Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27125755
PubMed Central
PMC4850484
DOI
10.1038/srep25279
PII: srep25279
Knihovny.cz E-zdroje
- MeSH
- Bacteria chemie klasifikace izolace a purifikace metabolismus MeSH
- bakteriální proteiny analýza MeSH
- celulosa metabolismus MeSH
- dub (rod) růst a vývoj MeSH
- genom bakteriální MeSH
- hydrolýza MeSH
- lesy MeSH
- polysacharidy metabolismus MeSH
- proteom analýza MeSH
- půdní mikrobiologie * MeSH
- sekvenční analýza DNA MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- celulosa MeSH
- hemicellulose MeSH Prohlížeč
- polysacharidy MeSH
- proteom MeSH
Evidence shows that bacteria contribute actively to the decomposition of cellulose and hemicellulose in forest soil; however, their role in this process is still unclear. Here we performed the screening and identification of bacteria showing potential cellulolytic activity from litter and organic soil of a temperate oak forest. The genomes of three cellulolytic isolates previously described as abundant in this ecosystem were sequenced and their proteomes were characterized during the growth on plant biomass and on microcrystalline cellulose. Pedobacter and Mucilaginibacter showed complex enzymatic systems containing highly diverse carbohydrate-active enzymes for the degradation of cellulose and hemicellulose, which were functionally redundant for endoglucanases, β-glucosidases, endoxylanases, β-xylosidases, mannosidases and carbohydrate-binding modules. Luteibacter did not express any glycosyl hydrolases traditionally recognized as cellulases. Instead, cellulose decomposition was likely performed by an expressed GH23 family protein containing a cellulose-binding domain. Interestingly, the presence of plant lignocellulose as well as crystalline cellulose both trigger the production of a wide set of hydrolytic proteins including cellulases, hemicellulases and other glycosyl hydrolases. Our findings highlight the extensive and unexplored structural diversity of enzymatic systems in cellulolytic soil bacteria and indicate the roles of multiple abundant bacterial taxa in the decomposition of cellulose and other plant polysaccharides.
Zobrazit více v PubMed
Gessner M. O. et al.. Diversity meets decomposition. Trends Ecol. Evol. 25, 372–380 (2010). PubMed
Šnajdr J. et al.. Transformation of Quercus petraea litter: successive changes in litter chemistry are reflected in differential enzyme activity and changes in the microbial community composition. FEMS Microbiol. Ecol. 75, 291–303 (2011). PubMed
Eichorst S. A. & Kuske C. R. Identification of cellulose-responsive bacterial and fungal communities in geographically and edaphically different soils by using stable isotope probing. Appl. Environ. Microbiol. 78, 2316–2327 (2012). PubMed PMC
Koeck D. E., Pechtl A., Zverlov V. V. & Schwarz W. H. Genomics of cellulolytic bacteria. Curr. Opin. Biotechnol. 29, 171–183 (2014). PubMed
Baldrian P. & Valášková V. Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol. Rev. 32, 501–521 (2008). PubMed
Horn S. J., Vaaje-Kolstad G., Westereng B. & Eijsink V. G. Novel enzymes for the degradation of cellulose. Biotechnol. Biofuels 5, 45 (2012). PubMed PMC
Lombard V. et al.. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, D490–495 (2014). PubMed PMC
Brumm P. J. Bacterial genomes: what they teach us about cellulose degradation. Biofuels 4, 669–681 (2013).
Sukharnikov L. O., Cantwell B. J., Podar M. & Zhulin I. B. Cellulases: ambiguous nonhomologous enzymes in a genomic perspective. Trends Biotech. 29, 473–479 (2011). PubMed PMC
Himmel M. E. et al.. Microbial enzyme systems for biomass conversion: emerging paradigms. Biofuels 1, 323–341 (2010).
Boer W., Folman L. B., Summerbell R. C. & Boddy L. Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol. Rev. 29, 795–811 (2005). PubMed
Štursová M., Žifčaková L., Leigh M. B., Burgess R. & Baldrian P. Cellulose utilization in forest litter and soil: identification of bacterial and fungal decomposers. FEMS Microbiol. Ecol. 80, 735–746 (2012). PubMed
Větrovský T., Steffen K. T. & Baldrian P. Potential of cometabolic transformation of polysaccharides and lignin in lignocellulose by soil Actinobacteria. PLos One 9, e89108 (2014). PubMed PMC
Yang J. K., Zhang J. J., Yu H. Y., Cheng J. W. & Miao L. H. Community composition and cellulase activity of cellulolytic bacteria from forest soils planted with broad-leaved deciduous and evergreen trees. Appl. Microbiol. Biotechnol. 98, 1449–1458 (2014). PubMed
Berlemont R. et al.. Cellulolytic potential under environmental changes in microbial communities from grassland litter. Front. Microbiol. 5, 639 (2014). PubMed PMC
Jiménez D. J., Dini-Andreote F. & van Elsas J. D. Metataxonomic profiling and prediction of functional behaviour of wheat straw degrading microbial consortia. Biotechnol. Biofuels 7, 92 (2014). PubMed PMC
Baldrian P. & López-Mondéjar R. Microbial genomics, transcriptomics and proteomics: new discoveries in decomposition research using complementary methods. Appl. Microbiol. Biotechnol. 98, 1531–1537 (2014). PubMed
Berlemont R. & Martiny A. C. Phylogenetic distribution of potential cellulases in bacteria. Appl. Environ. Microbiol. 79, 1545–1554 (2013). PubMed PMC
Berlemont R. & Martiny A. C. Genomic potential for polysaccharides deconstruction in bacteria. Appl. Environ. Microbiol. 81, 1513–1519 (2015). PubMed PMC
Becher D., Bernhardt J., Fuchs S. & Riedel K. Metaproteomics to unravel major microbial players in leaf litter and soil environments: challenges and perspectives. Proteomics 13, 2895–2909 (2013). PubMed
Takasuka T. E., Book A. J., Lewin G. R., Currie C. R. & Fox B. G. Aerobic deconstruction of cellulosic biomass by an insect-associated Streptomyces. Sci. Rep. 3, 1030 (2013). PubMed PMC
López-Mondéjar R., Voříšková J., Větrovský T. & Baldrian P. The bacterial community inhabiting temperate deciduous forests is vertically stratified and undergoes seasonal dynamics. Soil Biol. Biochem. 87, 43–50 (2015).
Blanvillain S. et al.. Plant carbohydrate scavenging through tonB-dependent receptors: a feature shared by phytopathogenic and aquatic bacteria. PLos One 2, e224 (2007). PubMed PMC
Dam P. et al.. Insights into plant biomass conversion from the genome of the anaerobic thermophilic bacterium Caldicellulosiruptor bescii DSM 6725. Nucleic Acids Res. 39, 3240–3254 (2011). PubMed PMC
Wegmann U. et al.. Complete genome of a new Firmicutes species belonging to the dominant human colonic microbiota (‘Ruminococcus bicirculans’) reveals two chromosomes and a selective capacity to utilize plant glucans. Environ. Microbiol. 16, 2879–2890 (2014). PubMed
Suen G. et al.. The complete genome sequence of Fibrobacter succinogenes S85 reveals a cellulolytic and metabolic specialist. PLos One 6, e18814 (2011). PubMed PMC
Talia P. et al.. Biodiversity characterization of cellulolytic bacteria present on native Chaco soil by comparison of ribosomal RNA genes. Res. Microbiol. 163, 221–232 (2012). PubMed
Baldrian P. et al.. Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J. 6, 248–258 (2012). PubMed PMC
Adams A. S. et al.. Cellulose-degrading bacteria associated with the invasive woodwasp Sirex noctilio. ISME J. 5, 1323–1331 (2011). PubMed PMC
Mba Medie F., Davies G. J., Drancourt M. & Henrissat B. Genome analyses highlight the different biological roles of cellulases. Nature Rev. Microbiol. 10, 227–234 (2012). PubMed
Eichlerová I. et al.. Enzymatic systems involved in decomposition reflects the ecology and taxonomy of saprotrophic fungi. Fungal Ecol. 13, 10–22 (2015).
Hemsworth G. R., Henrissat B., Davies G. J. & Walton P. H. Discovery and characterization of a new family of lytic polysaccharide monooxygenases. Nat. Chem. Biol. 10, 122–126 (2014). PubMed PMC
Brás J. L. et al.. Structural insights into a unique cellulase fold and mechanism of cellulose hydrolysis. Proc. Natl. Acad. Sci. USA 108, 5237–5242 (2011). PubMed PMC
Vodovnik M. et al.. Expression of cellulosome components and type IV pili within the extracellular proteome of Ruminococcus flavefaciens 007. PLos One 8, e65333 (2013). PubMed PMC
Zhang H. & Hutcheson S. W. Complex expression of the cellulolytic transcriptome of Saccharophagus degradans. Appl. Environ. Microbiol. 77, 5591–5596 (2011). PubMed PMC
Xu C. et al.. Structure and regulation of the cellulose degradome in Clostridium cellulolyticum. Biotechnol. Biofuels 6, 73 (2013). PubMed PMC
Yan S. & Wu G. Secretory pathway of cellulase: a mini-review. Biotechnol. Biofuels 6, 177 (2013). PubMed PMC
Šnajdr J. et al.. Spatial variability of enzyme activities and microbial biomass in the upper layers of Quercus petraea forest soil. Soil Biol. Biochem. 40, 2068–2075 (2008).
Carder J. H. Detection and quantitation of cellulase by Congo red staining of substrates in a cup-plate diffusion assay. Anal Biochem. 153, 75–9 (1986). PubMed
Lane D. J. 16S/23S rRNA sequencing in Nucleic Acids Techniques in Bacterial Systematics (eds. Stackebrandt E. & Goodfellow M.) 115–147 (John Wiley & Sons, 1991).
Edgar R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010). PubMed
Větrovský T. & Baldrian P. Analysis of soil fungal communities by amplicon pyrosequencing: current approaches to data analysis and the introduction of the pipeline SEED. Biol. Fert. Soils 49, 1027–1037 (2013).
Kim O. S. et al.. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62, 716–721 (2012). PubMed
Valášková V. et al.. Production of lignocellulose-degrading enzymes and degradation of leaf litter by saprotrophic basidiomycetes isolated from a Quercus petraea forest. Soil Biol. Biochem. 39, 2651–2660 (2007).
Bankevich A. et al.. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012). PubMed PMC
Aziz R. K. et al.. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9, 75 (2008). PubMed PMC
Overbeek R. et al.. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 42, D206–214 (2014). PubMed PMC
Yin Y. et al.. dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 40, W445–451 (2012). PubMed PMC
Grube M. et al.. Exploring functional contexts of symbiotic sustain within lichen-associated bacteria by comparative omics. ISME J. 9, 412–424 (2011). PubMed PMC
Zybailov B. et al.. Statistical analysis of membrane proteome expression changes in Saccharomyces cerevisiae. J. Proteome Res. 5, 2339–2347 (2006). PubMed
Saeed A. et al.. TM4: A Free, Open-Source System for Microarray Data Management and Analysis. BioTechniques 34, 374–378 (2003). PubMed
Schneider T. et al.. Structure and function of the symbiosis partners of the lung lichen (Lobaria pulmonaria L. Hoffm.) analyzed by metaproteomics. Proteomics 11, 2752–2756 (2011). PubMed
Edgar R. C. MUSCLE: multiple sequence alignment with high accurance and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004). PubMed PMC
Guindon S., Dufayard J. F., Lefort V., Anisimova M., Hordijk W. & Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biol. 59, 307–321 (2010). PubMed
Vizcaíno J. A. et al.. 2016 update of the PRIDE database and related tools. Nucleic Acids Res. 44, D447–D456 ( 2016). PubMed PMC
Enzymatic degradation of cellulose in soil: A review
Lignocellulosics in plant cell wall and their potential biological degradation
De novo metatranscriptomic exploration of gene function in the millipede holobiont
Feed in summer, rest in winter: microbial carbon utilization in forest topsoil
Forest Soil Bacteria: Diversity, Involvement in Ecosystem Processes, and Response to Global Change