Controlled Structuring of Hyaluronan Films by Phase Separation and Inversion

. 2023 Sep 19 ; 39 (37) : 13140-13148. [epub] 20230901

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37656891

This work explores application of phase separation phenomena for structuring of films made from hyaluronan. A time-sequenced dispensing of different solution mixtures was applied under rotation of hyaluronan-covered substrates to generate surface textures. This method is applicable in direct surface modification or cover layer deposition. Changes in the surface topography were characterized by atomic force microscopy, optical microscopy, and contact and non-contact profilometry. The mechanical properties of the surface-modified self-supporting films were compared using a universal testing machine. Experimental results show that diverse hyaluronan-based surface reliefs and self-supporting films with improved mechanical properties can be prepared using a newly designed multi-step phase separation process without the need for sacrificial removable templates or additives.

Zobrazit více v PubMed

Galeotti F.; Andicsova A.; Yunus S.; Botta C. Precise Surface Patterning of Silk Fibroin Films by Breath Figures. Soft Matter 2012, 8, 4815–4821. 10.1039/c2sm25089f. DOI

Bolognesi A.; Mercogliano C.; Yunus S.; Civardi M.; Comoretto D.; Turturro A. Self-Organization of Polystyrenes into Ordered Microstructured Films and Their Replication by Soft Lithography. Langmuir 2005, 21, 3480–3485. 10.1021/la047427u. PubMed DOI

Tullii G.; Donini S.; Bossio C.; Lodola F.; Pasini M.; Parisini E.; Galeotti F.; Antognazza M. R. Micro- and Nanopatterned Silk Substrates for Antifouling Applications. ACS Appl. Mater. Interfaces 2020, 12, 5437–5446. 10.1021/acsami.9b18187. PubMed DOI

Tanaka H.; Nishikawa Y.; Koyama T. Network-Forming Phase Separation of Colloidal Suspensions. J. Phys. Condens. Matter 2005, 17, L143–L153. 10.1088/0953-8984/17/15/l02. DOI

Tanaka H. Viscoelastic Phase Separation. J. Phys. Condens. Matter 2000, 12, R207–R264. 10.1088/0953-8984/12/15/201. DOI

Tanaka H. Formation of Network and Cellular Structures by Viscoelastic Phase Separation. Adv. Mater. 2009, 21, 1872–1880. 10.1002/adma.200802763. DOI

Connal L. A.; Qiao G. G. Preparation of Porous Poly(Dimethylsiloxane)-Based Honeycomb Materials with Hierarchal Surface Features and Their Use as Soft-Lithography Templates. Adv. Mater. 2006, 18, 3024–3028. 10.1002/adma.200600982. DOI

Sun N.; Chen J.; Jiang C.; Zhang Y.; Shi F. Enhanced Wet-Chemical Etching To Prepare Patterned Silicon Mask with Controlled Depths by Combining Photolithography with Galvanic Reaction. Ind. Eng. Chem. Res. 2012, 51, 788–794. 10.1021/ie201996t. DOI

Goel S. K.; Beckman E. J. Generation of Microcellular Polymeric Foams Using Supercritical Carbon Dioxide. I: Effect of Pressure and Temperature on Nucleation. Polym. Eng. Sci. 1994, 34, 1137–1147. 10.1002/pen.760341407. DOI

Zhai W.; Feng W.; Ling J.; Zheng W. Fabrication of Lightweight Microcellular Polyimide Foams with Three-Dimensional Shape by CO2 Foaming and Compression Molding. Ind. Eng. Chem. Res. 2012, 51, 12827–12834. 10.1021/ie3017658. DOI

O’Brien F. J.; Harley B. A.; Yannas I. V.; Gibson L. Influence of Freezing Rate on Pore Structure in Freeze-Dried Collagen-GAG Scaffolds. Biomaterials 2004, 25, 1077–1086. 10.1016/s0142-9612(03)00630-6. PubMed DOI

Wrzecionko E.; Minařík A.; Smolka P.; Minařík M.; Humpolíček P.; Rejmontová P.; Mráček A.; Minaříková M.; Gřundělová L. Variations of Polymer Porous Surface Structures via the Time-Sequenced Dosing of Mixed Solvents. ACS Appl. Mater. Interfaces 2017, 9, 6472–6481. 10.1021/acsami.6b15774. PubMed DOI

Muñoz-Bonilla A.; Fernández-García M.; Rodríguez-Hernández J. Towards Hierarchically Ordered Functional Porous Polymeric Surfaces Prepared by the Breath Figures Approach. Prog. Polym. Sci. 2014, 39, 510–554. 10.1016/j.progpolymsci.2013.08.006. DOI

Liu J.; Xiao X.; Shi Y.; Wan C. Fabrication of a Superhydrophobic Surface from Porous Polymer Using Phase Separation. Appl. Surf. Sci. 2014, 297, 33–39. 10.1016/j.apsusc.2014.01.053. DOI

Kuo C.-Y.; Chen Y.-Y.; Lu S.-Y. A Facile Route To Create Surface Porous Polymer Films via Phase Separation for Antireflection Applications. ACS Appl. Mater. Interfaces 2009, 1, 72–75. 10.1021/am800002x. PubMed DOI

Altinkaya S. A.; Ozbas B. Modeling of Asymmetric Membrane Formation by Dry-Casting Method. J. Membr. Sci. 2004, 230, 71–89. 10.1016/j.memsci.2003.10.034. DOI

Chen L.-W.; Young T.-H. Effect of Nonsolvents on the Mechanism of Wet-Casting Membrane Formation from EVAL Copolymers. J. Membr. Sci. 1991, 59, 15–26. 10.1016/s0376-7388(00)81218-1. DOI

Matsuzaka K.; Jinnai H.; Koga T.; Hashimoto T. Effect of Oscillatory Shear Deformation on Demixing Processes of Polymer Blends. Macromolecules 1997, 30, 1146–1152. 10.1021/ma961212c. DOI

Stieger M.; Richtering W. Shear-Induced Phase Separation in Aqueous Polymer Solutions: Temperature-Sensitive Microgels and Linear Polymer Chains. Macromolecules 2003, 36, 8811–8818. 10.1021/ma034788s. DOI

Gu M.; Zhang J.; Wang X.; Tao H.; Ge L. Formation of Poly(Vinylidene Fluoride) (PVDF) Membranes via Thermally Induced Phase Separation. Desalination 2006, 192, 160–167. 10.1016/j.desal.2005.10.015. DOI

Li J.; Du Z.; Li H.; Zhang C. Porous Epoxy Monolith Prepared via Chemically Induced Phase Separation. Polymer 2009, 50, 1526–1532. 10.1016/j.polymer.2009.01.049. DOI

Li M.; Lu H.; Wang X.; Wang Z.; Pi M.; Cui W.; Ran R. Regulable Mixed-Solvent-Induced Phase Separation in Hydrogels for Information Encryption. Small 2022, 18, 2205359.10.1002/smll.202205359. PubMed DOI

DeRosa M. E.; Hong Y.; Faris R. A.; Rao H.. Microtextured Polystyrene Surfaces for Three-Dimensional Cell Culture Made by a Simple Solvent Treatment Method. J. Appl. Polym. Sci. 2014, 131().10.1002/app.40181. DOI

Guillen G. R.; Pan Y.; Li M.; Hoek E. M. V. Preparation and Characterization of Membranes Formed by Nonsolvent Induced Phase Separation: A Review. Ind. Eng. Chem. Res. 2011, 50, 3798–3817. 10.1021/ie101928r. DOI

de León A. S.; del Campo A.; Fernández-García M.; Rodríguez-Hernández J.; Muñoz-Bonilla A. Hierarchically Structured Multifunctional Porous Interfaces through Water Templated Self-Assembly of Ternary Systems. Langmuir 2012, 28, 9778–9787. 10.1021/la3013188. PubMed DOI

Bunz U. Breath Figures as a Dynamic Templating Method for Polymers and Nanomaterials. Adv. Mater. 2006, 18, 973–989. 10.1002/adma.200501131. DOI

Pericet-Camara R.; Bonaccurso E.; Graf K. Microstructuring of Polystyrene Surfaces with Nonsolvent Sessile Droplets. ChemPhysChem 2008, 9, 1738–1746. 10.1002/cphc.200800098. PubMed DOI

Escalé P.; Save M.; Lapp A.; Rubatat L.; Billon L. Hierarchical Structures Based on Self-Assembled Diblock Copolymers within Honeycomb Micro-Structured Porous Films. Soft Matter 2010, 6, 3202–3210. 10.1039/c0sm00029a. DOI

Tien L. W.; Gil E. S.; Park S.-H.; Mandal B. B.; Kaplan D. L. Patterned Silk Film Scaffolds for Aligned Lamellar Bone Tissue Engineering. Macromol. Biosci. 2012, 12, 1671–1679. 10.1002/mabi.201200193. PubMed DOI PMC

Gil E. S.; Park S.-H.; Marchant J.; Omenetto F.; Kaplan D. L. Response of Human Corneal Fibroblasts on Silk Film Surface Patterns. Macromol. Biosci. 2010, 10, 664–673. 10.1002/mabi.200900452. PubMed DOI PMC

Lawrence B.; Omenetto F.; Chui K.; Kaplan D. Processing Methods to Control Silk Fibroin Film Biomaterial Features. J. Mater. Sci. 2008, 43, 6967–6985. 10.1007/s10853-008-2961-y. DOI

Chen S.; Alves M.-H.; Save M.; Billon L. Synthesis of Amphiphilic Diblock Copolymers Derived from Renewable Dextran by Nitroxide Mediated Polymerization: Towards Hierarchically Structured Honeycomb Porous Films. Polym. Chem. 2014, 5, 5310–5319. 10.1039/c4py00390j. DOI

Scott J. E.; Heatley F. Biological Properties of Hyaluronan in Aqueous Solution Are Controlled and Sequestered by Reversible Tertiary Structures, Defined by NMR Spectroscopy. Biomacromolecules 2002, 3, 547–553. 10.1021/bm010170j. PubMed DOI

Rinaudo M. Main Properties and Current Applications of Some Polysaccharides as Biomaterials. Polym. Int. 2008, 57, 397–430. 10.1002/pi.2378. DOI

Hargittai I.; Hargittai M. Molecular Structure of Hyaluronan: An Introduction. Struct. Chem. 2008, 19, 697–717. 10.1007/s11224-008-9370-3. DOI

Lapčík L.; Lapčík L.; De Smedt S.; Demeester J.; Chabreček P. Hyaluronan: Preparation, Structure, Properties, and Applications. Chem. Rev. 1998, 98, 2663–2684. 10.1021/cr941199z. PubMed DOI

Kogan G.; Soltés L.; Stern R.; Gemeiner P. Hyaluronic Acid: A Natural Biopolymer with a Broad Range of Biomedical and Industrial Applications. Biotechnol. Lett. 2006, 29, 17–25. 10.1007/s10529-006-9219-z. PubMed DOI

Kocourková K.; Musilová L.; Smolka P.; Mráček A.; Humenik M.; Minařík A. Factors Determining Self-Assembly of Hyaluronan. Carbohydr. Polym. 2021, 254, 117307.10.1016/j.carbpol.2020.117307. PubMed DOI

Bui V.-T.; Ko S. H.; Choi H.-S. Large-Scale Fabrication of Commercially Available, Nonpolar Linear Polymer Film with a Highly Ordered Honeycomb Pattern. ACS Appl. Mater. Interfaces 2015, 7, 10541–10547. 10.1021/acsami.5b02097. PubMed DOI

Kadlečková M.; Skopalová K.; Ptošková B.; Wrzecionko E.; Dadová E.; Kocourková K.; Mráček A.; Musilová L.; Smolka P.; Humpolíček P.; Minařík A. Hierarchically Structured Surfaces Prepared by Phase Separation: Tissue Mimicking Culture Substrate. Int. J. Mol. Sci. 2022, 23, 2541.10.3390/ijms23052541. PubMed DOI PMC

Skopalová K.; Radaszkiewicz K. A.; Kadlečková M.; Pacherník J.; Minařík A.; Capáková Z.; Kašpárková V.; Mráček A.; Dadová E.; Humpolíček P. Hierarchically Structured Polystyrene-Based Surfaces Amplifying Fluorescence Signals: Cytocompatibility with Human Induced Pluripotent Stem Cell. Int. J. Mol. Sci. 2021, 22, 11943.10.3390/ijms222111943. PubMed DOI PMC

Minařík M.; Wrzecionko E.; Minařík A.; Grulich O.; Smolka P.; Musilová L.; Junkar I.; Primc G.; Ptošková B.; Mozetič M.; Mráček A. Preparation of Hierarchically Structured Polystyrene Surfaces with Superhydrophobic Properties by Plasma-Assisted Fluorination. Coatings 2019, 9, 201.10.3390/coatings9030201. DOI

Heatley F.; Scott J. E. A Water Molecule Participates in the Secondary Structure of Hyaluronan. Biochem. J. 1988, 254, 489–493. 10.1042/bj2540489. PubMed DOI PMC

Kimmerle K.; Strathmann H. Analysis of the structure-determining process of phase inversion membranes. Desalination 1990, 79, 283–302. 10.1016/0011-9164(90)85012-y. DOI

Kim J. H.; Lee K. H. Effect of PEG additive on membrane formation by phase inversion. J. Membr. Sci. 1998, 138, 153–163. 10.1016/s0376-7388(97)00224-x. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...