Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems

. 2016 Apr 29 ; 6 () : 25279. [epub] 20160429

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27125755

Evidence shows that bacteria contribute actively to the decomposition of cellulose and hemicellulose in forest soil; however, their role in this process is still unclear. Here we performed the screening and identification of bacteria showing potential cellulolytic activity from litter and organic soil of a temperate oak forest. The genomes of three cellulolytic isolates previously described as abundant in this ecosystem were sequenced and their proteomes were characterized during the growth on plant biomass and on microcrystalline cellulose. Pedobacter and Mucilaginibacter showed complex enzymatic systems containing highly diverse carbohydrate-active enzymes for the degradation of cellulose and hemicellulose, which were functionally redundant for endoglucanases, β-glucosidases, endoxylanases, β-xylosidases, mannosidases and carbohydrate-binding modules. Luteibacter did not express any glycosyl hydrolases traditionally recognized as cellulases. Instead, cellulose decomposition was likely performed by an expressed GH23 family protein containing a cellulose-binding domain. Interestingly, the presence of plant lignocellulose as well as crystalline cellulose both trigger the production of a wide set of hydrolytic proteins including cellulases, hemicellulases and other glycosyl hydrolases. Our findings highlight the extensive and unexplored structural diversity of enzymatic systems in cellulolytic soil bacteria and indicate the roles of multiple abundant bacterial taxa in the decomposition of cellulose and other plant polysaccharides.

Zobrazit více v PubMed

Gessner M. O. et al.. Diversity meets decomposition. Trends Ecol. Evol. 25, 372–380 (2010). PubMed

Šnajdr J. et al.. Transformation of Quercus petraea litter: successive changes in litter chemistry are reflected in differential enzyme activity and changes in the microbial community composition. FEMS Microbiol. Ecol. 75, 291–303 (2011). PubMed

Eichorst S. A. & Kuske C. R. Identification of cellulose-responsive bacterial and fungal communities in geographically and edaphically different soils by using stable isotope probing. Appl. Environ. Microbiol. 78, 2316–2327 (2012). PubMed PMC

Koeck D. E., Pechtl A., Zverlov V. V. & Schwarz W. H. Genomics of cellulolytic bacteria. Curr. Opin. Biotechnol. 29, 171–183 (2014). PubMed

Baldrian P. & Valášková V. Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol. Rev. 32, 501–521 (2008). PubMed

Horn S. J., Vaaje-Kolstad G., Westereng B. & Eijsink V. G. Novel enzymes for the degradation of cellulose. Biotechnol. Biofuels 5, 45 (2012). PubMed PMC

Lombard V. et al.. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, D490–495 (2014). PubMed PMC

Brumm P. J. Bacterial genomes: what they teach us about cellulose degradation. Biofuels 4, 669–681 (2013).

Sukharnikov L. O., Cantwell B. J., Podar M. & Zhulin I. B. Cellulases: ambiguous nonhomologous enzymes in a genomic perspective. Trends Biotech. 29, 473–479 (2011). PubMed PMC

Himmel M. E. et al.. Microbial enzyme systems for biomass conversion: emerging paradigms. Biofuels 1, 323–341 (2010).

Boer W., Folman L. B., Summerbell R. C. & Boddy L. Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol. Rev. 29, 795–811 (2005). PubMed

Štursová M., Žifčaková L., Leigh M. B., Burgess R. & Baldrian P. Cellulose utilization in forest litter and soil: identification of bacterial and fungal decomposers. FEMS Microbiol. Ecol. 80, 735–746 (2012). PubMed

Větrovský T., Steffen K. T. & Baldrian P. Potential of cometabolic transformation of polysaccharides and lignin in lignocellulose by soil Actinobacteria. PLos One 9, e89108 (2014). PubMed PMC

Yang J. K., Zhang J. J., Yu H. Y., Cheng J. W. & Miao L. H. Community composition and cellulase activity of cellulolytic bacteria from forest soils planted with broad-leaved deciduous and evergreen trees. Appl. Microbiol. Biotechnol. 98, 1449–1458 (2014). PubMed

Berlemont R. et al.. Cellulolytic potential under environmental changes in microbial communities from grassland litter. Front. Microbiol. 5, 639 (2014). PubMed PMC

Jiménez D. J., Dini-Andreote F. & van Elsas J. D. Metataxonomic profiling and prediction of functional behaviour of wheat straw degrading microbial consortia. Biotechnol. Biofuels 7, 92 (2014). PubMed PMC

Baldrian P. & López-Mondéjar R. Microbial genomics, transcriptomics and proteomics: new discoveries in decomposition research using complementary methods. Appl. Microbiol. Biotechnol. 98, 1531–1537 (2014). PubMed

Berlemont R. & Martiny A. C. Phylogenetic distribution of potential cellulases in bacteria. Appl. Environ. Microbiol. 79, 1545–1554 (2013). PubMed PMC

Berlemont R. & Martiny A. C. Genomic potential for polysaccharides deconstruction in bacteria. Appl. Environ. Microbiol. 81, 1513–1519 (2015). PubMed PMC

Becher D., Bernhardt J., Fuchs S. & Riedel K. Metaproteomics to unravel major microbial players in leaf litter and soil environments: challenges and perspectives. Proteomics 13, 2895–2909 (2013). PubMed

Takasuka T. E., Book A. J., Lewin G. R., Currie C. R. & Fox B. G. Aerobic deconstruction of cellulosic biomass by an insect-associated Streptomyces. Sci. Rep. 3, 1030 (2013). PubMed PMC

López-Mondéjar R., Voříšková J., Větrovský T. & Baldrian P. The bacterial community inhabiting temperate deciduous forests is vertically stratified and undergoes seasonal dynamics. Soil Biol. Biochem. 87, 43–50 (2015).

Blanvillain S. et al.. Plant carbohydrate scavenging through tonB-dependent receptors: a feature shared by phytopathogenic and aquatic bacteria. PLos One 2, e224 (2007). PubMed PMC

Dam P. et al.. Insights into plant biomass conversion from the genome of the anaerobic thermophilic bacterium Caldicellulosiruptor bescii DSM 6725. Nucleic Acids Res. 39, 3240–3254 (2011). PubMed PMC

Wegmann U. et al.. Complete genome of a new Firmicutes species belonging to the dominant human colonic microbiota (‘Ruminococcus bicirculans’) reveals two chromosomes and a selective capacity to utilize plant glucans. Environ. Microbiol. 16, 2879–2890 (2014). PubMed

Suen G. et al.. The complete genome sequence of Fibrobacter succinogenes S85 reveals a cellulolytic and metabolic specialist. PLos One 6, e18814 (2011). PubMed PMC

Talia P. et al.. Biodiversity characterization of cellulolytic bacteria present on native Chaco soil by comparison of ribosomal RNA genes. Res. Microbiol. 163, 221–232 (2012). PubMed

Baldrian P. et al.. Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J. 6, 248–258 (2012). PubMed PMC

Adams A. S. et al.. Cellulose-degrading bacteria associated with the invasive woodwasp Sirex noctilio. ISME J. 5, 1323–1331 (2011). PubMed PMC

Mba Medie F., Davies G. J., Drancourt M. & Henrissat B. Genome analyses highlight the different biological roles of cellulases. Nature Rev. Microbiol. 10, 227–234 (2012). PubMed

Eichlerová I. et al.. Enzymatic systems involved in decomposition reflects the ecology and taxonomy of saprotrophic fungi. Fungal Ecol. 13, 10–22 (2015).

Hemsworth G. R., Henrissat B., Davies G. J. & Walton P. H. Discovery and characterization of a new family of lytic polysaccharide monooxygenases. Nat. Chem. Biol. 10, 122–126 (2014). PubMed PMC

Brás J. L. et al.. Structural insights into a unique cellulase fold and mechanism of cellulose hydrolysis. Proc. Natl. Acad. Sci. USA 108, 5237–5242 (2011). PubMed PMC

Vodovnik M. et al.. Expression of cellulosome components and type IV pili within the extracellular proteome of Ruminococcus flavefaciens 007. PLos One 8, e65333 (2013). PubMed PMC

Zhang H. & Hutcheson S. W. Complex expression of the cellulolytic transcriptome of Saccharophagus degradans. Appl. Environ. Microbiol. 77, 5591–5596 (2011). PubMed PMC

Xu C. et al.. Structure and regulation of the cellulose degradome in Clostridium cellulolyticum. Biotechnol. Biofuels 6, 73 (2013). PubMed PMC

Yan S. & Wu G. Secretory pathway of cellulase: a mini-review. Biotechnol. Biofuels 6, 177 (2013). PubMed PMC

Šnajdr J. et al.. Spatial variability of enzyme activities and microbial biomass in the upper layers of Quercus petraea forest soil. Soil Biol. Biochem. 40, 2068–2075 (2008).

Carder J. H. Detection and quantitation of cellulase by Congo red staining of substrates in a cup-plate diffusion assay. Anal Biochem. 153, 75–9 (1986). PubMed

Lane D. J. 16S/23S rRNA sequencing in Nucleic Acids Techniques in Bacterial Systematics (eds. Stackebrandt E. & Goodfellow M.) 115–147 (John Wiley & Sons, 1991).

Edgar R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010). PubMed

Větrovský T. & Baldrian P. Analysis of soil fungal communities by amplicon pyrosequencing: current approaches to data analysis and the introduction of the pipeline SEED. Biol. Fert. Soils 49, 1027–1037 (2013).

Kim O. S. et al.. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62, 716–721 (2012). PubMed

Valášková V. et al.. Production of lignocellulose-degrading enzymes and degradation of leaf litter by saprotrophic basidiomycetes isolated from a Quercus petraea forest. Soil Biol. Biochem. 39, 2651–2660 (2007).

Bankevich A. et al.. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012). PubMed PMC

Aziz R. K. et al.. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9, 75 (2008). PubMed PMC

Overbeek R. et al.. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 42, D206–214 (2014). PubMed PMC

Yin Y. et al.. dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 40, W445–451 (2012). PubMed PMC

Grube M. et al.. Exploring functional contexts of symbiotic sustain within lichen-associated bacteria by comparative omics. ISME J. 9, 412–424 (2011). PubMed PMC

Zybailov B. et al.. Statistical analysis of membrane proteome expression changes in Saccharomyces cerevisiae. J. Proteome Res. 5, 2339–2347 (2006). PubMed

Saeed A. et al.. TM4: A Free, Open-Source System for Microarray Data Management and Analysis. BioTechniques 34, 374–378 (2003). PubMed

Schneider T. et al.. Structure and function of the symbiosis partners of the lung lichen (Lobaria pulmonaria L. Hoffm.) analyzed by metaproteomics. Proteomics 11, 2752–2756 (2011). PubMed

Edgar R. C. MUSCLE: multiple sequence alignment with high accurance and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004). PubMed PMC

Guindon S., Dufayard J. F., Lefort V., Anisimova M., Hordijk W. & Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biol. 59, 307–321 (2010). PubMed

Vizcaíno J. A. et al.. 2016 update of the PRIDE database and related tools. Nucleic Acids Res. 44, D447–D456 ( 2016). PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Enzymatic degradation of cellulose in soil: A review

. 2024 Jan 15 ; 10 (1) : e24022. [epub] 20240103

Lignocellulosics in plant cell wall and their potential biological degradation

. 2022 Oct ; 67 (5) : 671-681. [epub] 20220504

De novo metatranscriptomic exploration of gene function in the millipede holobiont

. 2022 Sep 28 ; 12 (1) : 16173. [epub] 20220928

Deadwood-Inhabiting Bacteria Show Adaptations to Changing Carbon and Nitrogen Availability During Decomposition

. 2021 ; 12 () : 685303. [epub] 20210617

Cellulase-Hemicellulase Activities and Bacterial Community Composition of Different Soils from Algerian Ecosystems

. 2019 Apr ; 77 (3) : 713-725. [epub] 20180912

Bacteria from the endosphere and rhizosphere of Quercus spp. use mainly cell wall-associated enzymes to decompose organic matter

. 2019 ; 14 (3) : e0214422. [epub] 20190325

The concept of operational taxonomic units revisited: genomes of bacteria that are regarded as closely related are often highly dissimilar

. 2019 Jan ; 64 (1) : 19-23. [epub] 20180621

Decomposer food web in a deciduous forest shows high share of generalist microorganisms and importance of microbial biomass recycling

. 2018 Jun ; 12 (7) : 1768-1778. [epub] 20180228

Feed in summer, rest in winter: microbial carbon utilization in forest topsoil

. 2017 Sep 18 ; 5 (1) : 122. [epub] 20170918

Forest Soil Bacteria: Diversity, Involvement in Ecosystem Processes, and Response to Global Change

. 2017 Jun ; 81 (2) : . [epub] 20170412

Efficient screening of potential cellulases and hemicellulases produced by Bosea sp. FBZP-16 using the combination of enzyme assays and genome analysis

. 2017 Feb ; 33 (2) : 29. [epub] 20170105

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...