Transcriptome and Evolutionary Analysis of Pseudotrichomonas keilini, a Free-Living Anaerobic Eukaryote
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články
Grantová podpora
22-22538S
Czech Science Foundation
DEB-2045329
US National Science foundation
GBMF9741
Gordon and Betty Moore Foundation
PubMed
39656733
PubMed Central
PMC11635102
DOI
10.1093/gbe/evae262
PII: 7916418
Knihovny.cz E-zdroje
- Klíčová slova
- anaerobic eukaryotes, eukaryotic evolution, hydrogenosome, protist transcriptome,
- MeSH
- anaerobióza MeSH
- biologická evoluce MeSH
- fylogeneze * MeSH
- molekulární evoluce * MeSH
- Parabasalidea genetika MeSH
- transkriptom * MeSH
- Publikační typ
- časopisecké články MeSH
The early evolution of eukaryotes and their adaptations to low-oxygen environments are fascinating open questions in biology. Genome-scale data from novel eukaryotes, and particularly from free-living lineages, are the key to answering these questions. The Parabasalia are a major group of anaerobic eukaryotes that form the most speciose lineage of Metamonada. The most well-studied are parasitic parabasalids, including Trichomonas vaginalis and Tritrichomonas foetus, but very little genome-scale data are available for free-living members of the group. Here, we sequenced the transcriptome of Pseudotrichomonas keilini, a free-living parabasalian. Comparative genomic analysis indicated that P. keilini possesses a metabolism and gene complement that are in many respects similar to its parasitic relative T. vaginalis and that in the time since their most recent common ancestor, it is the T. vaginalis lineage that has experienced more genomic change, likely due to the transition to a parasitic lifestyle. Features shared between P. keilini and T. vaginalis include a hydrogenosome (anaerobic mitochondrial homolog) that we predict to function much as in T. vaginalis and a complete glycolytic pathway that is likely to represent one of the primary means by which P. keilini obtains ATP. Phylogenomic analysis indicates that P. keilini branches within a clade of endobiotic parabasalids, consistent with the hypothesis that different parabasalid lineages evolved toward parasitic or free-living lifestyles from an endobiotic, anaerobic, or microaerophilic common ancestor.
Centre for Environment Fisheries and Aquaculture Science Lowestoft UK
Department of Zoology Faculty of Science Charles University 128 00 Prague Czech Republic
Institute of Ecology and Evolution University of Edinburgh Edinburgh EH9 3FL UK
Institute of Vertebrate Biology Czech Academy of Sciences 603 00 Brno Czech Republic
School of Biological Sciences University of Bristol Bristol BS8 1TH UK
School of Life Sciences Arizona State University Tempe AZ 85287 USA
Zobrazit více v PubMed
Adl SM, Leander BS, Simpson AG, Archibald JM, Anderson OR, Bass D, Bowser SS, Brugerolle G, Farmer MA, Karpov S, et al. Diversity, nomenclature, and taxonomy of protists. Syst Biol. 2007:56(4):684–689. 10.1080/10635150701494127. PubMed DOI
Bishop A. Observations upon a “Trichomonas” from pond water. Parasitology. 1935:27(2):246–256. 10.1017/S0031182000015110. DOI
Bishop A. A note upon the systematic position of “Trichomonas” keilini (Bishop, 1935). Parasitology. 1939:31(4):469–472. 10.1017/S0031182000012993. DOI
Brugerolle G, Lee J. Phylum Parabasalia. In: Lee JJ, Leedale GF, Bradbury PC, editors. An illustrated guide to the protozoa: organisms traditionally referred to as protozoa, or newly discovered groups. Lawrence, Kansas, USA: Society of Protozoologists; 2000. p. 1196–1250.
Burki F, Roger AJ, Brown MW, Simpson AGB. The new tree of eukaryotes. Trends Ecol Evol. 2020:35(1):43–55. 10.1016/j.tree.2019.08.008. PubMed DOI
Čepička I, Dolan MF, Gile GH. Parabasalia. In: Archibald JM, Simpson AGB, Slamovits CH, Margulis L, Melkonian M, Chapman DJ, Corliss JO, editors. Handbook of the protists. Cham: Springer International Publishing; 2017. p. 1–44.
Cepicka I, Hampl V, Kulda J. Critical taxonomic revision of parabasalids with description of one new genus and three new species. Protist. 2010:161(3):400–433. 10.1016/j.protis.2009.11.005. PubMed DOI
Cerón-Romero MA, Fonseca MM, de Oliveira Martins L, Posada D, Katz LA. Phylogenomic analyses of 2,786 genes in 158 lineages support a root of the eukaryotic tree of life between opisthokonts and all other lineages. Genome Biol Evol. 2022:14(8):evac119. 10.1093/gbe/evac119. PubMed DOI PMC
Céza V, Kotyk M, Kubánková A, Yubuki N, Šťáhlavský F, Silberman JD, Čepička I. Free-living trichomonads are unexpectedly diverse. Protist. 2022:173(4):125883. 10.1016/j.protis.2022.125883. PubMed DOI
Csűös M. Count: evolutionary analysis of phylogenetic profiles with parsimony and likelihood. Bioinformatics. 2010:26(15):1910–1912. 10.1093/bioinformatics/btq315. PubMed DOI
Derelle R, Philippe H, Colbourne JK. Broccoli: combining phylogenetic and network analyses for orthology assignment. Mol Biol Evol. 2020:37(11):3389–3396. 10.1093/molbev/msaa159. PubMed DOI
Donné A. Animalcules observés dans les matières purulentes et le produit des sécrétions des organes génitaux de l'homme et da la femme. CR Acad Sci. 1836:3:385–386.
Fiori PL, Rappelli P, Addis MF, Mannu F, Cappuccinelli P. Contact-dependent disruption of the host cell membrane skeleton induced by Trichomonas vaginalis. Infect Immun. 1997:65(12):5142–5148. 10.1128/iai.65.12.5142-5148.1997. PubMed DOI PMC
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, et al. De novo transcript sequence reconstruction from RNA-Seq: reference generation and analysis with Trinity. Nat Protoc. 2013:8(8):1494–1512. 10.1038/nprot.2013.084. PubMed DOI PMC
Handrich MR, Garg SG, Sommerville EW, Hirt RP, Gould SB. Characterization of the BspA and Pmp protein family of trichomonads. Parasit Vectors. 2019:12(1):406. 10.1186/s13071-019-3660-z. PubMed DOI PMC
Hrdy I, Hirt RP, Dolezal P, Bardonová L, Foster PG, Tachezy J, Martin Embley T. Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature. 2004:432(7017):618–622. 10.1038/nature03149. PubMed DOI
Leger MM, Kolisko M, Kamikawa R, Stairs CW, Kume K, Čepička I, Silberman JD, Andersson JO, Xu F, Yabuki A, et al. Organelles that illuminate the origins of Trichomonas hydrogenosomes and Giardia mitosomes. Nat Ecol Evol. 2017:1(4):0092. 10.1038/s41559-017-0092. PubMed DOI PMC
Lewis WH, Lind AE, Sendra KM, Onsbring H, Williams TA, Esteban GF, Hirt RP, Ettema TJG, Embley TM. Convergent evolution of hydrogenosomes from mitochondria by gene transfer and loss. Mol Biol Evol. 2019:37(2):524–539. 10.1093/molbev/msz239. PubMed DOI PMC
Maciejowski WJ, Gile GH, Jerlström-Hultqvist J, Dacks JB. Ancient and pervasive expansion of adaptin-related vesicle coat machinery across Parabasalia. Int J Parasitol. 2023:53(4):233–245. 10.1016/j.ijpara.2023.01.002. PubMed DOI
Menezes CB, Frasson AP, Tasca T. Trichomoniasis-are we giving the deserved attention to the most common non-viral sexually transmitted disease worldwide? Microb Cell. 2016:3:404. 10.15698/mic2016.09.526. PubMed DOI PMC
Morel B, Schade P, Lutteropp S, Williams TA, Szöllősi GJ, Stamatakis A. SpeciesRax: a tool for maximum likelihood species tree inference from gene family trees under duplication, transfer, and loss. Mol Biol Evol. 2022:39(2):msab365. 10.1093/molbev/msab365. PubMed DOI PMC
Morel B, Williams TA, Stamatakis A, Szöllősi GJ. AleRax: a tool for gene and species tree co-estimation and reconciliation under a probabilistic model of gene duplication, transfer, and loss. Bioinformatics. 2024:40(4):btae162. 10.1093/bioinformatics/btae162. PubMed DOI PMC
Oyhenart J, Breccia JD. Evidence for repeated gene duplications in Tritrichomonas foetus supported by EST analysis and comparison with the Trichomonas vaginalis genome. Vet Parasitol. 2014:206(3-4):267–276. 10.1016/j.vetpar.2014.09.024. PubMed DOI
Peña-Diaz P, Lukeš J. Fe–S cluster assembly in the supergroup Excavata. J Biol Inorg Chem. 2018:23(4):521–541. 10.1007/s00775-018-1556-6. PubMed DOI PMC
Pereira-Neves A, Benchimol M. Phagocytosis by Trichomonas vaginalis: new insights. Biol Cell. 2007:99(2):87–101. 10.1042/BC20060084. PubMed DOI
Petrin D, Delgaty K, Bhatt R, Garber G. Clinical and microbiological aspects of Trichomonas vaginalis. Clin Microbiol Rev. 1998:11(2):300–317. 10.1128/CMR.11.2.300. PubMed DOI PMC
Schneider RE, Brown MT, Shiflett AM, Dyall SD, Hayes RD, Xie Y, Loo JA, Johnson PJ. The Trichomonas vaginalis hydrogenosome proteome is highly reduced relative to mitochondria, yet complex compared with mitosomes. Int J Parasitol. 2011:41(13-14):1421–1434. 10.1016/j.ijpara.2011.10.001. PubMed DOI PMC
Sibbald SJ, Archibald JM. More protist genomes needed. Nat Ecol Evol. 2017:1(5):145. 10.1038/s41559-017-0145. PubMed DOI
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single–copy orthologs. Bioinform. 2015:31(19):3210–3212. PubMed
Stairs CW, Leger MM, Roger AJ. Diversity and origins of anaerobic metabolism in mitochondria and related organelles. Philos Trans R Soc B Biol Sci. 2015:370(1678):20140326. 10.1098/rstb.2014.0326. PubMed DOI PMC
Stairs CW, Táborský P, Salomaki ED, Kolisko M, Pánek T, Eme L, Hradilová M, Vlček Č, Jerlström-Hultqvist J, Roger AJ, et al. Anaeramoebae are a divergent lineage of eukaryotes that shed light on the transition from anaerobic mitochondria to hydrogenosomes. Curr Biol. 2021:31(24):5605–5612.e5. 10.1016/j.cub.2021.10.010. PubMed DOI
Williamson K, Eme L, Baños H, McCarthy C, Susko E, Kamikawa R, Orr RJS, Muñoz-Gómez SA, Simpson AGB, Roger AJ. A robustly rooted tree of eukaryotes reveals their excavate ancestry. bioRxiv 611237. 10.1101/2024.09.04.611237, 16 September 2024, preprint: not peer reviewed. DOI
Yamin MA, Ma Y. Flagellates of the orders Trichomonadida Kirby, Oxymonadida Grassé, and Hypermastigida Grassi & Foà reported from lower termites (Isoptera families Mastotermitidae, Kalotermitidae, Hodotermitidae, Termopsidae, Rhinotermitidae, and Serritermitidae) and from the wood-feeding roach Cryptocercus (Dictyoptera: Cryptocercidae). Sociobiol. 1979:4(1):5–119.
Yubuki N, Céza V, Cepicka I, Yabuki A, Inagaki Y, Nakayama T, Inouye I, Leander BS. Cryptic diversity of free-living parabasalids, Pseudotrichomonas keilini and Lacusteria cypriaca n. g., n. sp., as inferred from small subunit rDNA sequences. J Eukaryot Microbiol. 2010:57(6):554–561. 10.1111/j.1550-7408.2010.00509.x. PubMed DOI