De novo metatranscriptomic exploration of gene function in the millipede holobiont
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36171216
PubMed Central
PMC9519908
DOI
10.1038/s41598-022-19565-y
PII: 10.1038/s41598-022-19565-y
Knihovny.cz E-zdroje
- MeSH
- Bacteroidetes MeSH
- členovci * genetika MeSH
- esenciální aminokyseliny MeSH
- kyseliny mastné těkavé MeSH
- střevní mikroflóra * genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- esenciální aminokyseliny MeSH
- kyseliny mastné těkavé MeSH
Invertebrate-microbial associations are widespread in the biosphere and are often related to the function of novel genes, fitness advantages, and even speciation events. Despite ~ 13,000 species of millipedes identified across the world, millipedes and their gut microbiota are markedly understudied compared to other arthropods. Exploring the contribution of individual host-associated microbes is often challenging as many are uncultivable. In this study, we conducted metatranscriptomic profiling of different body segments of a millipede at the holobiont level. This is the first reported transcriptome assembly of a tropical millipede Telodeinopus aoutii (Demange, 1971), as well as the first study on any Myriapoda holobiont. High-throughput RNA sequencing revealed that Telodeinopus aoutii contained > 90% of the core Arthropoda genes. Proteobacteria, Bacteroidetes, Firmicutes, and Euryarchaeota represented dominant and functionally active phyla in the millipede gut, among which 97% of Bacteroidetes and 98% of Firmicutes were present exclusively in the hindgut. A total of 37,831 predicted protein-coding genes of millipede holobiont belonged to six enzyme classes. Around 35% of these proteins were produced by microbiota in the hindgut and 21% by the host in the midgut. Our results indicated that although major metabolic pathways operate at the holobiont level, the involvement of some host and microbial genes are mutually exclusive and microbes predominantly contribute to essential amino acid biosynthesis, short-chain fatty acid metabolism, and fermentation.
Zobrazit více v PubMed
Byzov BA. In: Intestinal Microorganisms of Termites and Other Invertebrates. König H, Varma A, editors. Springer; 2006. pp. 89–114.
Šustr V, et al. Enzymatic activities in the digestive tract of spirostreptid and spirobolid millipedes (Diplopoda: Spirostreptida and Spirobolida) Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2020;241:110388. doi: 10.1016/j.cbpb.2019.110388. PubMed DOI
Hopkin SP, Read HJ. The Biology of Millipedes. Oxford University Press; 1992.
Taylor EC. Role of aerobic microbial populations in cellulose digestion by desert millipedes. Appl. Environ. Microbiol. 1982;44:281–291. doi: 10.1128/aem.44.2.281-291.1982. PubMed DOI PMC
Adam PS, Borrel G, Brochier-Armanet C, Gribaldo S. The growing tree of Archaea: New perspectives on their diversity, evolution and ecology. ISME J. 2017;11:2407–2425. doi: 10.1038/ismej.2017.122. PubMed DOI PMC
Scully ED, et al. Functional genomics and microbiome profiling of the Asian longhorned beetle (Anoplophora glabripennis) reveal insights into the digestive physiology and nutritional ecology of wood feeding beetles. BMC Genomics. 2014;15:1096. doi: 10.1186/1471-2164-15-1096. PubMed DOI PMC
Margulis L, Fester R. Symbiosis as a Source of Evolutionary Innovation—Speciation and Morphogenesis. MIT Press; 1991. PubMed
Salzberg SL. Open questions: How many genes do we have? BMC Biol. 2018;16:94. doi: 10.1186/s12915-018-0564-x. PubMed DOI PMC
Lloyd-Price J, Abu-Ali G, Huttenhower C. The healthy human microbiome. Genome Med. 2016;8:51. doi: 10.1186/s13073-016-0307-y. PubMed DOI PMC
Bredon M, Dittmer J, Noel C, Moumen B, Bouchon D. Lignocellulose degradation at the holobiont level: Teamwork in a keystone soil invertebrate. Microbiome. 2018;6:162. doi: 10.1186/s40168-018-0536-y. PubMed DOI PMC
Qu Z, et al. Millipede genomes reveal unique adaptations during myriapod evolution. PLoS Biol. 2020;18:e3000636. doi: 10.1371/journal.pbio.3000636. PubMed DOI PMC
Rodriguez J, et al. Step-wise evolution of complex chemical defenses in millipedes: A phylogenomic approach. Sci. Rep. 2018;8:3209. doi: 10.1038/s41598-018-19996-6. PubMed DOI PMC
Knapp BA, et al. Molecular fingerprinting analysis of the gut microbiota of Cylindroiulus fulviceps (Diplopoda) Pedobiologiaa. 2009;52:325–336. doi: 10.1016/j.pedobi.2008.11.005. DOI
Šustr V, Chroňaková A, Semanova S, Tajovsky K, Simek M. Methane production and methanogenic Archaea in the digestive tracts of millipedes (Diplopoda) PLoS One. 2014;9:e102659. doi: 10.1371/journal.pone.0102659. PubMed DOI PMC
Shi WB, Syrenne R, Sun JZ, Yuan JS. Molecular approaches to study the insect gut symbiotic microbiota at the 'omics' age. Insect Sci. 2010;17:199–219. doi: 10.1111/j.1744-7917.2010.01340.x. DOI
Malacrino A. Meta-omics tools in the world of insect–microorganism interactions. Biology. 2018;7:50. doi: 10.3390/biology7040050. PubMed DOI PMC
Shinzato C, Inoue M, Kusakabe M. A snapshot of a coral "holobiont": A transcriptome assembly of the scleractinian coral, porites, captures a wide variety of genes from both the host and symbiotic zooxanthellae. PLoS One. 2014;9:e85182. doi: 10.1371/journal.pone.0085182. PubMed DOI PMC
Marzinelli EM, et al. Coastal urbanisation affects microbial communities on a dominant marine holobiont. NPJ Biofilms Microbiomes. 2018;4:1. doi: 10.1038/s41522-017-0044-z. PubMed DOI PMC
Bordenstein SR, Theis KR. Host biology in light of the microbiome: Ten principles of holobionts and hologenomes. PLoS Biol. 2015;13:e1002226. PubMed PMC
Tokuda G, et al. Fiber-associated spirochetes are major agents of hemicellulose degradation in the hindgut of wood-feeding higher termites. Proc. Natl. Acad. Sci. U.S.A. 2018;115:E11996–E12004. doi: 10.1073/pnas.1810550115. PubMed DOI PMC
Marynowska M, et al. Optimization of a metatranscriptomic approach to study the lignocellulolytic potential of the higher termite gut microbiome. BMC Genomics. 2017;18:681. doi: 10.1186/s12864-017-4076-9. PubMed DOI PMC
Kenny NJ, et al. Genome of the rusty Millipede, Trigoniulus corallinus, illuminates diplopod, myriapod, and arthropod evolution. Genome Biol. Evol. 2015;7:1280–1295. doi: 10.1093/gbe/evv070. PubMed DOI PMC
Rehm P, Meusemann K, Borner J, Misof B, Burmester T. Phylogenetic position of Myriapoda revealed by 454 transcriptome sequencing. Mol. Phylogenet. Evol. 2014;77:25–33. doi: 10.1016/j.ympev.2014.04.007. PubMed DOI
Fernandez R, Edgecombe GD, Giribet G. Phylogenomics illuminates the backbone of the Myriapoda Tree of Life and reconciles morphological and molecular phylogenies. Sci. Rep. 2018;8:83. doi: 10.1038/s41598-017-18562-w. PubMed DOI PMC
Geli-Cruz, O. J., Cafaro, M. J., Santos-Flores, C. J., Ropelewski, A. J. & Dam, A. R. V. Taxonomic survey of Anadenobolus monilicornis gut microbiota via shotgun nanopore sequencing (2019).
Rost-Roszkowska MM, et al. Autophagy and apoptosis in the midgut epithelium of millipedes. Microsc. Microanal. 2019;25:1004–1016. doi: 10.1017/S143192761900059X. PubMed DOI
Rost-Roszkowska MM, Kszuk-Jendrysik M, Marchewka A, Poprawa I. Fine structure of the midgut epithelium in the millipede Telodeinopus aoutii (Myriapoda, Diplopoda) with special emphasis on epithelial regeneration. Protoplasma. 2018;255:43–55. doi: 10.1007/s00709-017-1131-y. PubMed DOI
Deml R, Huth A. Benzoquinones and hydroquinones in defensive secretions of tropical millipedes. Naturwissenschaften. 2000;87:80–82. doi: 10.1007/s001140050014. PubMed DOI
Bogdanova EA, et al. Preparation of prokaryotic cDNA for high-throughput transcriptome analysis. Bioorg. Khim. 2011;37:854–857. PubMed
Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Kopylova E, Noe L, Touzet H. SortMeRNA: Fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28:3211–3217. doi: 10.1093/bioinformatics/bts611. PubMed DOI
Grabherr MG, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011;29:644–U130. doi: 10.1038/nbt.1883. PubMed DOI PMC
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25. doi: 10.1186/gb-2009-10-3-r25. PubMed DOI PMC
Li W, Godzik A. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22:1658–1659. doi: 10.1093/bioinformatics/btl158. PubMed DOI
Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–3212. doi: 10.1093/bioinformatics/btv351. PubMed DOI
Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods. 2017;14:417. doi: 10.1038/nmeth.4197. PubMed DOI PMC
Wagner GP, Kin K, Lynch VJ. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci. 2012;131:281–285. doi: 10.1007/s12064-012-0162-3. PubMed DOI
Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010;11:R25. doi: 10.1186/gb-2010-11-3-r25. PubMed DOI PMC
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Venn J. On the employment of geometrical diagrams for the sensible representations of logical propositions. Proc. Camb. Philos. Soc. 1880;4:47–59.
R Core Team. R: A language and environment for statistical computing https://www.R-project.org/ (2016).
Haas BJ, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 2013;8:1494–1512. doi: 10.1038/nprot.2013.084. PubMed DOI PMC
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI
Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat. Methods. 2015;12:59–60. doi: 10.1038/nmeth.3176. PubMed DOI
Huson DH, et al. MEGAN Community Edition—Interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput. Biol. 2016;12:e1004957. PubMed PMC
O'Leary NA, et al. Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44:D733–D745. doi: 10.1093/nar/gkv1189. PubMed DOI PMC
Huerta-Cepas J, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol. Biol. Evol. 2017;34:2115–2122. doi: 10.1093/molbev/msx148. PubMed DOI PMC
Huerta-Cepas J, et al. eggNOG 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019;47:D309–D314. doi: 10.1093/nar/gky1085. PubMed DOI PMC
Ashburner M, et al. Gene Ontology: Tool for the unification of biology. Nat. Genet. 2000;25:25–29. doi: 10.1038/75556. PubMed DOI PMC
Berardini TZ, et al. The Gene Ontology in 2010: Extensions and refinements The Gene Ontology Consortium. Nucleic Acids Res. 2010;38:D331–D335. doi: 10.1093/nar/gkp1018. PubMed DOI PMC
McCarthy, F. M. et al. AgBase: A functional genomics resource for agriculture. BMC Genomics7 (2006). PubMed PMC
Carbon S, et al. AmiGO: Online access to ontology and annotation data. Bioinformatics. 2009;25:288–289. doi: 10.1093/bioinformatics/btn615. PubMed DOI PMC
Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M. KEGG: Integrating viruses and cellular organisms. Nucleic Acids Res. 2021;49:D545–D551. doi: 10.1093/nar/gkaa970. PubMed DOI PMC
Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000;28:27–30. doi: 10.1093/nar/28.1.27. PubMed DOI PMC
Kanehisa M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 2019;28:1947–1951. doi: 10.1002/pro.3715. PubMed DOI PMC
Overbeek R, et al. The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res. 2005;33:5691–5702. doi: 10.1093/nar/gki866. PubMed DOI PMC
Bairoch A. The ENZYME database in 2000. Nucleic Acids Res. 2000;28:304–305. doi: 10.1093/nar/28.1.304. PubMed DOI PMC
Mitchell A, et al. The InterPro protein families database: The classification resource after 15 years. Nucleic Acids Res. 2015;43:D213–D221. doi: 10.1093/nar/gku1243. PubMed DOI PMC
Bray JR, Curtis JT. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 1957;27:326–349. doi: 10.2307/1942268. DOI
Kanehisa M, Sato Y. KEGG Mapper for inferring cellular functions from protein sequences. Protein Sci. 2020;29:28–35. doi: 10.1002/pro.3711. PubMed DOI PMC
Krzywinski M, et al. Circos: An information aesthetic for comparative genomics. Genome Res. 2009;19:1639–1645. doi: 10.1101/gr.092759.109. PubMed DOI PMC
Kriventseva EV, et al. OrthoDB v10: Sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucleic Acids Res. 2019;47:D807–D811. doi: 10.1093/nar/gky1053. PubMed DOI PMC
Thomas, G. W. C. et al. Gene content evolution in the arthropods. Genome Biol.21 (2020). PubMed PMC
Heger A, Ponting CP. Evolutionary rate analyses of orthologs and paralogs from 12 Drosophila genomes. Genome Res. 2007;17:1837–1849. doi: 10.1101/gr.6249707. PubMed DOI PMC
Waterhouse RM, Zdobnov EM, Kriventseva EV. Correlating traits of gene retention, sequence divergence, duplicability and essentiality in vertebrates, arthropods, and fungi. Genome Biol. Evol. 2011;3:75–86. doi: 10.1093/gbe/evq083. PubMed DOI PMC
Esposti MD, Romero EM. The functional microbiome of arthropods. PLoS One. 2017;12:e0176573. doi: 10.1371/journal.pone.0176573. PubMed DOI PMC
Engel P, Moran NA. The gut microbiota of insects—Diversity in structure and function. FEMS Microbiol. Rev. 2013;37:699–735. doi: 10.1111/1574-6976.12025. PubMed DOI
Kim M, Kim WS, Tripathi BM, Adams J. Distinct bacterial communities dominate tropical and temperate zone leaf litter. Microb. Ecol. 2014;67:837–848. doi: 10.1007/s00248-014-0380-y. PubMed DOI
Lopez-Mondejar R, Zuhlke D, Becher D, Riedel K, Baldrian P. Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems. Sci. Rep. 2016;6:25279. doi: 10.1038/srep25279. PubMed DOI PMC
Stursova M, Zifcakova L, Leigh MB, Burgess R, Baldrian P. Cellulose utilization in forest litter and soil: Identification of bacterial and fungal decomposers. FEMS Microbiol. Ecol. 2012;80:735–746. doi: 10.1111/j.1574-6941.2012.01343.x. PubMed DOI
Tlaskal V, Zrustova P, Vrska T, Baldrian P. Bacteria associated with decomposing dead wood in a natural temperate forest. FEMS Microbiol. Ecol. 2017;93:fix157. doi: 10.1093/femsec/fix157. PubMed DOI
Horváthová T, et al. Methanogenesis in the digestive tracts of the tropical millipedes Archispirostreptus gigas (Diplopoda, Spirostreptidae) and Epibolus pulchripes (Diplopoda, Pachybolidae) Appl. Environ. Microbiol. 2021;87:e0061421. doi: 10.1128/AEM.00614-21. PubMed DOI PMC
Nardi JB, Bee CM, Taylor SJ. Compartmentalization of microbial communities that inhabit the hindguts of millipedes. Arthropod Struct. Dev. 2016;45:462–474. doi: 10.1016/j.asd.2016.08.007. PubMed DOI
Brune A. In: Biogenesis of Hydrocarbons Handbook of Hydrocarbon and Lipid Microbiology. Stams A, Sousa D, editors. Springer; 2019.
Byzov BA, Thanh VN, Babjeva IP. Yeasts associated with soil invertebrates. Biol. Fert. Soils. 1993;16:183–187. doi: 10.1007/BF00361405. DOI
Li B, et al. Evaluation of de novo transcriptome assemblies from RNA-Seq data. Genome Biol. 2014;15:553. doi: 10.1186/s13059-014-0553-5. PubMed DOI PMC
Sangwan N, Xia F, Gilbert JA. Recovering complete and draft population genomes from metagenome datasets. Microbiome. 2016;4:8. doi: 10.1186/s40168-016-0154-5. PubMed DOI PMC
Geng A, et al. Transcriptome analysis of the digestive system of a wood-feeding termite (Coptotermes formosanus) revealed a unique mechanism for effective biomass degradation. Biotechnol. Biofuels. 2018;11:24. doi: 10.1186/s13068-018-1015-1. PubMed DOI PMC
Rossmassler K, et al. Metagenomic analysis of the microbiota in the highly compartmented hindguts of six wood- or soil-feeding higher termites. Microbiome. 2015;3:56. doi: 10.1186/s40168-015-0118-1. PubMed DOI PMC
Besser K, et al. Hemocyanin facilitates lignocellulose digestion by wood-boring marine crustaceans. Nat. Commun. 2018;9:5125. doi: 10.1038/s41467-018-07575-2. PubMed DOI PMC
Damsgaard C, et al. Molecular and functional characterization of hemocyanin of the giant African millipede, Archispirostreptus gigas. J. Exp. Biol. 2013;216:1616–1623. PubMed
Brune A, Emerson D, Breznak JA. The termite gut microflora as an oxygen sink: Microelectrode determination of oxygen and pH gradients in guts of lower and higher termites. Appl. Environ. Microbiol. 1995;61:2681–2687. doi: 10.1128/aem.61.7.2681-2687.1995. PubMed DOI PMC
Bracke JW, Markovetz AJ. Transport of bacterial end products from the colon of Periplaneta americana. J. Insect Physiol. 1980;26:85–89. doi: 10.1016/0022-1910(80)90047-5. DOI
de Medeiros SC, Júnior JEM, Sales GWP, Grangeiro TB, Nogueira NAP. Chitinases as antibacterial proteins: A systematic review. J. Young Pharm. 2018;10:144–148. doi: 10.5530/jyp.2018.10.33. DOI
Byzov BA, et al. Principles of the digestion of microorganisms in the gut of soil millipedes: Specificity and possible mechanisms. Appl. Soil Ecol. 1998;9:145–151. doi: 10.1016/S0929-1393(98)00068-7. DOI
Dos Santos PC, Fang Z, Mason SW, Setubal JC, Dixon R. Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes. BMC Genomics. 2012;13:162. doi: 10.1186/1471-2164-13-162. PubMed DOI PMC
Braus GH. Aromatic amino acid biosynthesis in the yeast Saccharomyces cerevisiae: A model system for the regulation of a eukaryotic biosynthetic pathway. Microbiol. Rev. 1991;55:349–370. doi: 10.1128/mr.55.3.349-370.1991. PubMed DOI PMC
Tzin V, Galili G. New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants. Mol. Plant. 2010;3:956–972. doi: 10.1093/mp/ssq048. PubMed DOI
Glukhova AA, et al. Antibiotic activity of actinobacteria from the digestive tract of Millipede Nedyopus dawydoffiae (Diplopoda) Antibiotics. 2018;7:94. doi: 10.3390/antibiotics7040094. PubMed DOI PMC
Shear WA. The chemical defenses of millipedes (diplopoda): Biochemistry, physiology and ecology. Biochem. Syst. Ecol. 2015;61:78–117. doi: 10.1016/j.bse.2015.04.033. DOI