Explorative Meta-Analysis of 377 Extant Fungal Genomes Predicted a Total Mycobiome Functionality of 42.4 Million KEGG Functions
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32117162
PubMed Central
PMC7015973
DOI
10.3389/fmicb.2020.00143
Knihovny.cz E-zdroje
- Klíčová slova
- accumulation curves, functional diversity, fungi, microbiome, modeling,
- Publikační typ
- časopisecké články MeSH
Unveiling the relationship between taxonomy and function of the microbiome is crucial to determine its contribution to ecosystem functioning. However, while there is a considerable amount of information on microbial taxonomic diversity, our understanding of its relationship to functional diversity is still scarce. Here, we used a meta-analysis of completely annotated extant genomes of 377 taxonomically distinct fungal species to predict the total fungal microbiome functionality on Earth with accumulation curves (ACs) of all known functions from the level 3 of KEGG Orthology using both parametric and non-parametric estimates in an explorative data-mining approach. The unsaturated model extrapolating functional diversity as a function of species richness described the ACs significantly better than the saturated model that assumed a limited total number of functions, which suggested the presence of widespread and rare functions. Based on previous estimates of 3.8 million fungal species on Earth, we propagated the unsaturated model to predict a total of 42.4 ± 0.5 million KEGG level 3 functions of which only 0.06% are known today. Our approach not only highlights the presence of widespread and rare functions but points toward the necessity of novel and more sophisticated methods to unveil the entirety of functions to fully understand the involvement of the fungal microbiome in ecosystem functioning.
Faculty of Science University of South Bohemia České Budějovice Czechia
Molecular Systems Biology Helmholtz Center for Environmental Research UFZ Leipzig Germany
Zobrazit více v PubMed
Arnold A. E., Mejía L. C., Kyllo D., Rojas E. I., Maynard Z., Robbins N., et al. (2003). Fungal endophytes limit pathogen damage in a tropical tree. PubMed DOI PMC
Bertrand P. V., Sakamoto Y., Ishiguro M., Kitagawa G. (2006). Akaike Information Criterion Statistics. DOI
Bolger T. (2001). The functional value of species biodiversity - A review.
Brundrett M. C. (2007). Understanding the Roles of Multifunctional Mycorrhizal and Endophytic Fungi. DOI
Busby P. E., Zimmerman N., Weston D. J., Jawdy S. S., Houbraken J., Newcombe G. (2013). Leaf endophytes and Populus genotype affect severity of damage from the necrotrophic leaf pathogen, Drepanopeziza populi. DOI
Čapek P., Kotas P., Manzoni S., Šantrùčková H. (2016). Drivers of phosphorus limitation across soil microbial communities. DOI
Carroll G. (1988). Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. DOI
Cavalier-Smith T. (1978). Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox. PubMed
Chao A. (1984). Non-parametric estimation of the classes in a population. DOI
Chao A. (1989). Estimating Population Size for Sparse Data in Capture-Recapture Experiments. DOI
Chao A., Colwell R. K., Lin C. W., Gotelli N. J. (2009). Sufficient sampling for asymptotic minimum species richness estimators. PubMed DOI
Chapin S. F., Matson P. A., Vitousek P. M. (2012).
Clay K., Holah J. (1999). Fungal endophyte symbiosis and plant diversity in successional fields. PubMed DOI
Clay K., Holah J., Rudgers J. A. (2005). Herbivores cause a rapid increase in hereditary symbiosis and alter plant community composition. PubMed DOI PMC
Clemmensen K. E., Bahr A., Ovaskainen O., Dahlberg A., Ekblad A., Wallander H., et al. (2013). Roots and associated fungi drive long-term carbon sequestration in boreal forest. PubMed DOI
Curtis T. P., Sloan W. T., Scannell J. W. (2002). Estimating prokaryotic diversity and its limits. PubMed DOI PMC
Falkowski P. G., Fenchel T., Delong E. F. (2008). The microbial engines that drive earth’s biogeochemical cycles. PubMed DOI
Gotelli N., Colwell R. (2011). Estimating species richness. DOI
Gotelli N. J., Colwell R. K. (2001). Quantifying biodiversity: Procedures and pitfalls in the measurement and comparison of species richness. DOI
Hardoim P. R., van Overbeek L. S., Berg G., Pirttilä A. M., Compant S., Campisano A., et al. (2015). The Hidden World within Plants: Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes. PubMed DOI PMC
Hawksworth D. L., Lücking R. (2017). “Fungal Diversity Revisited: 2.2 to 3.8 Million Species,” in PubMed PMC
Hubbell S. P. (2005). Neutral theory in community ecology and the hypothesis of functional equivalence. DOI
Kanehisa M., Sato Y., Kawashima M., Furumichi M., Tanabe M. (2016a). KEGG as a reference resource for gene and protein annotation. PubMed DOI PMC
Kanehisa M., Sato Y., Morishima K. (2016b). BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences. PubMed DOI
Kögel-Knabner I. (2017). The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter: Fourteen years on. DOI
Kohler A., Kuo A., Nagy L. G., Morin E., Barry K. W., Buscot F., et al. (2015). Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. PubMed DOI
Krings M., Taylor T. N., Hass H., Kerp H., Dotzler N., Hermsen E. J. (2007). Fungal endophytes in a 400-million-yr-old land plant: Infection pathways, spatial distribution, and host responses. PubMed DOI
Louca S., Parfrey L. W., Doebeli M. (2016). Decoupling function and taxonomy in the global ocean microbiome. PubMed DOI
Márquez L. M., Redman R. S., Rodriguez R. J., Roossinck M. J. (2007). A virus in a fungus in a plant: Three-way symbiosis required for thermal tolerance. PubMed DOI
Martiny A. C. (2019). High proportions of bacteria are culturable across major biomes. PubMed DOI PMC
Mohanta T. K., Bae H. (2015). The diversity of fungal genome. PubMed DOI PMC
Mueller G. M., Bills G. F., Foster M. S. Eds (2004). DOI
Nguyen N. H., Song Z., Bates S. T., Branco S., Tedersoo L., Menke J., et al. (2016). FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. DOI
Oksanen J., Blanchet F. G., Friendly M., Kindt R., Legendre P., McGlinn D., et al. (2018).
Omacini M., Chaneton E. J., Ghersa C. M., Müller C. B. (2001). Symbiotic fungal endophytes control insect host-parasite interaction webs. PubMed DOI
Peay K. G., Kennedy P. G., Talbot J. M. (2016). Dimensions of biodiversity in the Earth mycobiome. PubMed DOI
Pérez-Pérez J. M., Candela H., Micol J. L. (2009). Understanding synergy in genetic interactions. PubMed DOI
Petrov D. A. (2001). Evolution of genome size: New approaches to an old problem. PubMed DOI
Pham V. H. T., Kim J. (2012). Cultivation of unculturable soil bacteria. PubMed DOI
Redecker D., Kodner R., Graham L. E. (2000). Glomalean fungi from the Ordovician. PubMed DOI
Rineau F., Courty P. E. (2011). Secreted enzymatic activities of ectomycorrhizal fungi as a case study of functional diversity and functional redundancy. DOI
Schloss P. D., Handelsman J. (2006). Toward a census of bacteria in soil. PubMed DOI PMC
Schmidt M. W. I., Torn M. S., Abiven S., Dittmar T., Guggenberger G., Janssens I. A., et al. (2011). Persistence of soil organic matter as an ecosystem property. PubMed DOI
Sharpton T. J., Stajich J. E., Rounsley S. D., Gardner M. J., Wortman J. R., Jordar V. S., et al. (2009). Comparative genomic analyses of the human fungal pathogens Coccidioides and their relatives. PubMed DOI PMC
Sherwood M., Carroll G. (1974). Fungal Succession on Needles and Young Twigs of Old-Growth Douglas Fir. DOI
Silar P. (2016).
Simard S. W., Beiler K. J., Bingham M. A., Deslippe J. R., Philip L. J., Teste F. P. (2012). Mycorrhizal networks: Mechanisms, ecology and modelling. DOI
Sinsabaugh R. L. (1994). Enzymic analysis of microbial pattern and process. DOI
Sinsabaugh R. L., Antibus R. K., Linkins A. E., McClaugherty C. A., Rayburn L., Repert D., et al. (1993). Wood Decomposition: Nitrogen and Phosphorus Dynamics in Relation to Extracellular Enzyme Activity. DOI
Six J., Frey S. D., Thiet R. K., Batten K. M. (2006). Bacterial and fungal contributions to carbon sequestration in agroecosystems. DOI
Spiess A.-N. (2018).
Starke R., Capek P., Morais D., Callister S. J., Jehmlich N. (2019a). The total microbiome functions in bacteria and fungi. PubMed DOI
Starke R., Capek P., Morais D. K., Jehmlich N., Baldrian P. (2019b). The total fungal microbiome functionality.
Starke R., Jehmlich N., Bastida F. (2018). Using proteins to study how microbes contribute to soil ecosystem services: The current state and future perspectives of soil metaproteomics. PubMed DOI
Tedersoo L., May T. W., Smith M. E. (2010). Ectomycorrhizal lifestyle in fungi: Global diversity, distribution, and evolution of phylogenetic lineages. PubMed DOI
Tedersoo L., Sánchez-Ramírez S., Kõljalg U., Bahram M., Döring M., Schigel D., et al. (2018). High-level classification of the Fungi and a tool for evolutionary ecological analyses. DOI
Treseder K. K., Lennon J. T. (2015). Fungal Traits That Drive Ecosystem Dynamics on Land. PubMed DOI PMC
Tunlid A., Talbot N. J. (2002). Genomics of parasitic and symbiotic fungi. PubMed DOI
Větrovský T., Kohout P., Kopecký M., Macháč A., Man M., Bahnmann B. D., et al. (2019). A meta-analysis of global fungal distribution reveals climate-driven patterns. PubMed DOI PMC
Vinogradov A. E. (1998). Buffering: A possible passive-homeostasis role for redundant DNA. PubMed DOI
Walker B., Kinzig A., Langridge J. (1999). Plant attribute diversity, resilience, and ecosystem function: The nature and significance of dominant and minor species. DOI
Wang H. Y., Guo S. Y., Huang M. R., Thorsten L. H., Wei J. C. (2010). Ascomycota has a faster evolutionary rate and higher species diversity than Basidiomycota. PubMed DOI
Woese C. R., Kandler O., Wheelis M. L. (1990). Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. PubMed DOI PMC
Zanne A. E., Abarenkov K., Afkhami M. E., Aguilar-trigueros C. A., Bates S., Bhatnagar J. M., et al. (2019). Fungal functional ecology: bringing a trait-based approach to plant-associated fungi. PubMed
Žifčáková L., Větrovský T., Lombard V., Henrissat B., Howe A., Baldrian P. (2017). Feed in summer, rest in winter: microbial carbon utilization in forest topsoil. PubMed DOI PMC