Explorative Meta-Analysis of 377 Extant Fungal Genomes Predicted a Total Mycobiome Functionality of 42.4 Million KEGG Functions
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32117162
PubMed Central
PMC7015973
DOI
10.3389/fmicb.2020.00143
Knihovny.cz E-zdroje
- Klíčová slova
- accumulation curves, functional diversity, fungi, microbiome, modeling,
- Publikační typ
- časopisecké články MeSH
Unveiling the relationship between taxonomy and function of the microbiome is crucial to determine its contribution to ecosystem functioning. However, while there is a considerable amount of information on microbial taxonomic diversity, our understanding of its relationship to functional diversity is still scarce. Here, we used a meta-analysis of completely annotated extant genomes of 377 taxonomically distinct fungal species to predict the total fungal microbiome functionality on Earth with accumulation curves (ACs) of all known functions from the level 3 of KEGG Orthology using both parametric and non-parametric estimates in an explorative data-mining approach. The unsaturated model extrapolating functional diversity as a function of species richness described the ACs significantly better than the saturated model that assumed a limited total number of functions, which suggested the presence of widespread and rare functions. Based on previous estimates of 3.8 million fungal species on Earth, we propagated the unsaturated model to predict a total of 42.4 ± 0.5 million KEGG level 3 functions of which only 0.06% are known today. Our approach not only highlights the presence of widespread and rare functions but points toward the necessity of novel and more sophisticated methods to unveil the entirety of functions to fully understand the involvement of the fungal microbiome in ecosystem functioning.
Faculty of Science University of South Bohemia České Budějovice Czechia
Molecular Systems Biology Helmholtz Center for Environmental Research UFZ Leipzig Germany
Zobrazit více v PubMed
Arnold A. E., Mejía L. C., Kyllo D., Rojas E. I., Maynard Z., Robbins N., et al. (2003). Fungal endophytes limit pathogen damage in a tropical tree. Proc. Natl. Acad. Sci. U.S.A. 100 15649–15654. 10.1073/pnas.2533483100 PubMed DOI PMC
Bertrand P. V., Sakamoto Y., Ishiguro M., Kitagawa G. (2006). Akaike Information Criterion Statistics. J. R. Stat. Soc. Ser. A. 151 567–568. 10.2307/2983028 DOI
Bolger T. (2001). The functional value of species biodiversity - A review. Biol. Environ. 101B 199–224.
Brundrett M. C. (2007). Understanding the Roles of Multifunctional Mycorrhizal and Endophytic Fungi. Microbial. Root Endophytes 21 138–146. 10.1007/3-540-33526-9_16 DOI
Busby P. E., Zimmerman N., Weston D. J., Jawdy S. S., Houbraken J., Newcombe G. (2013). Leaf endophytes and Populus genotype affect severity of damage from the necrotrophic leaf pathogen, Drepanopeziza populi. Ecosphere 4 1–12. 10.1890/ES13-00127.1 DOI
Čapek P., Kotas P., Manzoni S., Šantrùčková H. (2016). Drivers of phosphorus limitation across soil microbial communities. Funct. Ecol. 30 1705–1713. 10.1111/1365-2435.12650 DOI
Carroll G. (1988). Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology 69 2–9. 10.2307/1943154 DOI
Cavalier-Smith T. (1978). Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox. J. Cell Sci. 34 247–278. PubMed
Chao A. (1984). Non-parametric estimation of the classes in a population. Scand. J. Stat. 11 265–270. 10.2307/4615964 DOI
Chao A. (1989). Estimating Population Size for Sparse Data in Capture-Recapture Experiments. Biometrics 45 427–438. 10.2307/2531487 PubMed DOI
Chao A., Colwell R. K., Lin C. W., Gotelli N. J. (2009). Sufficient sampling for asymptotic minimum species richness estimators. Ecology 90 1125–1133. 10.1890/07-2147.1 PubMed DOI
Chapin S. F., Matson P. A., Vitousek P. M. (2012). Principles of terrestrial ecosystem ecology. 2nd Edn New York: Springer.
Clay K., Holah J. (1999). Fungal endophyte symbiosis and plant diversity in successional fields. Science 285 1742–1744. 10.1126/science.285.5434.1742 PubMed DOI
Clay K., Holah J., Rudgers J. A. (2005). Herbivores cause a rapid increase in hereditary symbiosis and alter plant community composition. Proc. Natl. Acad. Sci. U.S.A. 102 12465–12470. 10.1073/pnas.0503059102 PubMed DOI PMC
Clemmensen K. E., Bahr A., Ovaskainen O., Dahlberg A., Ekblad A., Wallander H., et al. (2013). Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339 1615–1618. 10.1126/science.1231923 PubMed DOI
Curtis T. P., Sloan W. T., Scannell J. W. (2002). Estimating prokaryotic diversity and its limits. Proc. Natl. Acad. Sci.U.S.A. 99 10494–10499. 10.1073/pnas.142680199 PubMed DOI PMC
Falkowski P. G., Fenchel T., Delong E. F. (2008). The microbial engines that drive earth’s biogeochemical cycles. Science 320 1034–1039. 10.1126/science.1153213 PubMed DOI
Gotelli N., Colwell R. (2011). Estimating species richness. Biol. Divers. Front. Meas. Assess. 81 411–416. 10.2307/3547060 DOI
Gotelli N. J., Colwell R. K. (2001). Quantifying biodiversity: Procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4 379–391. 10.1046/j.1461-0248.2001.00230.x DOI
Hardoim P. R., van Overbeek L. S., Berg G., Pirttilä A. M., Compant S., Campisano A., et al. (2015). The Hidden World within Plants: Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes. Microbiol. Mol. Biol. Rev. 79 293–320. 10.1128/mmbr.00050-14 PubMed DOI PMC
Hawksworth D. L., Lücking R. (2017). “Fungal Diversity Revisited: 2.2 to 3.8 Million Species,” in The Fungal Kingdom, eds Heitman J., Howlett B., Crous P., Stukenbrock E., James T., Gow N. A. R. (Washington, DC: ASM Press). PubMed PMC
Hubbell S. P. (2005). Neutral theory in community ecology and the hypothesis of functional equivalence. Funct. Ecol. 19 166–172. 10.1111/j.0269-8463.2005.00965.x DOI
Kanehisa M., Sato Y., Kawashima M., Furumichi M., Tanabe M. (2016a). KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44 D457–D462. 10.1093/nar/gkv1070 PubMed DOI PMC
Kanehisa M., Sato Y., Morishima K. (2016b). BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences. J. Mol. Biol. 7:416. 10.1016/j.jmb.2015.11.006 PubMed DOI
Kögel-Knabner I. (2017). The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter: Fourteen years on. Soil Biol. Biochem. 103 A3–A8. 10.1016/j.soilbio.2016.08.011 DOI
Kohler A., Kuo A., Nagy L. G., Morin E., Barry K. W., Buscot F., et al. (2015). Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat. Genet. 47 410–415. 10.1038/ng.3223 PubMed DOI
Krings M., Taylor T. N., Hass H., Kerp H., Dotzler N., Hermsen E. J. (2007). Fungal endophytes in a 400-million-yr-old land plant: Infection pathways, spatial distribution, and host responses. New Phytol. 174 648–657. 10.1111/j.1469-8137.2007.02008.x PubMed DOI
Louca S., Parfrey L. W., Doebeli M. (2016). Decoupling function and taxonomy in the global ocean microbiome. Science 353 1272–1277. 10.1126/science.aaf4507 PubMed DOI
Márquez L. M., Redman R. S., Rodriguez R. J., Roossinck M. J. (2007). A virus in a fungus in a plant: Three-way symbiosis required for thermal tolerance. Science 315 513–515. 10.1126/science.1136237 PubMed DOI
Martiny A. C. (2019). High proportions of bacteria are culturable across major biomes. ISME J. 13 2125–2128. 10.1038/s41396-019-0410-3 PubMed DOI PMC
Mohanta T. K., Bae H. (2015). The diversity of fungal genome. Biol. Proced. Online. 17:8. 10.1186/s12575-015-0020-z PubMed DOI PMC
Mueller G. M., Bills G. F., Foster M. S. Eds (2004). Biodiversity of Fungi: Inventory and Monitoring Methods, Burlington, MA: Elsevier Academic Press, 10.1016/B978-0-12-509551-8.X5000-4 DOI
Nguyen N. H., Song Z., Bates S. T., Branco S., Tedersoo L., Menke J., et al. (2016). FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20 241–248. 10.1016/j.funeco.2015.06.006 DOI
Oksanen J., Blanchet F. G., Friendly M., Kindt R., Legendre P., McGlinn D., et al. (2018). vegan: Community Ecology Package. R package version 2.5-2. CRAN R.
Omacini M., Chaneton E. J., Ghersa C. M., Müller C. B. (2001). Symbiotic fungal endophytes control insect host-parasite interaction webs. Nature 409 78–81. 10.1038/35051070 PubMed DOI
Peay K. G., Kennedy P. G., Talbot J. M. (2016). Dimensions of biodiversity in the Earth mycobiome. Nat. Rev. Microbiol. 14 434–447. 10.1038/nrmicro.2016.59 PubMed DOI
Pérez-Pérez J. M., Candela H., Micol J. L. (2009). Understanding synergy in genetic interactions. Trends Genet. 25 368–376. 10.1016/j.tig.2009.06.004 PubMed DOI
Petrov D. A. (2001). Evolution of genome size: New approaches to an old problem. Trends Genet. 17 23–28. 10.1016/s0168-9525(00)02157-0 PubMed DOI
Pham V. H. T., Kim J. (2012). Cultivation of unculturable soil bacteria. Trends Biotechnol. 30 475–484. 10.1016/j.tibtech.2012.05.007 PubMed DOI
Redecker D., Kodner R., Graham L. E. (2000). Glomalean fungi from the Ordovician. Science 289 1920–1921. 10.1126/science.289.5486.1920 PubMed DOI
Rineau F., Courty P. E. (2011). Secreted enzymatic activities of ectomycorrhizal fungi as a case study of functional diversity and functional redundancy. Ann. Forest Sci. 68 69–80. 10.1007/s13595-010-0008-4 DOI
Schloss P. D., Handelsman J. (2006). Toward a census of bacteria in soil. PLoS Comput. Biol. 2:e92. 10.1371/journal.pcbi.0020092 PubMed DOI PMC
Schmidt M. W. I., Torn M. S., Abiven S., Dittmar T., Guggenberger G., Janssens I. A., et al. (2011). Persistence of soil organic matter as an ecosystem property. Nature 478 49–56. 10.1038/nature10386 PubMed DOI
Sharpton T. J., Stajich J. E., Rounsley S. D., Gardner M. J., Wortman J. R., Jordar V. S., et al. (2009). Comparative genomic analyses of the human fungal pathogens Coccidioides and their relatives. Genome Res. 19 1722–1731. 10.1101/gr.087551.108 PubMed DOI PMC
Sherwood M., Carroll G. (1974). Fungal Succession on Needles and Young Twigs of Old-Growth Douglas Fir. Mycologia 66 499–506. 10.2307/3758493 DOI
Silar P. (2016). Protistes Eucaryotes?: Origine, Evolution et Biologie des Microbes Eucaryotes. HAL. Creative Commons: Mountain View, CA.
Simard S. W., Beiler K. J., Bingham M. A., Deslippe J. R., Philip L. J., Teste F. P. (2012). Mycorrhizal networks: Mechanisms, ecology and modelling. Fungal Biol. Rev. 26 39–60. 10.1016/j.fbr.2012.01.001 DOI
Sinsabaugh R. L. (1994). Enzymic analysis of microbial pattern and process. Biol. Fertil. Soils. 17 69–74. 10.1007/BF00418675 DOI
Sinsabaugh R. L., Antibus R. K., Linkins A. E., McClaugherty C. A., Rayburn L., Repert D., et al. (1993). Wood Decomposition: Nitrogen and Phosphorus Dynamics in Relation to Extracellular Enzyme Activity. Ecology 74 1586–1593. 10.2307/1940086 DOI
Six J., Frey S. D., Thiet R. K., Batten K. M. (2006). Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci. Soc. Am. J. 70 555–569. 10.2136/sssaj2004.0347 DOI
Spiess A.-N. (2018). propagate: Propagation of Uncertainty. R Packag. version 1.0-6.
Starke R., Capek P., Morais D., Callister S. J., Jehmlich N. (2019a). The total microbiome functions in bacteria and fungi. J. Proteomics 213 103623. 10.1016/j.jprot.2019.103623 PubMed DOI
Starke R., Capek P., Morais D. K., Jehmlich N., Baldrian P. (2019b). The total fungal microbiome functionality. bioRxiv.
Starke R., Jehmlich N., Bastida F. (2018). Using proteins to study how microbes contribute to soil ecosystem services: The current state and future perspectives of soil metaproteomics. J. Proteomics. 198 50–58. 10.1016/j.jprot.2018.11.011 PubMed DOI
Tedersoo L., May T. W., Smith M. E. (2010). Ectomycorrhizal lifestyle in fungi: Global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza. 20 217–263. 10.1007/s00572-009-0274-x PubMed DOI
Tedersoo L., Sánchez-Ramírez S., Kõljalg U., Bahram M., Döring M., Schigel D., et al. (2018). High-level classification of the Fungi and a tool for evolutionary ecological analyses. Fungal Div. 90 135–159. 10.1007/s13225-018-0401-0 DOI
Treseder K. K., Lennon J. T. (2015). Fungal Traits That Drive Ecosystem Dynamics on Land. Microbiol. Mol. Biol. Rev. 79 243–262. 10.1128/MMBR.00001-15 PubMed DOI PMC
Tunlid A., Talbot N. J. (2002). Genomics of parasitic and symbiotic fungi. Curr. Opin. Microbiol. 5 513–519. 10.1016/S1369-5274(02)00355-357 PubMed DOI
Větrovský T., Kohout P., Kopecký M., Macháč A., Man M., Bahnmann B. D., et al. (2019). A meta-analysis of global fungal distribution reveals climate-driven patterns. Nat. Commun. 10:5142. 10.1038/s41467-019-13164-8 PubMed DOI PMC
Vinogradov A. E. (1998). Buffering: A possible passive-homeostasis role for redundant DNA. J. Theor. Biol. 193 197–199. 10.1006/jtbi.1997.0629 PubMed DOI
Walker B., Kinzig A., Langridge J. (1999). Plant attribute diversity, resilience, and ecosystem function: The nature and significance of dominant and minor species. Ecosystems 2 95–113. 10.1007/s100219900062 DOI
Wang H. Y., Guo S. Y., Huang M. R., Thorsten L. H., Wei J. C. (2010). Ascomycota has a faster evolutionary rate and higher species diversity than Basidiomycota. Sci. China Life Sci. 53 1163–1169. 10.1007/s11427-010-4063-8 PubMed DOI
Woese C. R., Kandler O., Wheelis M. L. (1990). Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. 87 4576–4579. 10.1073/pnas.87.12.4576 PubMed DOI PMC
Zanne A. E., Abarenkov K., Afkhami M. E., Aguilar-trigueros C. A., Bates S., Bhatnagar J. M., et al. (2019). Fungal functional ecology: bringing a trait-based approach to plant-associated fungi. EcoEvoRxiv PubMed
Žifčáková L., Větrovský T., Lombard V., Henrissat B., Howe A., Baldrian P. (2017). Feed in summer, rest in winter: microbial carbon utilization in forest topsoil. Microbiome 5:122. 10.1186/s40168-017-0340-0 PubMed DOI PMC