Feed in summer, rest in winter: microbial carbon utilization in forest topsoil

. 2017 Sep 18 ; 5 (1) : 122. [epub] 20170918

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28923122
Odkazy

PubMed 28923122
PubMed Central PMC5604414
DOI 10.1186/s40168-017-0340-0
PII: 10.1186/s40168-017-0340-0
Knihovny.cz E-zdroje

BACKGROUND: Evergreen coniferous forests contain high stocks of organic matter. Significant carbon transformations occur in litter and soil of these ecosystems, making them important for the global carbon cycle. Due to seasonal allocation of photosynthates to roots, carbon availability changes seasonally in the topsoil. The aim of this paper was to describe the seasonal differences in C source utilization and the involvement of various members of soil microbiome in this process. RESULTS: Here, we show that microorganisms in topsoil encode a diverse set of carbohydrate-active enzymes, including glycoside hydrolases and auxiliary enzymes. While the transcription of genes encoding enzymes degrading reserve compounds, such as starch or trehalose, was high in soil in winter, summer was characterized by high transcription of ligninolytic and cellulolytic enzymes produced mainly by fungi. Fungi strongly dominated the transcription in litter and an equal contribution of bacteria and fungi was found in soil. The turnover of fungal biomass appeared to be faster in summer than in winter, due to high activity of enzymes targeting its degradation, indicating fast growth in both litter and soil. In each enzyme family, hundreds to thousands of genes were typically transcribed simultaneously. CONCLUSIONS: Seasonal differences in the transcription of glycoside hydrolases and auxiliary enzyme genes are more pronounced in soil than in litter. Our results suggest that mainly fungi are involved in decomposition of recalcitrant biopolymers in summer, while bacteria replace them in this role in winter. Transcripts of genes encoding enzymes targeting plant biomass biopolymers, reserve compounds and fungal cell walls were especially abundant in the coniferous forest topsoil.

Zobrazit více v PubMed

Scharlemann JPW, Tanner EVJ, Hiederer R, Kapos V. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manag. 2014;5:81–91. doi: 10.4155/cmt.13.77. DOI

Prescott CE, Grayston SJ. Tree species influence on microbial communities in litter and soil: current knowledge and research needs. For Ecol Manag. 2013;309:19–27. doi: 10.1016/j.foreco.2013.02.034. DOI

Clemmensen KE, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A, Wallander H, Stenlid J, Finlay RD, Wardle DA, Lindahl BD. Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science. 2013;339:1615–1618. doi: 10.1126/science.1231923. PubMed DOI

Högberg MN, Briones MJI, Keel SG, Metcalfe DB, Campbell C, Midwood AJ, Thornton B, Hurry V, Linder S, Näsholm T, et al. Quantification of effects of season and nitrogen supply on tree below-ground carbon transfer to ectomycorrhizal fungi and other soil organisms in a boreal pine forest. New Phytol. 2010;187:485–493. doi: 10.1111/j.1469-8137.2010.03274.x. PubMed DOI

Baldrian P, Kolařík M, Štursová M, Kopecký J, Valášková V, Větrovský T, Žifčáková L, Šnajdr J, Rídl J, Vlček C, et al. Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J. 2012;6:248–258. doi: 10.1038/ismej.2011.95. PubMed DOI PMC

Schnecker J, Wild B, Takriti M, Eloy Alves RJ, Gentsch N, Gittel A, Hofer A, Klaus K, Knoltsch A, Lashchinskiy N, Mikutta R, Richter A. Microbial community composition shapes enzyme patterns in topsoil and subsoil horizons along a latitudinal transect in western Siberia. Soil Biol Biochem. 2015;83:106–115. doi: 10.1016/j.soilbio.2015.01.016. PubMed DOI PMC

Wilkinson JF. Carbon and energy storage in bacteria. J Gen Microbiol. 1963;32:171–176. doi: 10.1099/00221287-32-2-171. PubMed DOI

Nehls U. Mastering ectomycorrhizal symbiosis: the impact of carbohydrates. J Exp Bot. 2008;59:1097–1108. doi: 10.1093/jxb/erm334. PubMed DOI

Druebert C, Lang C, Valtanen K, Polle A. Beech carbon productivity as driver of ectomycorrhizal abundance and diversity. Plant Cell Environ. 2009;32:992–1003. doi: 10.1111/j.1365-3040.2009.01983.x. PubMed DOI

López-Mondéjar R, Voříšková J, Větrovský T, Baldrian P. The bacterial community inhabiting temperate deciduous forests is vertically stratified and undergoes seasonal dynamics. Soil Biol Biochem. 2015;87:43–50. doi: 10.1016/j.soilbio.2015.04.008. DOI

Lindahl BD, Ihrmark K, Boberg J, Trumbore SE, Hogberg P, Stenlid J, Finlay RD. Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol. 2007;173:611–620. doi: 10.1111/j.1469-8137.2006.01936.x. PubMed DOI

Lombard V, Ramulu HG, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42:D490–D495. doi: 10.1093/nar/gkt1178. PubMed DOI PMC

Kellner H, Vandenbol M. Fungi unearthed: transcripts encoding lignocellulolytic and chitinolytic enzymes in forest soil. PLoS One. 2010;5:e10971. doi: 10.1371/journal.pone.0010971. PubMed DOI PMC

Damon C, Lehembre F, Oger-Desfeux C, Luis P, Ranger J, Fraissinet-Tachet L, Marmeisse R. Metatranscriptomics reveals the diversity of genes expressed by eukaryotes in forest soils. PLoS One. 2012;7:e28967. doi: 10.1371/journal.pone.0028967. PubMed DOI PMC

Schneider T, Keiblinger KM, Schmid E, Sterflinger-Gleixner K, Ellersdorfer G, Roschitzki B, Richter A, Eberl L, Zechmeister-Boltenstern S, Riedel K. Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions. ISME J. 2012;6:1749–1762. doi: 10.1038/ismej.2012.11. PubMed DOI PMC

Eichorst SA, Kuske CR. Identification of cellulose-responsive bacterial and fungal communities in geographically and edaphically different soils by using stable isotope probing. Appl Environ Microbiol. 2012;78:2316–2327. doi: 10.1128/AEM.07313-11. PubMed DOI PMC

Leung HTC, Maas KR, Wilhelm RC, Mohn WW. Long-term effects of timber harvesting on hemicellulolytic microbial populations in coniferous forest soils. ISME J. 2016;10:363–375. doi: 10.1038/ismej.2015.118. PubMed DOI PMC

Rime T, Hartmann M, Stierli B, Anesio AM, Frey B. Assimilation of microbial and plant carbon by active prokaryotic and fungal populations in glacial forefields. Soil Biol Biochem. 2016;98:30–41. doi: 10.1016/j.soilbio.2016.03.012. DOI

Štursová M, Žifčáková L, Leigh MB, Burgess R, Baldrian P. Cellulose utilization in forest litter and soil: identification of bacterial and fungal decomposers. FEMS Microbiol Ecol. 2012;80:735–746. doi: 10.1111/j.1574-6941.2012.01343.x. PubMed DOI

Brabcová V, Nováková M, Davidová A, Baldrian P. Dead fungal mycelium in forest soil represents a decomposition hotspot and a habitat for a specific microbial community. New Phytol. 2016;210:1369–1381. doi: 10.1111/nph.13849. PubMed DOI

Stres B, Danevèiè T, Pal L, Mrkonjiæ M, Resman L, Leskovec S, et al. Influence of temperature and soil water content on bacterial, archaeal and denitrifying microbial communities in drained fen grassland soil microcosms. FEMS Microbiol Ecol. 2008;66:110–122. doi: 10.1111/j.1574-6941.2008.00555.x. PubMed DOI

Tabuchi H, Kato K, Nioh I. Season and soil management affect soil microbial communities estimated using phospholipid fatty acid analysis in a continuous cabbage (Brassica oleracea var. capitata) cropping system. Soil Sci Plant Nutr. 2008;54:369–378. doi: 10.1111/j.1747-0765.2008.00242.x. DOI

Cleveland CC, Nemergut DR, Schmidt SK, Townsend AR. Increases in soil respiration following labile carbon additions linked to rapid shifts in soil microbial community composition. Biogeochemistry. 2007;82:229–240. doi: 10.1007/s10533-006-9065-z. DOI

Waldrop MP, Firestone MK. Seasonal dynamics of microbial community composition and function in oak canopy and open grassland soils. Microb Ecol. 2006;52:470–479. doi: 10.1007/s00248-006-9100-6. PubMed DOI

Koch O, Tscherko D, Kandeler E. Temperature sensitivity of microbial respiration, nitrogen mineralization, and potential soil enzyme activities in organic alpine soils. Glob Biogeochem Cycles. 2007;21:GB4017. doi: 10.1029/2007GB002983. DOI

Horz H-P, Barbook A, Field CB, Bohannan BJM. Ammonia-oxidizing bacteria respond to multifactorial global change. Proc Natl Acad Sci U S A. 2004;101:15136–15141. doi: 10.1073/pnas.0406616101. PubMed DOI PMC

Buckley DH, Schmidt TM. Exploring the biodiversity of soil: a microbial rainforest. In: Staley JT, Reysenbach AL, editors. Biodiversity of microbial life. New York: Wiley-Liss; 2002. pp. 183–208.

Kuffner M, Hai B, Rattei T, Melodelima C, Schloter M, Zechmeister-Boltenstern S, Jandl R, Schindlbacher A, Sessitsch A. Effects of season and experimental warming on the bacterial community in a temperate mountain forest soil assessed by 16S rRNA gene pyrosequencing. FEMS Microbiol Ecol. 2012;82:551–562. doi: 10.1111/j.1574-6941.2012.01420.x. PubMed DOI PMC

Wallenstein MD, McMahon SK, Schimel JP. Seasonal variation in enzyme activities and temperature sensitivities in Arctic tundra soils. Glob Chang Biol. 2009;15:1631–1639. doi: 10.1111/j.1365-2486.2008.01819.x. DOI

Wittmann C, Kahkonen MA, Ilvesniemi H, Kurola J, Salkinoja-Salonen MS. Areal activities and stratification of hydrolytic enzymes involved in the biochemical cycles of carbon, nitrogen, sulphur and phosphorus in podsolized boreal forest soils. Soil Biol Biochem. 2004;36:425–433. doi: 10.1016/j.soilbio.2003.10.019. DOI

Baldrian P, Snajdr J, Merhautova V, Dobiasova P, Cajthaml T, Valaskova V. Responses of the extracellular enzyme activities in hardwood forest to soil temperature and seasonality and the potential effects of climate change. Soil Biol Biochem. 2013;56:60–68. doi: 10.1016/j.soilbio.2012.01.020. DOI

Zhang X, Wang W, Chen W, Zhang N, Zeng H. Comparison of seasonal soil microbial process in snow-covered temperate ecosystems of northern China. PLoS One. 2014;9:e92985. doi: 10.1371/journal.pone.0092985. PubMed DOI PMC

Mundra S, Bahram M, Tedersoo L, Kauserud H, Halvorsen R, Eidesen PB. Temporal variation of Bistorta Vivipara-associated ectomycorrhizal fungal communities in the high Arctic. Mol Ecol. 2015;24:6289–6302. doi: 10.1111/mec.13458. PubMed DOI

Baldrian P. Enzymes of Saprotrophic Basidiomycetes. Ecology of Saprotrophic Basidiomycetes. 2008;28:19–41. doi: 10.1016/S0275-0287(08)80004-5. DOI

Jumpponen A, Jones KL, Mattox D, Yaege C. Massively parallel 454-sequencing of fungal communities in Quercus spp. ectomycorrhizas indicates seasonal dynamics in urban and rural sites. Mol Ecol. 2010;19:41–53. doi: 10.1111/j.1365-294X.2009.04483.x. PubMed DOI

Voříšková J, Brabcová V, Cajthaml T, Baldrian P. Seasonal dynamics of fungal communities in a temperate oak forest soil. New Phytol. 2014;201:269–278. doi: 10.1111/nph.12481. PubMed DOI

Wallander H, Nilsson LO, Hagerberg D, Baath E. Estimation of the biomass and seasonal growth of external mycelium of ectomycorrhizal fungi in the field. New Phytol. 2001;151:753–760. doi: 10.1046/j.0028-646x.2001.00199.x. PubMed DOI

Davey M, Heegaard LE, Halvorsen R, Ohlson M, Kauserud H. Seasonal trends in the biomass and structure of bryophyte-associated fungal communities explored by 454 pyrosequencing. New Phytol. 2012;195:844–856. doi: 10.1111/j.1469-8137.2012.04215.x. PubMed DOI

Santalahti M, Sun H, Jumpponen A, Pennanen T, Heinonsalo J, Baldrian P. Vertical and seasonal dynamics of fungal communities in boreal Scots pine forest soil. FEMS Microbiol Ecol. 2016;92:170. doi: 10.1093/femsec/fiw170. PubMed DOI

Stober C, George E, Persson H. Root growth and response to nitrogen. In: Schulze ED, editor. Carbon and nitrogen cycling in European forest ecosystems: Berlin: Springer; 2000. p. 99–121.

Rasche F, Knapp D, Kaise C r, Koranda M, Kitzler B, Zechmeister-Boltenstern S, Richter A, Sessitsch A. Seasonality and resource availability control bacterial and archaeal communities in soils of a temperate beech forest. ISME J. 2011;5:389–402. doi: 10.1038/ismej.2010.138. PubMed DOI PMC

Lipson DA. Relationships between temperature responses and bacterial community structure along seasonal and altitudinal gradients. FEMS Microbiol Ecol. 2007;59:418–427. doi: 10.1111/j.1574-6941.2006.00240.x. PubMed DOI

Kaiser C, Koranda M, Kitzler B, Fuchslueger L, Schnecker J, Schweiger P, Rasche F, Zechmeister-Boltenstern S, Sessitsch A, Richter A. Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil. New Phytol. 2010;187:843–858. doi: 10.1111/j.1469-8137.2010.03321.x. PubMed DOI PMC

Žifčáková L, Větrovský T, Howe A, Baldrian P. Microbial activity in forest soil reflects the changes in ecosystem properties between summer and winter. Environ Microbiol. 2016;18:288–301. doi: 10.1111/1462-2920.13026. PubMed DOI

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Howe AC, Jansson JK, Malfatti SA. Tackling soil diversity with the assembly of large, complex metagenomes. Proc Natl Acad Sci USA. 2014;111:4904–4909. doi: 10.1073/pnas.1402564111. PubMed DOI PMC

Pell J, Hintze A, Canino-Koning R, Howe A, Tiedje JM, Brown CT. Scaling metagenome sequence assembly with probabilistic de Bruijn graphs. Proc Natl Acad Sci U S A. 2012;109:13272–13277. doi: 10.1073/pnas.1121464109. PubMed DOI PMC

Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008;18:821–829. doi: 10.1101/gr.074492.107. PubMed DOI PMC

Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28:3150–3152. doi: 10.1093/bioinformatics/bts565. PubMed DOI PMC

Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22:1658–1659. doi: 10.1093/bioinformatics/btl158. PubMed DOI

Sommer DD, Delcher AL, Salzberg SL, Pop M. Minimus: a fast, lightweight genome assembler. BMC Bioinformatics. 2007;8:64. doi: 10.1186/1471-2105-8-64. PubMed DOI PMC

Meyer F, Paarmann D, D'Souza M, Olson R, Glass EM, Kubal M, Paczian T, Rodriguez A, Stevens R, Wilke A, et al. The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics. 2008;9:386. doi: 10.1186/1471-2105-9-386. PubMed DOI PMC

Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B. Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels. 2013;6:41. doi: 10.1186/1754-6834-6-41. PubMed DOI PMC

Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:10. doi: 10.1186/gb-2009-10-1-r10. PubMed DOI PMC

R Core Team . R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2014.

Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, et al. Vegan: community ecology package. R package version 2.4–0. 2016.

Hesse CN, Mueller RC, Vuyisich M, Gallegos-Graves L, Gleasner CD, Zak DR, Kuskel CR. Forest floor community metatranscriptomes identify fungal and bacterial responses to N deposition in two maple forests. Front Microbiol. 2015;6:337. doi: 10.3389/fmicb.2015.00337. PubMed DOI PMC

Ivanova AA, Wegner C-E, Kim Y, Liesack W, Dedysh SN. Identification of microbial populations driving biopolymer degradation in acidic peatlands by metatranscriptomic analysis. Mol Ecol. 2016;25:4818–4835. doi: 10.1111/mec.13806. PubMed DOI

Pold G, Billings AF, Blanchard JL, Burkhardt DB, Frey SD, Melillo JM, Schnabel J, van Diepen LTA, DeAngelis KM. Long-term warming alters carbohydrate degradation potential in temperate forest soils. Appl Environ Microbiol. 2016;82:6518–6530. doi: 10.1128/AEM.02012-16. PubMed DOI PMC

Fierer N, Leff JW, Adams BJ, Nielsen UN, Bates ST, Lauber CL, Owens S, Gilbert JA, Wall DH, Caporaso JG. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc Natl Acad Sci U S A. 2011;109:21390–21395. doi: 10.1073/pnas.1215210110. PubMed DOI PMC

Struhl K. Fundamentally different logic of gene regulation in eukaryotes and prokaryotes. Cell. 1999;98(1):1–4. doi: 10.1016/S0092-8674(00)80599-1. PubMed DOI

Kollmar M, Kollmar L, Hammesfahr B, Simm D. diArk—the database for eukaryotic genome and transcriptome assemblies in 2014. Nucleic Acids Res. 2015;43:D1107–D1112. doi: 10.1093/nar/gku990. PubMed DOI PMC

Lindahl BD, Tunlid A. Ectomycorrhizal fungi—potential organic matter decomposers, yet not saprotrophs. New Phytol. 2015;205:1443–1447. doi: 10.1111/nph.13201. PubMed DOI

Baldrian P. The forest microbiome: diversity. Complexity and Dynamics FEMS Microbiol Rev. 2017;41:109–130. PubMed

Nehls U, Gohringer F, Wittulsky S, Dietz S. Fungal carbohydrate support in the ectomycorrhizal symbiosis: a review. Plant Biol. 2010;12:292–301. doi: 10.1111/j.1438-8677.2009.00312.x. PubMed DOI

Berlemont R, Martiny AC. Genomic potential for polysaccharide deconstruction in bacteria. Appl Environ Microbiol. 2015;81:1513–1519. doi: 10.1128/AEM.03718-14. PubMed DOI PMC

Lladó S, Žifčáková L, Větrovský T, Eichlerová I, Baldrian P. Functional screening of abundant bacteria from acidic forest soil indicates the metabolic potential of Acidobacteria subdivision 1 for polysaccharide decomposition. Biol Fertil Soils. 2016;52:251–260. doi: 10.1007/s00374-015-1072-6. DOI

López-Mondéjar R, Zühlke D, Becher D, Riedel K, Baldrian P. Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems. Sci Rep. 2016;6:25279. doi: 10.1038/srep25279. PubMed DOI PMC

van der Wal A, Geydan TD, Kuyper TW, de Boer W. A thready affair: linking fungal diversity and community dynamics to terrestrial decomposition processes. FEMS Microbiol Rev. 2013;37:477–494. doi: 10.1111/1574-6976.12001. PubMed DOI

Liebminger E, Hüttner S, Vavra U, Fischl R, Schoberer J, Grass J, et al. Class I alpha-mannosidases are required for N-glycan processing and root development in Arabidopsis thaliana. Plant Cell. 2009;21:3850–3867. doi: 10.1105/tpc.109.072363. PubMed DOI PMC

Sterjiades R, Dean JFD, Eriksson K-EL. Laccase from sycamore maple (Acer pseudoplatanus) polymerizes Monolignols. Plant Physiol. 1992;99:1162–1168. doi: 10.1104/pp.99.3.1162. PubMed DOI PMC

McCaig BC, Meagher RB, Dean JF. Gene structure and molecular analysis of the laccase-like multicopper oxidase (LMCO) gene family in Arabidopsis thaliana. Planta. 2005;221:619–636. doi: 10.1007/s00425-004-1472-6. PubMed DOI

Fierer N, Jackson RB. The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A. 2006;103:626–631. doi: 10.1073/pnas.0507535103. PubMed DOI PMC

Wallenstein MD, McMahon S, Schimel J. Bacterial and fungal community structure in Arctic tundra tussock and shrub soils. FEMS Microbiol Ecol. 2007;59:428–435. doi: 10.1111/j.1574-6941.2006.00260.x. PubMed DOI

Krave AS, Lin B, Braster M, Laverman AM, van Straalen NM, Röling WF, et al. Stratification and seasonal stability of diverse bacterial communities in a Pinus merkusii (pine) forest soil in central java, Indonesia. Environ Microbiol. 2002;4:361–373. doi: 10.1046/j.1462-2920.2002.00304.x. PubMed DOI

Fernandez CW, Kennedy PG. Revisiting the ‘Gadgil effect’: do interguild fungal interactions control carbon cycling in forest soils? New Phytol. 2016;209:1382–1394. doi: 10.1111/nph.13648. PubMed DOI

Ericsson A, Persson H. Seasonal changes in starch reserves and growth of fine roots of 20-year old Scots pines. Ecol Bull. 1980;32:239–250.

Wilson WA, Roach PJ, Montero M, Baroja-Fernandez E, Munoz FJ, Eydallin G, Viale AM, Pozueta-Romero J. Regulation of glycogen metabolism in yeast and bacteria. FEMS Microbiol Rev. 2010;34:952–985. doi: 10.1111/j.1574-6976.2010.00220.x. PubMed DOI PMC

Rinnan R, Bååth E. Differential utilization of carbon substrates by bacteria and fungi in tundra soil. Appl Environ Microbiol. 2009;75:3611–3620. doi: 10.1128/AEM.02865-08. PubMed DOI PMC

Dennis PG, Miller AJ, Hirsch PR. Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiol Ecol. 2010;72:313–327. doi: 10.1111/j.1574-6941.2010.00860.x. PubMed DOI

Jones RT, Robeson MS, Lauber CL, Hamady M, Knight R, Fierer N. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J. 2009;3:442–453. doi: 10.1038/ismej.2008.127. PubMed DOI PMC

Blagodatskaya E, Blagodatsky S, Anderson T, Kuzyakov Y. Priming effects in Chernozem induced by glucose and N in relation to microbial growth strategies. Appl Soil Ecol. 2007;37:95–105. doi: 10.1016/j.apsoil.2007.05.002. DOI

Kuzyakov Y. Priming effects: interactions between living and dead organic matter. Soil Biol Biochem. 2010;42:1363–1371. doi: 10.1016/j.soilbio.2010.04.003. DOI

Dijkstra FA, Cheng WX. Interactions between soil and tree roots accelerate long-term soil carbon decomposition. Ecol Lett. 2007;10:1046–1053. doi: 10.1111/j.1461-0248.2007.01095.x. PubMed DOI

Talbot JM, Allison SD, Treseder KK. Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change. Funct Ecol. 2008;22:955–963. doi: 10.1111/j.1365-2435.2008.01402.x. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Effects of 5-year experimental warming in the Alpine belt on soil Archaea: Multi-omics approaches and prospects

. 2023 Aug ; 15 (4) : 291-297. [epub] 20230330

Forest microbiome and global change

. 2023 Aug ; 21 (8) : 487-501. [epub] 20230320

Global Distribution of Carbohydrate Utilization Potential in the Prokaryotic Tree of Life

. 2022 Dec 20 ; 7 (6) : e0082922. [epub] 20221122

Fungal communities in soils under global change

. 2022 Sep ; 103 () : 1-24. [epub] 20220921

OMICs, Epigenetics, and Genome Editing Techniques for Food and Nutritional Security

. 2021 Jul 12 ; 10 (7) : . [epub] 20210712

Explorative Meta-Analysis of 417 Extant Archaeal Genomes to Predict Their Contribution to the Total Microbiome Functionality

. 2021 Feb 13 ; 9 (2) : . [epub] 20210213

Culturable bacteria from an Alpine coniferous forest site: biodegradation potential of organic polymers and pollutants

. 2021 Feb ; 66 (1) : 87-98. [epub] 20200925

Forest Microhabitat Affects Succession of Fungal Communities on Decomposing Fine Tree Roots

. 2021 ; 12 () : 541583. [epub] 20210128

Complementary Roles of Wood-Inhabiting Fungi and Bacteria Facilitate Deadwood Decomposition

. 2021 Jan 12 ; 6 (1) : . [epub] 20210112

Production of Fungal Mycelia in a Temperate Coniferous Forest Shows Distinct Seasonal Patterns

. 2020 Sep 26 ; 6 (4) : . [epub] 20200926

Explorative Meta-Analysis of 377 Extant Fungal Genomes Predicted a Total Mycobiome Functionality of 42.4 Million KEGG Functions

. 2020 ; 11 () : 143. [epub] 20200206

Cellulase-Hemicellulase Activities and Bacterial Community Composition of Different Soils from Algerian Ecosystems

. 2019 Apr ; 77 (3) : 713-725. [epub] 20180912

Clearcutting alters decomposition processes and initiates complex restructuring of fungal communities in soil and tree roots

. 2018 Mar ; 12 (3) : 692-703. [epub] 20180115

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...