposition. Mol. Ecol.25, 4059–4074 (2016). PubMed
Voříšková, J. & Baldrian, P. Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J.7, 477–486 (2013). 3. PubMed PMC
Geib, S. M. et al. Lignin degradation in wood-feeding insects. Proc. Natl Acad. Sci. USA105, 12932–12937 (2008). PubMed PMC
Nunez, F. S. & Crawford, C. S. Digestive enzymes of the desert millipede Orthoporus ornatus (Girard) (Diplopoda: Spirostreptidae). Comp. Biochem Physiol. Part A Mol. Integr. Physiol.55, 141–145 (1976). PubMed
Hackstein, J. H. & Stumm, C. K. Methane production in terrestrial arthropods. Proc. Natl Acad. Sci. USA91, 5441–5445 (1994). PubMed PMC
Šustr, V., Šimek, M., Faktorová, L., Macková, J. & Tajovský, K. Release of greenhouse gases from millipedes as related to food, body size, and other factors. Soil Biol. Biochem.144, 107765 (2020).
Alonso-Pernas, P. et al. In vivo isotopic labeling of symbiotic bacteria involved in cellulose degradation and nitrogen recycling within the gut of the forest cockchafer (Melolontha hippocastani). Front. Microbiol.8, 1970 (2017). PubMed PMC
Sariyildiz, T. & Anderson, J. M. Variation in the chemical composition of green leaves and leaf litters from three deciduous tree species growing on different soil types. Ecol. Manag.210, 303–319 (2005).
Horváthová T., Babik W. & Bauchinger U. Biofilm feeding: microbial colonization of food promotes the growth of a detritivorous arthropod. ZooKeys25, 25–41 (2016). PubMed PMC
Ihnen, K. & Zimmer, M. Selective consumption and digestion of litter microbes by Porcellio scaber (Isopoda: Oniscidea). Pedobiologia51, 335–342 (2008).
Maraun, M. & Scheu, S. Changes in microbial biomass, respiration and nutrient status of beech (Fagus sylvatica) leaf litter processed by millipedes (Glomeris marginata). Oecologia107, 131–140 (1996). PubMed
Semenyuk, I. I. & Tiunov, A. V. Foraging behaviour as a mechanism for trophic niche separation in a millipede community of southern Vietnam. Eur. J. Soil Biol.90, 36–43 (2019).
Byzov, B. A. et al. Killing and hydrolytic activities of the gut fluid of the millipede Pachyiulus flavipes C.L. koch on yeast cells. Soil Biol. Biochem.30, 1137–1145 (1998).
Joly, F.-X. et al. Detritivore conversion of litter into faeces accelerates organic matter turnover. Commun. Biol.3, 660 (2020). PubMed PMC
Kania, G. & Klapeć, T. Seasonal activity of millipedes (diplopoda) - their economic and medical signicance. Ann. Agric. Environ. Med.19, 646–650 (2012). PubMed
Hammer, T. J. & Bowers, M. D. Gut microbes may facilitate insect herbivory of chemically defended plants. Oecologia179, 1–14 (2015). PubMed
So, W. L. et al. Myriapod genomes reveal ancestral horizontal gene transfer and hormonal gene loss in millipedes. Nat. Commun.13, 3010 (2022). PubMed PMC
Gerstaecker, A. Die Gliederthier-fauna Des Sansibar-gebietes (CF Winter, 1873).
Kocourek, P., Tajovský K. & Dolejš, P. New species of millipedes occurring in the czech republic: species discovered in the period 2003–2017. Schubartiana6, 27–30 (2017).
Zimmer, M. & Bartholmé, S. Bacterial endosymbionts in Asellus aquaticus (Isopoda) and Gammarus pulex (Amphipoda) and their contribution to digestion. Limnol. Oceanogr.48, 2208–2213 (2003).
Hayes, J. M. 2004. An Introduction To Isotopic Calculations. Retrieved 11 October 2023 (Woods Hole Oceanographic Institution, 2004).
Angel, R., Petrova E., & Lara-Rodriguez, A. Total Nucleic Acids Extraction From Soil V.6. protocols.io 6 (2021).
Angel, R., Petrova E. & Lara A. RNA-Stable Isotope Probing V.3. protocols.io 3 (2020).
Yu, Y., Lee, C., Kim, J. & Hwang, S. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol. Bioeng.89, 670–679 (2005). PubMed
Angel, R., Matthies, D. & Conrad, R. Activation of methanogenesis in arid biological soil crusts despite the presence of oxygen. PLoS ONE6, e20453 (2011). PubMed PMC
Liu, C. M. et al. FungiQuant: a broad-coverage fungal quantitative real-time PCR assay. BMC Microbiol.12, 1–11 (2012). PubMed PMC
Naqib, A., Poggi, S. & Green, S. J. Deconstructing the polymerase chain reaction II: an improved workflow and effects on artifact formation and primer degeneracy. PeerJ7, e7121 (2019). PubMed PMC
Walters, W. et al. Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems1, e00009–e00015 (2016). PubMed PMC
RCore T. R: A Language And Environment For Statistical Computing (R Foundation for Statistical Computing, 2016).
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw.67, 1–48 (2015).
Girden, E. R. ANOVA: Repeated Measures (sage, 1992).
Keselman, H. J. & Rogan, J. C. The Tukey multiple comparison test: 1953–1976. Psychol. Bull.84, 1050 (1977).
Goel, M. K., Khanna, P. & Kishore, J. Understanding survival analysis: Kaplan-Meier estimate. Int J. Ayurveda Res1, 274–278 (2010). PubMed PMC
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J.17, 10–12 (2011).
Callahan, B. J., Sankaran, K., Fukuyama, J. A., McMurdie, P. J. & Holmes, S. P. Bioconductor Workflow for Microbiome Data Analysis: from raw reads to community analyses. F1000Res5, 1492 (2016). PubMed PMC
Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res.41, D590–D596 (2013). PubMed PMC
Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome6, 226 (2018). PubMed PMC
McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE8, e61217 (2013). PubMed PMC
Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci.14, 927–930 (2003).
McKight, P. E., Najab J. 2010. Kruskal‐wallis test. The Corsini Encyclopedia Of Psychology 1–1 (John Wiley & Sons, Inc, 2010).
Dinno, A. & Dinno, M. A. Package ‘dunn. test.’. CRAN Repos.10, 1–7 (2017).
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc., Ser. B Methodol.57, 289–300 (1995).
Mangiafico, S. & Mangiafico, M. S. Package ‘rcompanion.’. CRAN Repos.20, 1–71 (2017).
Anderson, M. J. & Willis, T. J. Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology84, 511–525 (2003).
Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol.26, 32–46 (2001).
Martinez Arbizu P. pairwiseAdonis: Pairwise multilevel comparison using adonis. R package version 04 1 (2020).
Lin, H. & Peddada, S. D. Analysis of compositions of microbiomes with bias correction. Nat. Commun.11, 3514 (2020). PubMed PMC
Angel, R. Methods in Molecular Biology: Stable Isotope Probing (Springer, 2019). PubMed
Pruesse, E., Peplies, J. & Glöckner, F. O. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics28, 1823–1829 (2012). PubMed PMC
Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol.37, 1530–1534 (2020). PubMed PMC
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol.15, 550 (2014). PubMed PMC
Zhu, A., Ibrahim, J. G. & Love, M. I. Heavy-tailed prior distributions for sequence count data: removing the noise and preserving large differences. Bioinformatics35, 2084–2092 (2019). PubMed PMC
Nweze, J. E. julipeale2001/Active-microbial-community-pre--and-post-inhibition: Microbial community analyses (v1.1). Zenodo10.5281/zenodo.13383697 (2024).