Hierarchically Structured Surfaces Prepared by Phase Separation: Tissue Mimicking Culture Substrate

. 2022 Feb 25 ; 23 (5) : . [epub] 20220225

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35269688

Grantová podpora
OP RDE Junior Grants of TBU CZ.02.2.69/0.0/0.0/19_073/0016941 Tomas Bata University in Zlín
IGA/FT/2022/009 and IGA/CPS/2022/001 Tomas Bata University in Zlín
DKRVO (RP/CPS/2022/003) and DKRVO (RP/CPS/2022/001) Ministry of Education, Youth and Sports of the Czech Republic

The pseudo 3D hierarchical structure mimicking in vivo microenvironment was prepared by phase separation on tissue culture plastic. For surface treatment, time-sequenced dosing of the solvent mixture with various concentrations of polymer component was used. The experiments showed that hierarchically structured surfaces with macro, meso and micro pores can be prepared with multi-step phase separation processes. Changes in polystyrene surface topography were characterized by atomic force microscopy, scanning electron microscopy and contact profilometry. The cell proliferation and changes in cell morphology were tested on the prepared structured surfaces. Four types of cell lines were used for the determination of impact of the 3D architecture on the cell behavior, namely the mouse embryonic fibroblast, human lung carcinoma, primary human keratinocyte and mouse embryonic stem cells. The increase of proliferation of embryonic stem cells and mouse fibroblasts was the most remarkable. Moreover, the embryonic stem cells express different morphology when cultured on the structured surface. The acquired findings expand the current state of knowledge in the field of cell behavior on structured surfaces and bring new technological procedures leading to their preparation without the use of problematic temporary templates or additives.

Zobrazit více v PubMed

de León A.S., del Campo A., Fernández-García M., Rodríguez-Hernández J., Muñoz-Bonilla A. Hierarchically Structured Multifunctional Porous Interfaces through Water Templated Self-Assembly of Ternary Systems. Langmuir. 2012;28:9778–9787. doi: 10.1021/la3013188. PubMed DOI

Muñoz-Bonilla A., Fernández-García M., Rodríguez-Hernández J. Towards hierarchically ordered functional porous polymeric surfaces prepared by the breath figures approach. Prog. Polym. Sci. 2014;39:510–554. doi: 10.1016/j.progpolymsci.2013.08.006. DOI

Muñoz-Bonilla A., Ibarboure E., Papon E., Rodriguez-Hernandez J. Self-Organized Hierarchical Structures in Polymer Surfaces: Self-Assembled Nanostructures within Breath Figures. Langmuir. 2009;25:6493–6499. doi: 10.1021/la9003214. PubMed DOI

Bhushan B., Jung Y.C. Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog. Mater. Sci. 2011;56:1–108. doi: 10.1016/j.pmatsci.2010.04.003. DOI

Bormashenko E. Wetting of Real Surfaces. De Gruyter; Berlin, Germany: 2019.

Wasser L., Dalle Vacche S., Karasu F., Müller L., Castellino M., Vitale A., Bongiovanni R., Leterrier Y. Bio-Inspired Fluorine-Free Self-Cleaning Polymer Coatings. Coatings. 2018;8:436. doi: 10.3390/coatings8120436. DOI

Brown P.S., Talbot E.L., Wood T.J., Bain C.D., Badyal J.P.S. Superhydrophobic Hierarchical Honeycomb Surfaces. Langmuir. 2012;28:13712–13719. doi: 10.1021/la302719m. PubMed DOI

Li X.-M., Reinhoudt D., Crego-Calama M. What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chem. Soc. Rev. 2007;36:1350–1368. doi: 10.1039/b602486f. PubMed DOI

Jaggessar A., Shahali H., Mathew A., Yarlagadda P.K.D.V. Bio-mimicking nano and micro-structured surface fabrication for antibacterial properties in medical implants. J. Nanobiotechnology. 2017;15:64. doi: 10.1186/s12951-017-0306-1. PubMed DOI PMC

Richert L., Vetrone F., Yi J., Zalzal S., Wuest J., Rosei F., Nanci A. Surface nanopatterning to control cell growth. Adv. Mater. 2008;20:1488–1492. doi: 10.1002/adma.200701428. DOI

Xu Y., Zhu X., Dan Y., Moon J.H., Chen V.W., Johnson A.T., Perry J.W., Yang S. Electrodeposition of Three-Dimensional Titania Photonic Crystals from Holographically Patterned Microporous Polymer Templates. Chem. Mater. 2008;20:1816–1823. doi: 10.1021/cm702511k. DOI

Kyu T., Nwabunma D. Simulations of Microlens Arrays Formed by Pattern-Photopolymerization-Induced Phase Separation of Liquid Crystal/Monomer Mixtures. Macromolecules. 2001;34:9168–9172. doi: 10.1021/ma010567f. DOI

De Leon A., Garnier T., Jierry L., Boulmedais F., Munoz-Bonilla A., Rodriguez-Hernandez J. Enzymatic Catalysis Combining the Breath Figures and Layer-by-Layer Techniques: Toward the Design of Microreactors. Acs Appl. Mater. Interfaces. 2015;7:12210–12219. doi: 10.1021/acsami.5b02607. PubMed DOI

Li L., Chen C., Li J., Zhang A., Liu X., Xu B., Gao S., Jin G., Ma Z. Robust and hydrophilic polymeric films with honeycomb pattern and their cell scaffold applications. J. Mater. Chem. 2009;19:2789–2796. doi: 10.1039/b820279f. DOI

Ma Z., Mao Z., Gao C. Surface modification and property analysis of biomedical polymers used for tissue engineering. Colloids Surf. B-Biointerfaces. 2007;60:137–157. doi: 10.1016/j.colsurfb.2007.06.019. PubMed DOI

Flemming R.G., Murphy C.J., Abrams G.A., Goodman S.L., Nealey P.F. Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials. 1999;20:573–588. doi: 10.1016/S0142-9612(98)00209-9. PubMed DOI

Ko T., Kim E., Nagashima S., Oh K., Lee K., Kim S., Moon M. Adhesion behavior of mouse liver cancer cells on nanostructured superhydrophobic and superhydrophilic surfaces. Soft Matter. 2013;9:8705–8711. doi: 10.1039/c3sm51147b. DOI

DeRosa M.E., Yulong H., Faris R.A., Hongwei R. Microtextured polystyrene surfaces for three-dimensional cell culture made by a simple solvent treatment method. J. Appl. Polym. Sci. 2014;131:1–9. doi: 10.1002/app.40181. DOI

Matsuzaka K., Walboomers X., Yoshinari M., Inoue T., Jansen J. The attachment and growth behavior of osteoblast-like cells on microtextured surfaces. Biomaterials. 2003;24:2711–2719. doi: 10.1016/S0142-9612(03)00085-1. PubMed DOI

Martinez E., Engel E., Planell J., Samitier J. Effects of artificial micro- and nano-structured surfaces on cell behaviour. Ann. Anat.—Anat. Anz. 2009;191:126–135. doi: 10.1016/j.aanat.2008.05.006. PubMed DOI

Lucchetta G., Sorgato M., Zanchetta E., Brusatin G., Guidi E., Di Liddo R., Conconi M. Effect of injection molded micro-structured polystyrene surfaces on proliferation of MC3T3-E1 cells. Express Polym. Lett. 2015;9:354–361. doi: 10.3144/expresspolymlett.2015.33. DOI

Jeon H., Simon C.G., Kim G. A mini-review: Cell response to microscale, nanoscale, and hierarchical patterning of surface structure. J. Biomed. Mater. Res. Part B. 2014;102:1580–1594. doi: 10.1002/jbm.b.33158. PubMed DOI

Papenburg B.J., Vogelaar L., Bolhuis-Versteeg L.A.M., Lammertink R.G.H., Stamatialis D., Wessling M. One-step fabrication of porous micropatterned scaffolds to control cell behavior. Biomaterials. 2007;28:1998–2009. doi: 10.1016/j.biomaterials.2006.12.023. PubMed DOI

Gerecht S., Bettinger C.J., Zhang Z., Borenstein J.T., Vuniak-Novakovic G., Langer R. The effect of actin disrupting agents on contact guidance of human embryonic stem cells. Biomaterials. 2007;28:4068–4077. doi: 10.1016/j.biomaterials.2007.05.027. PubMed DOI PMC

Leclerc A., Tremblay D., Hadjiantoniou S., Bukoreshtliev N.V., Rogowski J.L., Godin M., Pelling A.E. Three dimensional spatial separation of cells in response to microtopography. Biomaterials. 2013;34:8097–8104. doi: 10.1016/j.biomaterials.2013.07.047. PubMed DOI

Connal L.A., Qiao G.G. Preparation of Porous Poly(dimethylsiloxane)-Based Honeycomb Materials with Hierarchal Surface Features and Their Use as Soft-Lithography Templates. Adv. Mater. 2006;18:3024–3028. doi: 10.1002/adma.200600982. DOI

Galeotti F., Andicsova A., Yunus S., Botta C. Precise surface patterning of silk fibroin films by breath figures. Soft Matter. 2012;8:4815–4821. doi: 10.1039/c2sm25089f. DOI

Tanaka H. Formation of Network and Cellular Structures by Viscoelastic Phase Separation. Adv. Mater. 2009;21:1872–1880. doi: 10.1002/adma.200802763. DOI

Xue L.J., Zhang J.L., Han Y.C. Phase separation induced ordered patterns in thin polymer blend films. Prog. Polym. Sci. 2012;37:564–594. doi: 10.1016/j.progpolymsci.2011.09.001. DOI

Sun N., Chen J., Jiang C., Zhang Y., Shi F. Enhanced Wet-Chemical Etching To Prepare Patterned Silicon Mask with Controlled Depths by Combining Photolithography with Galvanic Reaction. Ind. Eng. Chem. Res. 2012;51:788–794. doi: 10.1021/ie201996t. DOI

Zhai W.T., Feng W.W., Ling J.Q., Zheng W.G. Fabrication of Lightweight Microcellular Polyimide Foams with Three-Dimensional Shape by CO2 Foaming and Compression Molding. Ind. Eng. Chem. Res. 2012;51:12827–12834. doi: 10.1021/ie3017658. DOI

O’Brien F.J., Harley B.A., Yannas I.V., Gibson L. Influence of freezing rate on pore structure in freeze-dried collagen-GAG scaffolds. Biomaterials. 2004;25:1077–1086. doi: 10.1016/S0142-9612(03)00630-6. PubMed DOI

Wrzecionko E., Minarik A., Smolka P., Minarik M., Humpolicek P., Rejmontova P., Mracek A., Minarikova M., Grundelova L. Variations of Polymer Porous Surface Structures via the Time Sequenced Dosing of Mixed Solvents. Acs Appl. Mater. Interfaces. 2017;9:6472–6481. doi: 10.1021/acsami.6b15774. PubMed DOI

Bunz U.H.F. Breath Figures as a Dynamic Templating Method for Polymers and Nanomaterials. Adv. Mater. 2006;18:973–989. doi: 10.1002/adma.200501131. DOI

Tsay C.S., McHugh A.J. Mass transfer modeling of asymmetric membrane formation by phase inversion. J. Polym. Sci. Part B Polym. Phys. 1990;28:1327–1365. doi: 10.1002/polb.1990.090280810. DOI

Kimmerle K., Strathmann H. Analysis of the structure-determining process of phase inversion membranes. Desalination. 1990;79:283–302. doi: 10.1016/0011-9164(90)85012-Y. DOI

Altinkaya S.A., Ozbas B. Modeling of asymmetric membrane formation by dry-casting method. J. Membr. Sci. 2004;230:71–89. doi: 10.1016/j.memsci.2003.10.034. DOI

Matsuzaka K., Jinnai H., Koga T., Hashimoto T. Effect of Oscillatory Shear Deformation on Demixing Processes of Polymer Blends. Macromolecules. 1997;30:1146–1152. doi: 10.1021/ma961212c. DOI

Xuyun W., Lin Z., Dahai S., Quanfu A., Huanlin C. Effect of coagulation bath temperature on formation mechanism of poly(vinylidene fluoride) membrane. J. Appl. Polym. Sci. 2008;110:1656–1663.

Li W., Ryan A.J., Meier I.K. Morphology Development via Reaction-Induced Phase Separation in Flexible Polyurethane Foam. Macromolecules. 2002;35:5034–5042. doi: 10.1021/ma020035e. DOI

Guillen G.R., Pan Y., Li M., Hoek E.M.V. Preparation and Characterization of Membranes Formed by Nonsolvent Induced Phase Separation: A Review. Ind. Eng. Chem. Res. 2011;50:3798–3817. doi: 10.1021/ie101928r. DOI

Samuel A., Umapathy S., Ramakrishnan S. Functionalized and Postfunctionalizable Porous Polymeric Films through Evaporation-Induced Phase Separation Using Mixed Solvents. Acs Appl. Mater. Interfaces. 2011;3:3293–3299. doi: 10.1021/am200735t. PubMed DOI

Strathmann H., Kock K. The formation mechanism of phase inversion membranes. Desalination. 1977;21:241–255. doi: 10.1016/S0011-9164(00)88244-2. DOI

Farnaz F., Behzad P., Mehdi S. Direct breath figure formation on PMMA and superhydrophobic surface using in situ perfluoro-modified silica nanoparticles. J. Polym. Sci. Part B Polym. Phys. 2013;51:441–451.

Temenoff J.S., Mikos A.G. Biomaterials: The Intersection of Biology and Materials Science. Pearson Prentice Hall; Upper Saddle River, NJ, USA: London, UK: 2008.

Bacakova L., Filova E., Parizek M., Ruml T., Svorcik V. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol. Adv. 2011;29:739–767. doi: 10.1016/j.biotechadv.2011.06.004. PubMed DOI

Bui V., Ko S., Choi H. Large-Scale Fabrication of Commercially Available, Nonpolar Linear Polymer Film with a Highly Ordered Honeycomb Pattern. Acs Appl. Mater. Interfaces. 2015;7:10541–10547. doi: 10.1021/acsami.5b02097. PubMed DOI

Li J., Peng J., Huang W., Wu Y., Fu J., Cong Y., Xue L., Han Y. Ordered honeycomb-structured gold nanoparticle films with changeable pore morphology: From circle to ellipse. Langmuir. 2005;21:2017–2021. doi: 10.1021/la047625l. PubMed DOI

Sukitpaneenit P., Chung T.-S. Molecular elucidation of morphology and mechanical properties of PVDF hollow fiber membranes from aspects of phase inversion, crystallization and rheology. J. Membr. Sci. 2009;340:192–205. doi: 10.1016/j.memsci.2009.05.029. DOI

Kim J.-H., Lee K.-H. Effect of PEG additive on membrane formation by phase inversion. J. Membr. Sci. 1998;138:153–163. doi: 10.1016/S0376-7388(97)00224-X. DOI

Nashchekina Y., Samusenko I., Zorin I., Kulthareva L., Bilibin A., Blinova M. Poly(D,L-lactide)/PEG blend films for keratinocyte cultivation and skin reconstruction. Biomed. Mater. 2019;14:1–10. doi: 10.1088/1748-605X/ab3aa2. PubMed DOI

Jhala D., Vasita R. A Review on Extracellular Matrix Mimicking Strategies for an Artificial Stem Cell Niche. Polym. Rev. 2015;55:561–595. doi: 10.1080/15583724.2015.1040552. DOI

Kawano T., Sato M., Yabu H., Shimomura M. Honeycomb-shaped surface topography induces differentiation of human mesenchymal stem cells (hMSCs): Uniform porous polymer scaffolds prepared by the breath figure technique. Biomater. Sci. 2014;2:52–56. doi: 10.1039/C3BM60195A. PubMed DOI

Dalby M.J., Gadegaard N., Tare R., Andar A., Riehle M.O., Herzyk P., Wilkinson C.D.W., Oreffo R.O.C. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat. Mater. 2007;6:997–1003. doi: 10.1038/nmat2013. PubMed DOI

Luo W., Jones S.R., Yousaf M.N. Geometric Control of Stem Cell Differentiation Rate on Surfaces. Langmuir. 2008;24:12129–12133. doi: 10.1021/la802836g. PubMed DOI

Ankam S., Suryana M., Chan L.Y., Moe A.A.K., Teo B.K.K., Law J.B.K., Sheetz M.P., Low H.Y., Yim E.K.F. Substrate topography and size determine the fate of human embryonic stem cells to neuronal or glial lineage. Acta Biomater. 2013;9:4535–4545. doi: 10.1016/j.actbio.2012.08.018. PubMed DOI

Markert L.D., Lovmand J., Foss M., Lauridsen R.H., Lovmand M., Fuchtbauer E.M., Fuchtbauer A., Wertz K., Besenbacher F., Pedersen F.S., et al. Identification of Distinct Topographical Surface Microstructures Favoring Either Undifferentiated Expansion or Differentiation of Murine Embryonic Stem Cells. Stem Cells Dev. 2009;18:1331–1342. doi: 10.1089/scd.2009.0114. PubMed DOI

Minarik M., Wrzecionko E., Minarik A., Grulich O., Smolka P., Musilova L., Junkar I., Primc G., Ptoskova B., Mozetic M., et al. Preparation of Hierarchically Structured Polystyrene Surfaces with Superhydrophobic Properties by Plasma-Assisted Fluorination. Coatings. 2019;9:201. doi: 10.3390/coatings9030201. DOI

Minarik A., Rafajova M., Rajnohova E., Smolka P., Mracek A. Self-organised patterns in polymeric films solidified from diluted solutions—The effect of the substrate surface properties. Int. J. Heat Mass Transf. 2014;78:615–623. doi: 10.1016/j.ijheatmasstransfer.2014.07.032. DOI

Chvatalova L., Cermak R., Mracek A., Grulich O., Vesel A., Ponizil P., Minarik A., Cvelbar U., Benicek L., Sajdl P. The effect of plasma treatment on structure and properties of poly(1-butene) surface. Eur. Polym. J. 2012;48:866–874. doi: 10.1016/j.eurpolymj.2012.02.007. DOI

Larrieu J., Held B., Martinez H., Tison Y. Ageing of atactic and isotactic polystyrene thin films treated by oxygen DC pulsed plasma. Surf. Coat. Technol. 2005;200:2310–2316. doi: 10.1016/j.surfcoat.2004.06.032. DOI

Nagy A., Rossant J., Nagy R., Abramownewerly W., Roder J.C. Derivation of completely cell culture-derived mice from early-passage embryonic stem-cells. Proc. Natl. Acad. Sci. USA. 1993;90:8424–8428. doi: 10.1073/pnas.90.18.8424. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Controlled Structuring of Hyaluronan Films by Phase Separation and Inversion

. 2023 Sep 19 ; 39 (37) : 13140-13148. [epub] 20230901

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...