Controlled Structuring of Hyaluronan Films by Phase Separation and Inversion
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37656891
PubMed Central
PMC10515624
DOI
10.1021/acs.langmuir.3c01547
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
This work explores application of phase separation phenomena for structuring of films made from hyaluronan. A time-sequenced dispensing of different solution mixtures was applied under rotation of hyaluronan-covered substrates to generate surface textures. This method is applicable in direct surface modification or cover layer deposition. Changes in the surface topography were characterized by atomic force microscopy, optical microscopy, and contact and non-contact profilometry. The mechanical properties of the surface-modified self-supporting films were compared using a universal testing machine. Experimental results show that diverse hyaluronan-based surface reliefs and self-supporting films with improved mechanical properties can be prepared using a newly designed multi-step phase separation process without the need for sacrificial removable templates or additives.
Zobrazit více v PubMed
Galeotti F.; Andicsova A.; Yunus S.; Botta C. Precise Surface Patterning of Silk Fibroin Films by Breath Figures. Soft Matter 2012, 8, 4815–4821. 10.1039/c2sm25089f. DOI
Bolognesi A.; Mercogliano C.; Yunus S.; Civardi M.; Comoretto D.; Turturro A. Self-Organization of Polystyrenes into Ordered Microstructured Films and Their Replication by Soft Lithography. Langmuir 2005, 21, 3480–3485. 10.1021/la047427u. PubMed DOI
Tullii G.; Donini S.; Bossio C.; Lodola F.; Pasini M.; Parisini E.; Galeotti F.; Antognazza M. R. Micro- and Nanopatterned Silk Substrates for Antifouling Applications. ACS Appl. Mater. Interfaces 2020, 12, 5437–5446. 10.1021/acsami.9b18187. PubMed DOI
Tanaka H.; Nishikawa Y.; Koyama T. Network-Forming Phase Separation of Colloidal Suspensions. J. Phys. Condens. Matter 2005, 17, L143–L153. 10.1088/0953-8984/17/15/l02. DOI
Tanaka H. Viscoelastic Phase Separation. J. Phys. Condens. Matter 2000, 12, R207–R264. 10.1088/0953-8984/12/15/201. DOI
Tanaka H. Formation of Network and Cellular Structures by Viscoelastic Phase Separation. Adv. Mater. 2009, 21, 1872–1880. 10.1002/adma.200802763. DOI
Connal L. A.; Qiao G. G. Preparation of Porous Poly(Dimethylsiloxane)-Based Honeycomb Materials with Hierarchal Surface Features and Their Use as Soft-Lithography Templates. Adv. Mater. 2006, 18, 3024–3028. 10.1002/adma.200600982. DOI
Sun N.; Chen J.; Jiang C.; Zhang Y.; Shi F. Enhanced Wet-Chemical Etching To Prepare Patterned Silicon Mask with Controlled Depths by Combining Photolithography with Galvanic Reaction. Ind. Eng. Chem. Res. 2012, 51, 788–794. 10.1021/ie201996t. DOI
Goel S. K.; Beckman E. J. Generation of Microcellular Polymeric Foams Using Supercritical Carbon Dioxide. I: Effect of Pressure and Temperature on Nucleation. Polym. Eng. Sci. 1994, 34, 1137–1147. 10.1002/pen.760341407. DOI
Zhai W.; Feng W.; Ling J.; Zheng W. Fabrication of Lightweight Microcellular Polyimide Foams with Three-Dimensional Shape by CO2 Foaming and Compression Molding. Ind. Eng. Chem. Res. 2012, 51, 12827–12834. 10.1021/ie3017658. DOI
O’Brien F. J.; Harley B. A.; Yannas I. V.; Gibson L. Influence of Freezing Rate on Pore Structure in Freeze-Dried Collagen-GAG Scaffolds. Biomaterials 2004, 25, 1077–1086. 10.1016/s0142-9612(03)00630-6. PubMed DOI
Wrzecionko E.; Minařík A.; Smolka P.; Minařík M.; Humpolíček P.; Rejmontová P.; Mráček A.; Minaříková M.; Gřundělová L. Variations of Polymer Porous Surface Structures via the Time-Sequenced Dosing of Mixed Solvents. ACS Appl. Mater. Interfaces 2017, 9, 6472–6481. 10.1021/acsami.6b15774. PubMed DOI
Muñoz-Bonilla A.; Fernández-García M.; Rodríguez-Hernández J. Towards Hierarchically Ordered Functional Porous Polymeric Surfaces Prepared by the Breath Figures Approach. Prog. Polym. Sci. 2014, 39, 510–554. 10.1016/j.progpolymsci.2013.08.006. DOI
Liu J.; Xiao X.; Shi Y.; Wan C. Fabrication of a Superhydrophobic Surface from Porous Polymer Using Phase Separation. Appl. Surf. Sci. 2014, 297, 33–39. 10.1016/j.apsusc.2014.01.053. DOI
Kuo C.-Y.; Chen Y.-Y.; Lu S.-Y. A Facile Route To Create Surface Porous Polymer Films via Phase Separation for Antireflection Applications. ACS Appl. Mater. Interfaces 2009, 1, 72–75. 10.1021/am800002x. PubMed DOI
Altinkaya S. A.; Ozbas B. Modeling of Asymmetric Membrane Formation by Dry-Casting Method. J. Membr. Sci. 2004, 230, 71–89. 10.1016/j.memsci.2003.10.034. DOI
Chen L.-W.; Young T.-H. Effect of Nonsolvents on the Mechanism of Wet-Casting Membrane Formation from EVAL Copolymers. J. Membr. Sci. 1991, 59, 15–26. 10.1016/s0376-7388(00)81218-1. DOI
Matsuzaka K.; Jinnai H.; Koga T.; Hashimoto T. Effect of Oscillatory Shear Deformation on Demixing Processes of Polymer Blends. Macromolecules 1997, 30, 1146–1152. 10.1021/ma961212c. DOI
Stieger M.; Richtering W. Shear-Induced Phase Separation in Aqueous Polymer Solutions: Temperature-Sensitive Microgels and Linear Polymer Chains. Macromolecules 2003, 36, 8811–8818. 10.1021/ma034788s. DOI
Gu M.; Zhang J.; Wang X.; Tao H.; Ge L. Formation of Poly(Vinylidene Fluoride) (PVDF) Membranes via Thermally Induced Phase Separation. Desalination 2006, 192, 160–167. 10.1016/j.desal.2005.10.015. DOI
Li J.; Du Z.; Li H.; Zhang C. Porous Epoxy Monolith Prepared via Chemically Induced Phase Separation. Polymer 2009, 50, 1526–1532. 10.1016/j.polymer.2009.01.049. DOI
Li M.; Lu H.; Wang X.; Wang Z.; Pi M.; Cui W.; Ran R. Regulable Mixed-Solvent-Induced Phase Separation in Hydrogels for Information Encryption. Small 2022, 18, 2205359.10.1002/smll.202205359. PubMed DOI
DeRosa M. E.; Hong Y.; Faris R. A.; Rao H.. Microtextured Polystyrene Surfaces for Three-Dimensional Cell Culture Made by a Simple Solvent Treatment Method. J. Appl. Polym. Sci. 2014, 131().10.1002/app.40181. DOI
Guillen G. R.; Pan Y.; Li M.; Hoek E. M. V. Preparation and Characterization of Membranes Formed by Nonsolvent Induced Phase Separation: A Review. Ind. Eng. Chem. Res. 2011, 50, 3798–3817. 10.1021/ie101928r. DOI
de León A. S.; del Campo A.; Fernández-García M.; Rodríguez-Hernández J.; Muñoz-Bonilla A. Hierarchically Structured Multifunctional Porous Interfaces through Water Templated Self-Assembly of Ternary Systems. Langmuir 2012, 28, 9778–9787. 10.1021/la3013188. PubMed DOI
Bunz U. Breath Figures as a Dynamic Templating Method for Polymers and Nanomaterials. Adv. Mater. 2006, 18, 973–989. 10.1002/adma.200501131. DOI
Pericet-Camara R.; Bonaccurso E.; Graf K. Microstructuring of Polystyrene Surfaces with Nonsolvent Sessile Droplets. ChemPhysChem 2008, 9, 1738–1746. 10.1002/cphc.200800098. PubMed DOI
Escalé P.; Save M.; Lapp A.; Rubatat L.; Billon L. Hierarchical Structures Based on Self-Assembled Diblock Copolymers within Honeycomb Micro-Structured Porous Films. Soft Matter 2010, 6, 3202–3210. 10.1039/c0sm00029a. DOI
Tien L. W.; Gil E. S.; Park S.-H.; Mandal B. B.; Kaplan D. L. Patterned Silk Film Scaffolds for Aligned Lamellar Bone Tissue Engineering. Macromol. Biosci. 2012, 12, 1671–1679. 10.1002/mabi.201200193. PubMed DOI PMC
Gil E. S.; Park S.-H.; Marchant J.; Omenetto F.; Kaplan D. L. Response of Human Corneal Fibroblasts on Silk Film Surface Patterns. Macromol. Biosci. 2010, 10, 664–673. 10.1002/mabi.200900452. PubMed DOI PMC
Lawrence B.; Omenetto F.; Chui K.; Kaplan D. Processing Methods to Control Silk Fibroin Film Biomaterial Features. J. Mater. Sci. 2008, 43, 6967–6985. 10.1007/s10853-008-2961-y. DOI
Chen S.; Alves M.-H.; Save M.; Billon L. Synthesis of Amphiphilic Diblock Copolymers Derived from Renewable Dextran by Nitroxide Mediated Polymerization: Towards Hierarchically Structured Honeycomb Porous Films. Polym. Chem. 2014, 5, 5310–5319. 10.1039/c4py00390j. DOI
Scott J. E.; Heatley F. Biological Properties of Hyaluronan in Aqueous Solution Are Controlled and Sequestered by Reversible Tertiary Structures, Defined by NMR Spectroscopy. Biomacromolecules 2002, 3, 547–553. 10.1021/bm010170j. PubMed DOI
Rinaudo M. Main Properties and Current Applications of Some Polysaccharides as Biomaterials. Polym. Int. 2008, 57, 397–430. 10.1002/pi.2378. DOI
Hargittai I.; Hargittai M. Molecular Structure of Hyaluronan: An Introduction. Struct. Chem. 2008, 19, 697–717. 10.1007/s11224-008-9370-3. DOI
Lapčík L.; Lapčík L.; De Smedt S.; Demeester J.; Chabreček P. Hyaluronan: Preparation, Structure, Properties, and Applications. Chem. Rev. 1998, 98, 2663–2684. 10.1021/cr941199z. PubMed DOI
Kogan G.; Soltés L.; Stern R.; Gemeiner P. Hyaluronic Acid: A Natural Biopolymer with a Broad Range of Biomedical and Industrial Applications. Biotechnol. Lett. 2006, 29, 17–25. 10.1007/s10529-006-9219-z. PubMed DOI
Kocourková K.; Musilová L.; Smolka P.; Mráček A.; Humenik M.; Minařík A. Factors Determining Self-Assembly of Hyaluronan. Carbohydr. Polym. 2021, 254, 117307.10.1016/j.carbpol.2020.117307. PubMed DOI
Bui V.-T.; Ko S. H.; Choi H.-S. Large-Scale Fabrication of Commercially Available, Nonpolar Linear Polymer Film with a Highly Ordered Honeycomb Pattern. ACS Appl. Mater. Interfaces 2015, 7, 10541–10547. 10.1021/acsami.5b02097. PubMed DOI
Kadlečková M.; Skopalová K.; Ptošková B.; Wrzecionko E.; Dadová E.; Kocourková K.; Mráček A.; Musilová L.; Smolka P.; Humpolíček P.; Minařík A. Hierarchically Structured Surfaces Prepared by Phase Separation: Tissue Mimicking Culture Substrate. Int. J. Mol. Sci. 2022, 23, 2541.10.3390/ijms23052541. PubMed DOI PMC
Skopalová K.; Radaszkiewicz K. A.; Kadlečková M.; Pacherník J.; Minařík A.; Capáková Z.; Kašpárková V.; Mráček A.; Dadová E.; Humpolíček P. Hierarchically Structured Polystyrene-Based Surfaces Amplifying Fluorescence Signals: Cytocompatibility with Human Induced Pluripotent Stem Cell. Int. J. Mol. Sci. 2021, 22, 11943.10.3390/ijms222111943. PubMed DOI PMC
Minařík M.; Wrzecionko E.; Minařík A.; Grulich O.; Smolka P.; Musilová L.; Junkar I.; Primc G.; Ptošková B.; Mozetič M.; Mráček A. Preparation of Hierarchically Structured Polystyrene Surfaces with Superhydrophobic Properties by Plasma-Assisted Fluorination. Coatings 2019, 9, 201.10.3390/coatings9030201. DOI
Heatley F.; Scott J. E. A Water Molecule Participates in the Secondary Structure of Hyaluronan. Biochem. J. 1988, 254, 489–493. 10.1042/bj2540489. PubMed DOI PMC
Kimmerle K.; Strathmann H. Analysis of the structure-determining process of phase inversion membranes. Desalination 1990, 79, 283–302. 10.1016/0011-9164(90)85012-y. DOI
Kim J. H.; Lee K. H. Effect of PEG additive on membrane formation by phase inversion. J. Membr. Sci. 1998, 138, 153–163. 10.1016/s0376-7388(97)00224-x. DOI