Growth Inhibition of Gram-Positive and Gram-Negative Bacteria by Zinc Oxide Hedgehog Particles

. 2021 ; 16 () : 3541-3554. [epub] 20210524

Jazyk angličtina Země Nový Zéland Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34079247

PURPOSE: Nanomaterials for antimicrobial applications have gained interest in recent years due to the increasing bacteria resistance to conventional antibiotics. Wound sterilization, water treatment and surface decontamination all avail from multifunctional materials that also possess excellent antibacterial properties, eg zinc oxide (ZnO). Here, we assess and compare the effects of synthesized hedgehog-like ZnO structures and commercial ZnO particles with and without mixing on the inactivation of bacteria on surfaces and in liquid environments. METHODS: Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria in microbial culture medium were added to reverse spin bioreactors that contained different concentrations of each ZnO type to enable dynamic mixing of the bacteria-ZnO suspensions. Optical density of the bacteria-ZnO suspensions was measured in real-time and the number of viable bacteria after 24 h exposure was determined using standard microbiological techniques. The concentration of zinc ion generated from ZnO dissolution in different liquid types was estimated from the dynamic interaction exposure. Static antibacterial tests without agitation in liquid media and on agar surface were performed for comparison. RESULTS: A correlation between increasing ZnO particle concentration and reduction in viable bacteria was not monotonous. The lowest concentration tested (10 µg/mL) even stimulated bacteria growth. The hedgehog ZnO was significantly more antibacterial than commercial ZnO particles at higher concentrations (up to 1000 µg/mL tested), more against E. coli than S. aureus. Minimum inhibitory concentration in microwell plates was correlated with those results. No inhibition was detected for any ZnO type deposited on agar surface. Zinc ion release was greatly suppressed in cultivation media. Scanning electron microscopy images revealed that ZnO needles can pierce membrane of bacteria whereas the commercial ZnO nanoparticles rather agglomerate on the cell surface. CONCLUSION: The inhibition effects are thus mainly controlled by the interaction dynamics between bacteria and ZnO, where mixing greatly enhances antibacterial efficacy of all ZnO particles. The efficacy is modulated also by ZnO particle shapes, where hedgehog ZnO has superior effect, in particular at lower concentrations. However, at too low concentrations, ZnO can stimulate bacteria growth and must be thus used with caution.

Zobrazit více v PubMed

(EFSA) EFSA, (ECDPC) EC for DP and C. The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2017. EFSA Journal. 2019;17(2). doi:10.2903/j.efsa.2019.5598 PubMed DOI PMC

Murcia JJ, Hernández JS, Rojas H, et al. Evaluation of Au–ZnO, ZnO/Ag2CO3 and Ag–TiO2 as Photocatalyst for Wastewater Treatment. Top Catal. 2020;63(11):1286–1301. doi:10.1007/s11244-020-01232-z DOI

Kaushik M, Niranjan R, Thangam R, et al. Investigations on the antimicrobial activity and wound healing potential of ZnO nanoparticles. Appl Surf Sci. 2019;479:1169–1177. doi:10.1016/j.apsusc.2019.02.189 DOI

Cleetus CM, Primo FA, Fregoso G, et al. Alginate Hydrogels with Embedded ZnO Nanoparticles for Wound Healing Therapy. Int J Nanomedicine. 2020;15:5097–5111. doi:10.2147/IJN.S255937 PubMed DOI PMC

Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Toxicological Impact FF. Studies Based on Escherichia coli Bacteria in Ultrafine ZnO Nanoparticles Colloidal Medium. Nano Lett. 2006;6(4):866–870. doi:10.1021/nl052326h PubMed DOI

Dwivedi S, Wahab R, Khan F, Mishra YK, Musarrat J, Al-Khedhairy AA. Reactive Oxygen Species Mediated Bacterial Biofilm Inhibition via Zinc Oxide Nanoparticles and Their Statistical Determination. PLoS One. 2014;9(11):e111289. doi:10.1371/journal.pone.0111289 PubMed DOI PMC

Pasquet J, Chevalier Y, Pelletier J, Couval E, Bouvier D, Bolzinger M-A. The contribution of zinc ions to the antimicrobial activity of zinc oxide. Colloids Surf a Physicochem Eng Asp. 2014;457:263–274. doi:10.1016/j.colsurfa.2014.05.057 DOI

Wojnarowicz J, Chudoba T, Lojkowski WA. Review of Microwave Synthesis of Zinc Oxide Nanomaterials: reactants, Process Parameters and Morphologies. Nanomaterials. 2020;10(6):1086. doi:10.3390/nano10061086 PubMed DOI PMC

Jain G, Macias‐Montero M, Velusamy T, Maguire P, Mariotti D. Porous zinc oxide nanocrystalline film deposition by atmospheric pressure plasma: fabrication and energy band estimation. Plasma Process Polym. 2017;14(12):1700052. doi:10.1002/ppap.201700052 DOI

Mičová J, Buryi M, Šimek D, et al. Synthesis of zinc oxide nanostructures and comparison of their crystal quality. Appl Surf Sci. 2018;461:190–195. doi:10.1016/j.apsusc.2018.05.176 DOI

Sheikh M, Pazirofteh M, Dehghani M, et al. Application of ZnO nanostructures in ceramic and polymeric membranes for water and wastewater technologies: a review. Chem Eng J. 2020;391:123475. doi:10.1016/j.cej.2019.123475 DOI

Wang X, Zhang Q, Wan Q, Dai G, Zhou C, Zou B. Controllable ZnO Architectures by Ethanolamine-Assisted Hydrothermal Reaction for Enhanced Photocatalytic Activity. J Phys Chem C. 2011;115(6):2769–2775. doi:10.1021/jp1096822 DOI

Yi Z, Wang J, Jiang T, Tang Q, Cheng Y. Photocatalytic degradation of sulfamethazine in aqueous solution using ZnO with different morphologies. Royal Soc Open Sci. 2018;5(4):171457. doi:10.1098/rsos.171457 PubMed DOI PMC

Mclaren A, Valdes-Solis T, Li G, Tsang SC. Shape and Size Effects of ZnO Nanocrystals on Photocatalytic Activity. J Am Chem Soc. 2009;131(35):12540–12541. doi:10.1021/ja9052703 PubMed DOI

Matuła K, Ł R, Adamkiewicz W, Åkerström B, Paczesny J, Hołyst R. Influence of nanomechanical stress induced by ZnO nanoparticles of different shapes on the viability of cells. Soft Matter. 2016;12(18):4162–4169. doi:10.1039/C6SM00336B PubMed DOI

Matuła K, Ł R, Janczuk-Richter M, et al. Phenotypic plasticity of Escherichia coli upon exposure to physical stress induced by ZnO nanorods. Sci Rep. 2019;9(1):8575. doi:10.1038/s41598-019-44727-w PubMed DOI PMC

Dai Y, Sun T, Zhang Z, Zhang ZJ, Li J. Effect of zinc oxide film morphologies on the formation of Shewanella putrefaciens biofilm. Biointerphases. 2017;12(1):011002. doi:10.1116/1.4976003 PubMed DOI

Cai Q, Gao Y, Gao T, et al. Insight into Biological Effects of Zinc Oxide Nanoflowers on Bacteria: why Morphology Matters. ACS Appl Mater Interfaces. 2016;8(16):10109–10120. doi:10.1021/acsami.5b11573 PubMed DOI

Rutherford D, Jíra J, Mičová J, Remeš Z, Shu Hsu H, Rezek B. Comparison of microbial interactions of zinc oxide nanomaterials in various size and shape. Proc Int Conf Nanocon. 2020;330–335. doi:10.37904/nanocon.2019.8666 DOI

Rutherford D, Jíra J, Kolářová K, Remeš Z, Rezek B. Bactericidal effect of zinc oxide nanoparticles on Gram-positive and Gram-negative strains in reverse spin bioreactor. IOP Conf Ser: Mater Sci Eng. 2021;1050:012013. doi:10.1088/1757-899X/1050/1/012013 DOI

EUCAST. EUCAST reading guide for broth microdilution; 2019. Available from: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Disk_test_documents/2019_manuals/Reading_guide_BMD_v_1.0_2019.pdf. Accessed April30, 2019.

Sirelkhatim A, Seeni A, Mohamad D, et al. Review on Zinc Oxide Nanoparticles: antibacterial Activity and Toxicity Mechanism. nml. 2015;7(3):219–242. doi:10.1007/s40820-015-0040-x PubMed DOI PMC

Dimapilis EAS, Hsu C-S, Mendoza RMO, Lu M-C. Zinc oxide nanoparticles for water disinfection. Sustainable Environ Res. 2018;28(2):47–56. doi:10.1016/j.serj.2017.10.001 DOI

Siddiqi KS, Rahman A, Tajuddin HA. Properties of Zinc Oxide Nanoparticles and Their Activity Against Microbes. Nanoscale Res Lett. 2018;13(1):141. doi:10.1186/s11671-018-2532-3 PubMed DOI PMC

Mahamuni-Badiger PP, Patil PM, Badiger MV, et al. Biofilm formation to inhibition: role of zinc oxide-based nanoparticles. Materi Sci Eng. 2020;108:110319. doi:10.1016/j.msec.2019.110319 PubMed DOI

Silva BL, Abuçafy MP, Manaia EB, et al. Relationship Between Structure And Antimicrobial Activity Of Zinc Oxide Nanoparticles: an Overview. Int J Nanomedicine. 2017;12:4991–5011. doi:10.2147/IJN.S216204 PubMed DOI PMC

Lakshmi Prasanna V, Vijayaraghavan R. Insight into the Mechanism of Antibacterial Activity of ZnO: surface Defects Mediated Reactive Oxygen Species Even in the Dark. Langmuir. 2015;31(33):9155–9162. doi:10.1021/acs.langmuir.5b02266 PubMed DOI

Rago I, Chandraiahgari CR, Bracciale MP, et al. Zinc oxide microrods and nanorods: different antibacterial activity and their mode of action against Gram-positive bacteria. RSC Adv. 2014;4(99):56031–56040. doi:10.1039/C4RA08462D DOI

Suryawati B. Zinc homeostasis mechanism and its role in bacterial virulence capacity. AIP Conf Proc. 2018;2021(1):070021. doi:10.1063/1.5062819 DOI

Babich H, Stotzky G. Toxicity of zinc to fungi, bacteria, and coliphages: influence of chloride ions. Appl Environ Microbiol. 1978;36(6):906–914. doi:10.1128/AEM.36.6.906-914.1978 PubMed DOI PMC

Li M, Zhu L, Lin D. Toxicity of ZnO Nanoparticles to Escherichia coli: mechanism and the Influence of Medium Components. Environ Sci Technol. 2011;45(5):1977–1983. doi:10.1021/es102624t PubMed DOI

Mudunkotuwa IA, Rupasinghe T, Wu C-M, Grassian VH. Dissolution of ZnO Nanoparticles at Circumneutral pH: a Study of Size Effects in the Presence and Absence of Citric Acid. Langmuir. 2012;28(1):396–403. doi:10.1021/la203542x PubMed DOI

Arakha M, Saleem M, Mallick BC, Jha S. The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle. Sci Rep. 2015;5(1):9578. doi:10.1038/srep09578 PubMed DOI PMC

Jira J, Rezek B, Kriha V, et al. Inhibition of E. coli Growth by Nanodiamond and Graphene Oxide Enhanced by Luria-Bertani Medium. Nanomaterials. 2018;8(3):140. doi:10.3390/nano8030140 PubMed DOI PMC

Jíra J, Rutherford DCE, Mičová J, Remeš Z, Rezek B Effect of ZnO nanoparticle sizes and illumination on growth inhibition of Escherichia coli and Staphylococcus aureus bacteria in cultivation medium. IOP Conference Series: Materials Science and Engineering. IoP; 2021.

Kudryashov SI, Nguyen LV, Kirilenko DA, et al. Large-scale laser fabrication of antifouling silicon-surface nanosheet arrays via nanoplasmonic ablative self-organization in liquid CS2 Tracked by a Sulfur Dopant. ACS Appl Nano Mater. 2018;1(6):2461–2468. doi:10.1021/acsanm.8b00392 DOI

Ivanova EP, Hasan J, Webb HK, et al. Bactericidal activity of black silicon. Nat Commun. 2013;4(1):2838. doi:10.1038/ncomms3838 PubMed DOI PMC

Padmavathy N, Vijayaraghavan R. Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci Technol Adv Mater. 2008;9(3):3. doi:10.1088/1468-6996/9/3/035004 PubMed DOI PMC

Duffy LL, Osmond-McLeod MJ, Judy J, King T. Investigation into the antibacterial activity of silver, zinc oxide and copper oxide nanoparticles against poultry-relevant isolates of Salmonella and Campylobacter. Food Control. 2018;92:293–300. doi:10.1016/j.foodcont.2018.05.008 DOI

Reddy KM, Feris K, Bell J, Wingett DG, Hanley C, Punnoose A. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl Phys Lett. 2007;90(21):213902. doi:10.1063/1.2742324 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...