Hierarchically Structured Surfaces Prepared by Phase Separation: Tissue Mimicking Culture Substrate
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
OP RDE Junior Grants of TBU CZ.02.2.69/0.0/0.0/19_073/0016941
Tomas Bata University in Zlín
IGA/FT/2022/009 and IGA/CPS/2022/001
Tomas Bata University in Zlín
DKRVO (RP/CPS/2022/003) and DKRVO (RP/CPS/2022/001)
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
35269688
PubMed Central
PMC8910751
DOI
10.3390/ijms23052541
PII: ijms23052541
Knihovny.cz E-zdroje
- Klíčová slova
- foams, hierarchically structured, line-specific response, phase inversion, phase separations, stem cells, surfaces,
- MeSH
- fibroblasty * MeSH
- mikroskopie atomárních sil MeSH
- mikroskopie elektronová rastrovací MeSH
- myši MeSH
- polymery * chemie MeSH
- povrchové vlastnosti MeSH
- proliferace buněk MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- polymery * MeSH
The pseudo 3D hierarchical structure mimicking in vivo microenvironment was prepared by phase separation on tissue culture plastic. For surface treatment, time-sequenced dosing of the solvent mixture with various concentrations of polymer component was used. The experiments showed that hierarchically structured surfaces with macro, meso and micro pores can be prepared with multi-step phase separation processes. Changes in polystyrene surface topography were characterized by atomic force microscopy, scanning electron microscopy and contact profilometry. The cell proliferation and changes in cell morphology were tested on the prepared structured surfaces. Four types of cell lines were used for the determination of impact of the 3D architecture on the cell behavior, namely the mouse embryonic fibroblast, human lung carcinoma, primary human keratinocyte and mouse embryonic stem cells. The increase of proliferation of embryonic stem cells and mouse fibroblasts was the most remarkable. Moreover, the embryonic stem cells express different morphology when cultured on the structured surface. The acquired findings expand the current state of knowledge in the field of cell behavior on structured surfaces and bring new technological procedures leading to their preparation without the use of problematic temporary templates or additives.
Centre of Polymer Systems Tomas Bata University in Zlin 760 01 Zlin Czech Republic
Faculty of Technology Tomas Bata University in Zlin 760 01 Zlin Czech Republic
Zobrazit více v PubMed
de León A.S., del Campo A., Fernández-García M., Rodríguez-Hernández J., Muñoz-Bonilla A. Hierarchically Structured Multifunctional Porous Interfaces through Water Templated Self-Assembly of Ternary Systems. Langmuir. 2012;28:9778–9787. doi: 10.1021/la3013188. PubMed DOI
Muñoz-Bonilla A., Fernández-García M., Rodríguez-Hernández J. Towards hierarchically ordered functional porous polymeric surfaces prepared by the breath figures approach. Prog. Polym. Sci. 2014;39:510–554. doi: 10.1016/j.progpolymsci.2013.08.006. DOI
Muñoz-Bonilla A., Ibarboure E., Papon E., Rodriguez-Hernandez J. Self-Organized Hierarchical Structures in Polymer Surfaces: Self-Assembled Nanostructures within Breath Figures. Langmuir. 2009;25:6493–6499. doi: 10.1021/la9003214. PubMed DOI
Bhushan B., Jung Y.C. Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog. Mater. Sci. 2011;56:1–108. doi: 10.1016/j.pmatsci.2010.04.003. DOI
Bormashenko E. Wetting of Real Surfaces. De Gruyter; Berlin, Germany: 2019.
Wasser L., Dalle Vacche S., Karasu F., Müller L., Castellino M., Vitale A., Bongiovanni R., Leterrier Y. Bio-Inspired Fluorine-Free Self-Cleaning Polymer Coatings. Coatings. 2018;8:436. doi: 10.3390/coatings8120436. DOI
Brown P.S., Talbot E.L., Wood T.J., Bain C.D., Badyal J.P.S. Superhydrophobic Hierarchical Honeycomb Surfaces. Langmuir. 2012;28:13712–13719. doi: 10.1021/la302719m. PubMed DOI
Li X.-M., Reinhoudt D., Crego-Calama M. What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chem. Soc. Rev. 2007;36:1350–1368. doi: 10.1039/b602486f. PubMed DOI
Jaggessar A., Shahali H., Mathew A., Yarlagadda P.K.D.V. Bio-mimicking nano and micro-structured surface fabrication for antibacterial properties in medical implants. J. Nanobiotechnology. 2017;15:64. doi: 10.1186/s12951-017-0306-1. PubMed DOI PMC
Richert L., Vetrone F., Yi J., Zalzal S., Wuest J., Rosei F., Nanci A. Surface nanopatterning to control cell growth. Adv. Mater. 2008;20:1488–1492. doi: 10.1002/adma.200701428. DOI
Xu Y., Zhu X., Dan Y., Moon J.H., Chen V.W., Johnson A.T., Perry J.W., Yang S. Electrodeposition of Three-Dimensional Titania Photonic Crystals from Holographically Patterned Microporous Polymer Templates. Chem. Mater. 2008;20:1816–1823. doi: 10.1021/cm702511k. DOI
Kyu T., Nwabunma D. Simulations of Microlens Arrays Formed by Pattern-Photopolymerization-Induced Phase Separation of Liquid Crystal/Monomer Mixtures. Macromolecules. 2001;34:9168–9172. doi: 10.1021/ma010567f. DOI
De Leon A., Garnier T., Jierry L., Boulmedais F., Munoz-Bonilla A., Rodriguez-Hernandez J. Enzymatic Catalysis Combining the Breath Figures and Layer-by-Layer Techniques: Toward the Design of Microreactors. Acs Appl. Mater. Interfaces. 2015;7:12210–12219. doi: 10.1021/acsami.5b02607. PubMed DOI
Li L., Chen C., Li J., Zhang A., Liu X., Xu B., Gao S., Jin G., Ma Z. Robust and hydrophilic polymeric films with honeycomb pattern and their cell scaffold applications. J. Mater. Chem. 2009;19:2789–2796. doi: 10.1039/b820279f. DOI
Ma Z., Mao Z., Gao C. Surface modification and property analysis of biomedical polymers used for tissue engineering. Colloids Surf. B-Biointerfaces. 2007;60:137–157. doi: 10.1016/j.colsurfb.2007.06.019. PubMed DOI
Flemming R.G., Murphy C.J., Abrams G.A., Goodman S.L., Nealey P.F. Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials. 1999;20:573–588. doi: 10.1016/S0142-9612(98)00209-9. PubMed DOI
Ko T., Kim E., Nagashima S., Oh K., Lee K., Kim S., Moon M. Adhesion behavior of mouse liver cancer cells on nanostructured superhydrophobic and superhydrophilic surfaces. Soft Matter. 2013;9:8705–8711. doi: 10.1039/c3sm51147b. DOI
DeRosa M.E., Yulong H., Faris R.A., Hongwei R. Microtextured polystyrene surfaces for three-dimensional cell culture made by a simple solvent treatment method. J. Appl. Polym. Sci. 2014;131:1–9. doi: 10.1002/app.40181. DOI
Matsuzaka K., Walboomers X., Yoshinari M., Inoue T., Jansen J. The attachment and growth behavior of osteoblast-like cells on microtextured surfaces. Biomaterials. 2003;24:2711–2719. doi: 10.1016/S0142-9612(03)00085-1. PubMed DOI
Martinez E., Engel E., Planell J., Samitier J. Effects of artificial micro- and nano-structured surfaces on cell behaviour. Ann. Anat.—Anat. Anz. 2009;191:126–135. doi: 10.1016/j.aanat.2008.05.006. PubMed DOI
Lucchetta G., Sorgato M., Zanchetta E., Brusatin G., Guidi E., Di Liddo R., Conconi M. Effect of injection molded micro-structured polystyrene surfaces on proliferation of MC3T3-E1 cells. Express Polym. Lett. 2015;9:354–361. doi: 10.3144/expresspolymlett.2015.33. DOI
Jeon H., Simon C.G., Kim G. A mini-review: Cell response to microscale, nanoscale, and hierarchical patterning of surface structure. J. Biomed. Mater. Res. Part B. 2014;102:1580–1594. doi: 10.1002/jbm.b.33158. PubMed DOI
Papenburg B.J., Vogelaar L., Bolhuis-Versteeg L.A.M., Lammertink R.G.H., Stamatialis D., Wessling M. One-step fabrication of porous micropatterned scaffolds to control cell behavior. Biomaterials. 2007;28:1998–2009. doi: 10.1016/j.biomaterials.2006.12.023. PubMed DOI
Gerecht S., Bettinger C.J., Zhang Z., Borenstein J.T., Vuniak-Novakovic G., Langer R. The effect of actin disrupting agents on contact guidance of human embryonic stem cells. Biomaterials. 2007;28:4068–4077. doi: 10.1016/j.biomaterials.2007.05.027. PubMed DOI PMC
Leclerc A., Tremblay D., Hadjiantoniou S., Bukoreshtliev N.V., Rogowski J.L., Godin M., Pelling A.E. Three dimensional spatial separation of cells in response to microtopography. Biomaterials. 2013;34:8097–8104. doi: 10.1016/j.biomaterials.2013.07.047. PubMed DOI
Connal L.A., Qiao G.G. Preparation of Porous Poly(dimethylsiloxane)-Based Honeycomb Materials with Hierarchal Surface Features and Their Use as Soft-Lithography Templates. Adv. Mater. 2006;18:3024–3028. doi: 10.1002/adma.200600982. DOI
Galeotti F., Andicsova A., Yunus S., Botta C. Precise surface patterning of silk fibroin films by breath figures. Soft Matter. 2012;8:4815–4821. doi: 10.1039/c2sm25089f. DOI
Tanaka H. Formation of Network and Cellular Structures by Viscoelastic Phase Separation. Adv. Mater. 2009;21:1872–1880. doi: 10.1002/adma.200802763. DOI
Xue L.J., Zhang J.L., Han Y.C. Phase separation induced ordered patterns in thin polymer blend films. Prog. Polym. Sci. 2012;37:564–594. doi: 10.1016/j.progpolymsci.2011.09.001. DOI
Sun N., Chen J., Jiang C., Zhang Y., Shi F. Enhanced Wet-Chemical Etching To Prepare Patterned Silicon Mask with Controlled Depths by Combining Photolithography with Galvanic Reaction. Ind. Eng. Chem. Res. 2012;51:788–794. doi: 10.1021/ie201996t. DOI
Zhai W.T., Feng W.W., Ling J.Q., Zheng W.G. Fabrication of Lightweight Microcellular Polyimide Foams with Three-Dimensional Shape by CO2 Foaming and Compression Molding. Ind. Eng. Chem. Res. 2012;51:12827–12834. doi: 10.1021/ie3017658. DOI
O’Brien F.J., Harley B.A., Yannas I.V., Gibson L. Influence of freezing rate on pore structure in freeze-dried collagen-GAG scaffolds. Biomaterials. 2004;25:1077–1086. doi: 10.1016/S0142-9612(03)00630-6. PubMed DOI
Wrzecionko E., Minarik A., Smolka P., Minarik M., Humpolicek P., Rejmontova P., Mracek A., Minarikova M., Grundelova L. Variations of Polymer Porous Surface Structures via the Time Sequenced Dosing of Mixed Solvents. Acs Appl. Mater. Interfaces. 2017;9:6472–6481. doi: 10.1021/acsami.6b15774. PubMed DOI
Bunz U.H.F. Breath Figures as a Dynamic Templating Method for Polymers and Nanomaterials. Adv. Mater. 2006;18:973–989. doi: 10.1002/adma.200501131. DOI
Tsay C.S., McHugh A.J. Mass transfer modeling of asymmetric membrane formation by phase inversion. J. Polym. Sci. Part B Polym. Phys. 1990;28:1327–1365. doi: 10.1002/polb.1990.090280810. DOI
Kimmerle K., Strathmann H. Analysis of the structure-determining process of phase inversion membranes. Desalination. 1990;79:283–302. doi: 10.1016/0011-9164(90)85012-Y. DOI
Altinkaya S.A., Ozbas B. Modeling of asymmetric membrane formation by dry-casting method. J. Membr. Sci. 2004;230:71–89. doi: 10.1016/j.memsci.2003.10.034. DOI
Matsuzaka K., Jinnai H., Koga T., Hashimoto T. Effect of Oscillatory Shear Deformation on Demixing Processes of Polymer Blends. Macromolecules. 1997;30:1146–1152. doi: 10.1021/ma961212c. DOI
Xuyun W., Lin Z., Dahai S., Quanfu A., Huanlin C. Effect of coagulation bath temperature on formation mechanism of poly(vinylidene fluoride) membrane. J. Appl. Polym. Sci. 2008;110:1656–1663.
Li W., Ryan A.J., Meier I.K. Morphology Development via Reaction-Induced Phase Separation in Flexible Polyurethane Foam. Macromolecules. 2002;35:5034–5042. doi: 10.1021/ma020035e. DOI
Guillen G.R., Pan Y., Li M., Hoek E.M.V. Preparation and Characterization of Membranes Formed by Nonsolvent Induced Phase Separation: A Review. Ind. Eng. Chem. Res. 2011;50:3798–3817. doi: 10.1021/ie101928r. DOI
Samuel A., Umapathy S., Ramakrishnan S. Functionalized and Postfunctionalizable Porous Polymeric Films through Evaporation-Induced Phase Separation Using Mixed Solvents. Acs Appl. Mater. Interfaces. 2011;3:3293–3299. doi: 10.1021/am200735t. PubMed DOI
Strathmann H., Kock K. The formation mechanism of phase inversion membranes. Desalination. 1977;21:241–255. doi: 10.1016/S0011-9164(00)88244-2. DOI
Farnaz F., Behzad P., Mehdi S. Direct breath figure formation on PMMA and superhydrophobic surface using in situ perfluoro-modified silica nanoparticles. J. Polym. Sci. Part B Polym. Phys. 2013;51:441–451.
Temenoff J.S., Mikos A.G. Biomaterials: The Intersection of Biology and Materials Science. Pearson Prentice Hall; Upper Saddle River, NJ, USA: London, UK: 2008.
Bacakova L., Filova E., Parizek M., Ruml T., Svorcik V. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol. Adv. 2011;29:739–767. doi: 10.1016/j.biotechadv.2011.06.004. PubMed DOI
Bui V., Ko S., Choi H. Large-Scale Fabrication of Commercially Available, Nonpolar Linear Polymer Film with a Highly Ordered Honeycomb Pattern. Acs Appl. Mater. Interfaces. 2015;7:10541–10547. doi: 10.1021/acsami.5b02097. PubMed DOI
Li J., Peng J., Huang W., Wu Y., Fu J., Cong Y., Xue L., Han Y. Ordered honeycomb-structured gold nanoparticle films with changeable pore morphology: From circle to ellipse. Langmuir. 2005;21:2017–2021. doi: 10.1021/la047625l. PubMed DOI
Sukitpaneenit P., Chung T.-S. Molecular elucidation of morphology and mechanical properties of PVDF hollow fiber membranes from aspects of phase inversion, crystallization and rheology. J. Membr. Sci. 2009;340:192–205. doi: 10.1016/j.memsci.2009.05.029. DOI
Kim J.-H., Lee K.-H. Effect of PEG additive on membrane formation by phase inversion. J. Membr. Sci. 1998;138:153–163. doi: 10.1016/S0376-7388(97)00224-X. DOI
Nashchekina Y., Samusenko I., Zorin I., Kulthareva L., Bilibin A., Blinova M. Poly(D,L-lactide)/PEG blend films for keratinocyte cultivation and skin reconstruction. Biomed. Mater. 2019;14:1–10. doi: 10.1088/1748-605X/ab3aa2. PubMed DOI
Jhala D., Vasita R. A Review on Extracellular Matrix Mimicking Strategies for an Artificial Stem Cell Niche. Polym. Rev. 2015;55:561–595. doi: 10.1080/15583724.2015.1040552. DOI
Kawano T., Sato M., Yabu H., Shimomura M. Honeycomb-shaped surface topography induces differentiation of human mesenchymal stem cells (hMSCs): Uniform porous polymer scaffolds prepared by the breath figure technique. Biomater. Sci. 2014;2:52–56. doi: 10.1039/C3BM60195A. PubMed DOI
Dalby M.J., Gadegaard N., Tare R., Andar A., Riehle M.O., Herzyk P., Wilkinson C.D.W., Oreffo R.O.C. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat. Mater. 2007;6:997–1003. doi: 10.1038/nmat2013. PubMed DOI
Luo W., Jones S.R., Yousaf M.N. Geometric Control of Stem Cell Differentiation Rate on Surfaces. Langmuir. 2008;24:12129–12133. doi: 10.1021/la802836g. PubMed DOI
Ankam S., Suryana M., Chan L.Y., Moe A.A.K., Teo B.K.K., Law J.B.K., Sheetz M.P., Low H.Y., Yim E.K.F. Substrate topography and size determine the fate of human embryonic stem cells to neuronal or glial lineage. Acta Biomater. 2013;9:4535–4545. doi: 10.1016/j.actbio.2012.08.018. PubMed DOI
Markert L.D., Lovmand J., Foss M., Lauridsen R.H., Lovmand M., Fuchtbauer E.M., Fuchtbauer A., Wertz K., Besenbacher F., Pedersen F.S., et al. Identification of Distinct Topographical Surface Microstructures Favoring Either Undifferentiated Expansion or Differentiation of Murine Embryonic Stem Cells. Stem Cells Dev. 2009;18:1331–1342. doi: 10.1089/scd.2009.0114. PubMed DOI
Minarik M., Wrzecionko E., Minarik A., Grulich O., Smolka P., Musilova L., Junkar I., Primc G., Ptoskova B., Mozetic M., et al. Preparation of Hierarchically Structured Polystyrene Surfaces with Superhydrophobic Properties by Plasma-Assisted Fluorination. Coatings. 2019;9:201. doi: 10.3390/coatings9030201. DOI
Minarik A., Rafajova M., Rajnohova E., Smolka P., Mracek A. Self-organised patterns in polymeric films solidified from diluted solutions—The effect of the substrate surface properties. Int. J. Heat Mass Transf. 2014;78:615–623. doi: 10.1016/j.ijheatmasstransfer.2014.07.032. DOI
Chvatalova L., Cermak R., Mracek A., Grulich O., Vesel A., Ponizil P., Minarik A., Cvelbar U., Benicek L., Sajdl P. The effect of plasma treatment on structure and properties of poly(1-butene) surface. Eur. Polym. J. 2012;48:866–874. doi: 10.1016/j.eurpolymj.2012.02.007. DOI
Larrieu J., Held B., Martinez H., Tison Y. Ageing of atactic and isotactic polystyrene thin films treated by oxygen DC pulsed plasma. Surf. Coat. Technol. 2005;200:2310–2316. doi: 10.1016/j.surfcoat.2004.06.032. DOI
Nagy A., Rossant J., Nagy R., Abramownewerly W., Roder J.C. Derivation of completely cell culture-derived mice from early-passage embryonic stem-cells. Proc. Natl. Acad. Sci. USA. 1993;90:8424–8428. doi: 10.1073/pnas.90.18.8424. PubMed DOI PMC