Fe-S cluster assembly in the supergroup Excavata
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
29623424
PubMed Central
PMC6006210
DOI
10.1007/s00775-018-1556-6
PII: 10.1007/s00775-018-1556-6
Knihovny.cz E-zdroje
- Klíčová slova
- Evolution, Excavata, Fe–S cluster, Mitochondria,
- MeSH
- Eukaryota cytologie metabolismus MeSH
- mitochondrie metabolismus MeSH
- proteiny obsahující železo a síru metabolismus MeSH
- železo metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- proteiny obsahující železo a síru MeSH
- železo MeSH
The majority of established model organisms belong to the supergroup Opisthokonta, which includes yeasts and animals. While enlightening, this focus has neglected protists, organisms that represent the bulk of eukaryotic diversity and are often regarded as primitive eukaryotes. One of these is the "supergroup" Excavata, which comprises unicellular flagellates of diverse lifestyles and contains species of medical importance, such as Trichomonas, Giardia, Naegleria, Trypanosoma and Leishmania. Excavata exhibits a continuum in mitochondrial forms, ranging from classical aerobic, cristae-bearing mitochondria to mitochondria-related organelles, such as hydrogenosomes and mitosomes, to the extreme case of a complete absence of the organelle. All forms of mitochondria house a machinery for the assembly of Fe-S clusters, ancient cofactors required in various biochemical activities needed to sustain every extant cell. In this review, we survey what is known about the Fe-S cluster assembly in the supergroup Excavata. We aim to bring attention to the diversity found in this group, reflected in gene losses and gains that have shaped the Fe-S cluster biogenesis pathways.
Faculty of Sciences University of South Bohemia České Budějovice Czech Republic
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
Zobrazit více v PubMed
Roger AJ, Muñoz-Gómez SA, Kamikawa R. The origin and diversification of mitochondria. Curr Biol. 2017;27:R1177–R1192. PubMed
Maguire F, Richards TA. Organelle evolution: a mosaic of “mitochondrial” functions. Curr Biol. 2014;24:R518–R520. PubMed
Lill R. Function and biogenesis of iron–sulphur proteins. Nature. 2009;460:831–838. PubMed
Verner Z, Basu S, Benz C, et al. Malleable mitochondrion of Trypanosoma brucei. Int Rev Cell Mol Biol. 2015;315:73–151. PubMed
Müller M, Mentel M, van Hellemond JJ, et al. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol Rev. 2012;76:444–495. PubMed PMC
Müller M. The hydrogenosome. J Gen Microbiol. 1993;139:2879–2889. PubMed
Lill R, Kispal G. Maturation of cellular Fe–S proteins: an essential function of mitochondria. Trends Biochem Sci. 2000;25:352–356. PubMed
Adl SM, Simpson AGB, Lane CE, et al. The revised classification of eukaryotes. J Eukaryot Microbiol. 2012;59:429–514. PubMed PMC
Takahashi Y, Tokumoto U. A third bacterial system for the assembly of iron–sulfur clusters with homologs in archaea and plastids. J Biol Chem. 2002;277:28380–28383. PubMed
Jacobson MR, Cash VL, Weiss MC, et al. Biochemical and genetic analysis of the nifUSVWZM cluster from Azotobacter vinelandii. Mol Gen Genet. 1989;219:49–57. PubMed
Loiseau L, Ollagnier de Choudens S, Lascoux D, et al. Analysis of the heteromeric CsdA–CsdE cysteine desulfurase, assisting Fe–S cluster biogenesis in Escherichia coli. J Biol Chem. 2005;280:26760–26769. PubMed
Stairs CW, Leger MM, Roger AJ. Diversity and origins of anaerobic metabolism in mitochondria and related organelles. Philos Trans R Soc Lond B Biol Sci. 2015;370:20140326. PubMed PMC
Stairs CW, Eme L, Brown MW, et al. A SUF Fe–S cluster biogenesis system in the mitochondrion-related organelles of the anaerobic protist Pygsuia. Curr Biol. 2014;24:1176–1186. PubMed
Lill R, Dutkiewicz R, Freibert SA, et al. The role of mitochondria and the CIA machinery in the maturation of cytosolic and nuclear iron–sulfur proteins. Eur J Cell Biol. 2015;94:280–291. PubMed
Stehling O, Mascarenhas J, Vashisht AA, et al. Human CIA2A-FAM96A and CIA2B-FAM96B integrate iron homeostasis and maturation of different subsets of cytosolic-nuclear iron–sulfur proteins. Cell Metab. 2013;18:187–198. PubMed PMC
Paul VD, Lill R. Biogenesis of cytosolic and nuclear iron–sulfur proteins and their role in genome stability. BBA-Mol Cell Res. 2015;1853:1528–1539. PubMed
Balk J, Pilon M. Ancient and essential: the assembly of iron–sulfur clusters in plants. Trends Plant Sci. 2011;16:218–226. PubMed
Barras F, Loiseau L, Py B. How Escherichia coli and Saccharomyces cerevisiae build Fe/S proteins. Adv Microb Physiol. 2005;50:41–101. PubMed
Roche B, Aussel L, Ezraty B, et al. Iron/sulfur proteins biogenesis in prokaryotes: formation, regulation and diversity. Biochim Biophys Acta. 2013;1827:455–469. PubMed
Basu S, Netz DJ, Haindrich AC, et al. Cytosolic iron–sulphur protein assembly is functionally conserved and essential in procyclic and bloodstream Trypanosoma brucei. Mol Microbiol. 2014;93:897–910. PubMed
Iwasaki T. Iron–sulfur world in aerobic and hyperthermoacidophilic archaea Sulfolobus. Archaea. 2010;2010:1–14. PubMed PMC
Tsaousis AD, Ollagnier de Choudens S, Gentekaki E, et al. Evolution of Fe/S cluster biogenesis in the anaerobic parasite Blastocystis. Proc Natl Acad Sci USA. 2012;109:10426–10431. PubMed PMC
Karnkowska A, Vacek V, Zubácová Z, et al. A eukaryote without a mitochondrial organelle. Curr Biol. 2016;26:1274–1284. PubMed
Tachezy J, Sánchez LB, Müller M. Mitochondrial type iron–sulfur cluster assembly in the amitochondriate eukaryotes Trichomonas vaginalis and Giardia intestinalis, as indicated by the phylogeny of IscS. Mol Biol Evol. 2001;18:1919–1928. PubMed
Freibert SA, Goldberg AV, Hacker C, et al. Evolutionary conservation and in vitro reconstitution of microsporidian iron–sulfur cluster biosynthesis. Nat Commun. 2016;8:1–12. PubMed PMC
Dellibovi-Ragheb TA, Gisselberg JE, Prigge ST. Parasites FeS up: iron–sulfur cluster biogenesis in eukaryotic pathogens. PLoS Pathog. 2013;9:e1003227. PubMed PMC
Hjort K, Goldberg AV, Tsaousis AD, et al. Diversity and reductive evolution of mitochondria among microbial eukaryotes. Philos Trans R Soc Lond B Biol Sci. 2010;365:713–727. PubMed PMC
Leger MM, Kolísko M, Kamikawa R, et al. Organelles that illuminate the origins of Trichomonas hydrogenosomes and Giardia mitosomes. Nat Ecol Evol. 2017;1:0092. PubMed PMC
Yan R, Konarev PV, Iannuzzi C, et al. Ferredoxin competes with bacterial frataxin in binding to the desulfurase IscS. J Biol Chem. 2013;288:24777–24787. PubMed PMC
Ayala-Castro C, Saini A, Outten FW. Fe–S cluster assembly pathways in bacteria. Microbiol Mol Biol Rev. 2008;72:110–125. PubMed PMC
Ollagnier-de-Choudens S, Mattioli T, Takahashi Y, Fontecave M. Iron–sulfur cluster assembly: characterization of IscA and evidence for a specific and functional complex with ferredoxin. J Biol Chem. 2001;276:22604–22607. PubMed
Krebs C, Agar JN, Smith AD, et al. IscA, an alternate scaffold for Fe–S cluster biosynthesis. Biochemistry. 2001;40:14069–14080. PubMed
Vickery LE, Cupp-Vickery JR. Molecular chaperones HscA/Ssq1 and HscB/Jac1 and their roles in iron–sulfur protein maturation. Crit Rev Biochem Mol Biol. 2008;42:95–111. PubMed
Silberg JJ, Tapley TL, Hoff KG, Vickery LE. Regulation of the HscA ATPase reaction cycle by the co-chaperone HscB and the iron–sulfur cluster assembly protein IscU. J Biol Chem. 2004;279:53924–53931. PubMed
Reyda MR, Fugate CJ, Jarrett JT. A complex between biotin synthase and the iron–sulfur cluster assembly chaperone HscA that enhances in vivo cluster assembly. Biochemistry. 2009;48:10782–10792. PubMed PMC
Bonomi F, Iametti S, Morleo A, et al. Studies on the mechanism of catalysis of iron–sulfur cluster transfer from IscU[2Fe2S] by HscA/HscB chaperones. Biochemistry. 2008;47:12795–12801. PubMed
Chandramouli K, Johnson MK. HscA and HscB stimulate [2Fe–2S] cluster transfer from IscU to apoferredoxin in an ATP-dependent reaction. Biochemistry. 2006;45:11087–11095. PubMed PMC
Hoff KG, Silberg JJ, Vickery LE. Interaction of the iron–sulfur cluster assembly protein IscU with the Hsc66/Hsc20 molecular chaperone system of Escherichia coli. Proc Natl Acad Sci USA. 2000;97:7790–7795. PubMed PMC
Bonomi F, Iametti S, Morleo A, et al. Facilitated transfer of IscU-[2Fe2S] clusters by chaperone-mediated ligand exchange. Biochemistry. 2011;50:9641–9650. PubMed
Agar JN, Krebs C, Frazzon J, et al. IscU as a scaffold for iron–sulfur cluster biosynthesis: sequential assembly of [2Fe–2S] and [4Fe–4S] clusters in IscU. Biochemistry. 2000;39:7856–7862. PubMed
Chandramouli K, Unciuleac M-C, Naik S, et al. Formation and properties of [4Fe–4S] clusters on the IscU scaffold protein. Biochemistry. 2007;46:6804–6811. PubMed
Adinolfi S, Iannuzzi C, Prischi F, et al. Bacterial frataxin CyaY is the gatekeeper of iron–sulfur cluster formation catalyzed by IscS. Nat Struct Mol Biol. 2009;16:390–396. PubMed
Loiseau L, Ollagnier de Choudens S, Nachin L, et al. Biogenesis of Fe–S cluster by the bacterial Suf system: SufS and SufE form a new type of cysteine desulfurase. J Biol Chem. 2003;278:38352–38359. PubMed
Outten FW, Djaman O, Storz G. A suf operon requirement for Fe–S cluster assembly during iron starvation in Escherichia coli. Mol Microbiol. 2004;52:861–872. PubMed
Outten FW, Wood MJ, Muñoz FM, Storz G. The SufE protein and the SufBCD complex enhance SufS cysteine desulfurase activity as part of a sulfur transfer pathway for Fe–S cluster assembly in Escherichia coli. J Biol Chem. 2003;278:45713–45719. PubMed
Mihara H, Esaki N. Bacterial cysteine desulfurases: their function and mechanisms. Appl Microbiol Biotechnol. 2002;60:12–23. PubMed
Layer G, Gaddam SA, Ayala-Castro CN, et al. SufE transfers sulfur from SufS to SufB for iron–sulfur cluster assembly. J Biol Chem. 2007;282:13342–13350. PubMed
Wollers S, Layer G, Garcia Serres R, et al. Iron–sulfur (Fe–S) cluster assembly: the SufBCD complex is a new type of Fe–S scaffold with a flavin redox cofactor. J Biol Chem. 2010;285:23331–23341. PubMed PMC
Chahal HK, Outten FW. Separate FeS scaffold and carrier functions for SufB2C2 and SufA during in vitro maturation of [2Fe2S] Fdx. J Inorg Biochem. 2012;116:126–134. PubMed PMC
Saini A, Mapolelo DT, Chahal HK, et al. SufD and SufC ATPase activity are required for iron acquisition during in vivo Fe–S cluster formation on SufB. Biochemistry. 2010;49:9402–9412. PubMed PMC
Nachin L, Loiseau L, Expert D, Barras F. SufC: an unorthodox cytoplasmic ABC/ATPase required for [Fe–S] biogenesis under oxidative stress. EMBO J. 2003;22:427–437. PubMed PMC
Hirabayashi K, Yuda E, Tanaka N, et al. Functional dynamics revealed by the structure of the SufBCD complex, a novel ATP-binding cassette (ABC) protein that serves as a scaffold for iron–sulfur cluster biogenesis. J Biol Chem. 2015;290:29717–29731. PubMed PMC
Vinella D, Brochier-Armanet C, Loiseau L, et al. Iron–sulfur (Fe/S) protein biogenesis: phylogenomic and genetic studies of A-type carriers. PLoS Genet. 2009;5:e1000497. PubMed PMC
Chahal HK, Dai Y, Saini A, et al. The SufBCD Fe–S scaffold complex interacts with SufA for Fe–S cluster transfer. Biochemistry. 2009;48:10644–10653. PubMed PMC
Outten FW. Recent advances in the Suf Fe–S cluster biogenesis pathway: beyond the Proteobacteria. BBA Mol Cell Res. 2015;1853:1464–1469. PubMed PMC
Yang J, Bitoun JP, Ding H. Interplay of IscA and IscU in biogenesis of iron–sulfur clusters. J Biol Chem. 2006;281:27956–27963. PubMed
Selbach BP, Chung AH, Scott AD, et al. Fe–S cluster biogenesis in Gram-positive bacteria: SufU is a zinc-dependent sulfur transfer protein. Biochemistry. 2013;53:152–160. PubMed PMC
Albrecht AG, Netz DJA, Miethke M, et al. SufU is an essential iron–sulfur cluster scaffold protein in Bacillus subtilis. J Bacteriol. 2010;192:1643–1651. PubMed PMC
Riboldi GP, de Oliveira JS, Frazzon J. Enterococcus faecalis SufU scaffold protein enhances SufS desulfurase activity by acquiring sulfur from its cysteine-153. BBA Proteins Proteom. 2011;1814:1910–1918. PubMed
Mansy SS, Wu G, Surerus KK, Cowan JA. Iron–sulfur cluster biosynthesis. Thermatoga maritima IscU is a structured iron–sulfur cluster assembly protein. J Biol Chem. 2002;277:21397–21404. PubMed
Huet G, Daffe M, Saves I. Identification of the Mycobacterium tuberculosis SUF machinery as the exclusive mycobacterial system of [Fe–S] cluster assembly: evidence for its implication in the pathogen’s survival. J Bacteriol. 2005;187:6137–6146. PubMed PMC
Olson JW, Agar JN, Johnson MK, Maier RJ. Characterization of the NifU and NifS Fe–S cluster formation proteins essential for viability in Helicobacter pylori. Biochemistry. 2000;39:16213–16219. PubMed
Rincon-Enriquez G, Crété P, Barras F, Py B. Biogenesis of Fe/S proteins and pathogenicity: IscR plays a key role in allowing Erwinia chrysanthemi to adapt to hostile conditions. Mol Microbiol. 2008;67:1257–1273. PubMed
Glasner JD, Yang C-H, Reverchon S, et al. Genome sequence of the plant-pathogenic bacterium Dickeya dadantii 3937. J Bacteriol. 2011;193:2076–2077. PubMed PMC
Arnold W, Rump A, Klipp W, et al. Nucleotide sequence of a 24,206-base-pair DNA fragment carrying the entire nitrogen fixation gene cluster of Klebsiella pneumoniae. J Mol Biol. 1988;203:715–738. PubMed
Frazzon J, Dean DR. Formation of iron–sulfur clusters in bacteria: an emerging field in bioinorganic chemistry. Curr Opin Chem Biol. 2003;7:166–173. PubMed
Curatti L, Ludden PW, Rubio LM. NifB-dependent in vitro synthesis of the iron–molybdenum cofactor of nitrogenase. Proc Natl Acad Sci USA. 2006;103:5297–5301. PubMed PMC
Evans DJ, Jones R, Woodley PR, et al. Nucleotide sequence and genetic analysis of the Azotobacter chroococcum nifUSVWZM gene cluster, including a new gene (nifP) which encodes a serine acetyltransferase. J Bacteriol. 1991;173:5457–5469. PubMed PMC
Mihara H, Kurihara T, Yoshimura T, et al. Cysteine sulfinate desulfinase, a NIFS-like protein of Escherichia coli with selenocysteine lyase and cysteine desulfurase activities. Gene cloning, purification, and characterization of a novel pyridoxal enzyme. J Biol Chem. 1997;272:22417–22424. PubMed
Mihara H, Maeda M, Fujii T, et al. A nifS-like gene, csdB, encodes an Escherichia coli counterpart of mammalian selenocysteine lyase. Gene cloning, purification, characterization and preliminary X-ray crystallographic studies. J Biol Chem. 1999;274:14768–14772. PubMed
Mihara H, Kurihara T, Yoshimura T, Esaki N. Kinetic and mutational studies of three NifS homologs from Escherichia coli: mechanistic difference between l-cysteine desulfurase and l-selenocysteine lyase reactions. J Biochem. 2000;127:559–567. PubMed
Fontecave M, Ollagnier de Choudens S. Iron–sulfur cluster biosynthesis in bacteria: mechanisms of cluster assembly and transfer. Arch Biochem Biophys. 2008;474:226–237. PubMed
Trotter V, Vinella D, Loiseau L, et al. The CsdA cysteine desulphurase promotes Fe/S biogenesis by recruiting Suf components and participates to a new sulphur transfer pathway by recruiting CsdL (ex-YgdL), a ubiquitin-modifying-like protein. Mol Microbiol. 2009;74:1527–1542. PubMed
Ali V, Nozaki T. Iron–sulphur clusters, their biosynthesis, and biological functions in protozoan parasites. Adv Parasitol. 2013;83:1–92. PubMed
Kumar B, Chaubey S, Shah P, et al. Interaction between sulphur mobilisation proteins SufB and SufC: evidence for an iron–sulphur cluster biogenesis pathway in the apicoplast of Plasmodium falciparum. Int J Parasitol. 2011;41:991–999. PubMed
Nývltová E, Sutak R, Harant K, et al. NIF-type iron–sulfur cluster assembly system is duplicated and distributed in the mitochondria and cytosol of Mastigamoeba balamuthi. Proc Natl Acad Sci USA. 2013;110:7371–7376. PubMed PMC
Ali V, Shigeta Y, Tokumoto U, et al. An intestinal parasitic protist, Entamoeba histolytica, possesses a non-redundant nitrogen fixation-like system for iron–sulfur cluster assembly under anaerobic conditions. J Biol Chem. 2004;279:16863–16874. PubMed
Poliak P, Van Hoewyk D, Oborník M, et al. Functions and cellular localization of cysteine desulfurase and selenocysteine lyase in Trypanosoma brucei. FEBS J. 2009;277:383–393. PubMed PMC
Richards TA, van der Giezen M. Evolution of the Isd11–IscS complex reveals a single alpha-proteobacterial endosymbiosis for all eukaryotes. Mol Biol Evol. 2006;23:1341–1344. PubMed
Wiedemann N, Urzica E, Guiard B, et al. Essential role of Isd11 in mitochondrial iron–sulfur cluster synthesis on Isu scaffold proteins. EMBO J. 2006;25:184–195. PubMed PMC
Shi Y, Ghosh MC, Tong W-H, Rouault TA. Human ISD11 is essential for both iron–sulfur cluster assembly and maintenance of normal cellular iron homeostasis. Hum Mol Gen. 2009;18:3014–3025. PubMed PMC
Friemel M, Marelja Z, Li K, Leimkühler S. The N-terminus of iron–sulfur cluster assembly factor ISD11 is crucial for subcellular targeting and interaction with l-cysteine desulfurase NFS1. Biochemistry. 2017;56:1797–1808. PubMed
Biederbick A, Stehling O, Rösser R, et al. Role of human mitochondrial Nfs1 in cytosolic iron–sulfur protein biogenesis and iron regulation. Mol Cell Biol. 2006;26:5675–5687. PubMed PMC
Van Vranken JG, Jeong M-Y, Wei P, et al. The mitochondrial acyl carrier protein (ACP) coordinates mitochondrial fatty acid synthesis with iron sulfur cluster biogenesis. Elife. 2016 PubMed PMC
Cory SA, Van Vranken JG, Brignole EJ, et al. Structure of human Fe–S assembly subcomplex reveals unexpected cysteine desulfurase architecture and acyl-ACP–ISD11 interactions. Proc Natl Acad Sci USA. 2017;114:E5325–E5334. PubMed PMC
Boniecki MT, Freibert SA, Mühlenhoff U, et al. Structure and functional dynamics of the mitochondrial Fe/S cluster synthesis complex. Nat Commun. 2017;8:1287. PubMed PMC
Sheftel AD, Stehling O, Pierik AJ, et al. Humans possess two mitochondrial ferredoxins, Fdx1 and Fdx2, with distinct roles in steroidogenesis, heme, and Fe/S cluster biosynthesis. Proc Natl Acad Sci USA. 2010;107:11775–11780. PubMed PMC
Shan Y, Cortopassi G. HSC20 interacts with frataxin and is involved in iron–sulfur cluster biogenesis and iron homeostasis. Hum Mol Gen. 2012;21:1457–1469. PubMed PMC
Beilschmidt LK, Ollagnier de Choudens S, Fournier M, et al. ISCA1 is essential for mitochondrial Fe4S4 biogenesis in vivo. Nat Commun. 2017;8:15124. PubMed PMC
Ciofi-Baffoni S, Nasta V, Banci L. Protein networks in the maturation of human iron–sulfur proteins. Metallomics. 2018;10:49–72. PubMed
Tong W-H, Rouault T. Distinct iron–sulfur cluster assembly complexes exist in the cytosol and mitochondria of human cells. EMBO J. 2000;19:5692–5700. PubMed PMC
Uhrigshardt H, Singh A, Kovtunovych G, et al. Characterization of the human HSC20, an unusual DnaJ type III protein, involved in iron–sulfur cluster biogenesis. Hum Mol Gen. 2010;19:3816–3834. PubMed PMC
Uhrigshardt H, Rouault TA, Missirlis F. Insertion mutants in Drosophila melanogaster Hsc20 halt larval growth and lead to reduced iron–sulfur cluster enzyme activities and impaired iron homeostasis. J Biol Inorg Chem. 2013;18:441–449. PubMed PMC
Schilke B, Williams B, Knieszner H, et al. Evolution of mitochondrial chaperones utilized in Fe–S cluster biogenesis. Curr Biol. 2006;16:1660–1665. PubMed
Maio N, Singh A, Uhrigshardt H, et al. Cochaperone binding to LYR motifs confers specificity of iron sulfur cluster delivery. Cell Metab. 2014;19:445–457. PubMed PMC
Bridwell-Rabb J, Iannuzzi C, Pastore A, Barondeau DP. Effector role reversal during evolution: the case of Frataxin in Fe–S cluster biosynthesis. Biochemistry. 2012;51:2506–2514. PubMed PMC
Bridwell-Rabb J, Fox NG, Tsai C-L, et al. Human Frataxin activates Fe–S cluster biosynthesis by facilitating sulfur transfer chemistry. Biochemistry. 2014;53:4904–4913. PubMed PMC
Schmucker S, Martelli A, Colin F, et al. Mammalian frataxin: an essential function for cellular viability through an interaction with a preformed ISCU/NFS1/ISD11 iron–sulfur assembly complex. PLoS One. 2011;6:e16199. PubMed PMC
Cai K, Frederick RO, Kim JH, et al. Human mitochondrial chaperone (mtHSP70) and cysteine desulfurase (NFS1) bind preferentially to the disordered conformation, whereas co-chaperone (HSC20) binds to the structured conformation of the iron–sulfur cluster scaffold protein (ISCU) J Biol Chem. 2013;288:28755–28770. PubMed PMC
Banci L, Brancaccio D, Ciofi-Baffoni S, et al. [2Fe–2S] cluster transfer in iron–sulfur protein biogenesis. Proc Natl Acad Sci USA. 2014;111:6203–6208. PubMed PMC
Camaschella C, Campanella A, De Falco L, et al. The human counterpart of zebrafish shiraz shows sideroblastic-like microcytic anemia and iron overload. Blood. 2007;110:1353–1358. PubMed
Uzarska MA, Dutkiewicz R, Freibert S-A, et al. The mitochondrial Hsp70 chaperone Ssq1 facilitates Fe/S cluster transfer from Isu1 to Grx5 by complex formation. Mol Biol Cell. 2013;24:1830–1841. PubMed PMC
Dutkiewicz R, Schilke B, Knieszner H, et al. Ssq1, a mitochondrial Hsp70 involved in iron–sulfur (Fe/S) center biogenesis. Similarities to and differences from its bacterial counterpart. J Biol Chem. 2003;278:29719–29727. PubMed
Rodríguez-Manzaneque MT, Tamarit J, Bellí G, et al. Grx5 is a mitochondrial glutaredoxin required for the activity of iron/sulfur enzymes. Mol Biol Cell. 2002;13:1109–1121. PubMed PMC
Kim K-D, Chung W-H, Kim H-J, et al. Monothiol glutaredoxin Grx5 interacts with Fe–S scaffold proteins Isa1 and Isa2 and supports Fe–S assembly and DNA integrity in mitochondria of fission yeast. Biochem Biophys Res Commun. 2010;392:467–472. PubMed
Vilella F, Alves R, Rodríguez-Manzaneque MT, et al. Evolution and cellular function of monothiol glutaredoxins: involvement in iron–sulphur cluster assembly. Comp Funct Genomics. 2004;5:328–341. PubMed PMC
Sheftel AD, Wilbrecht C, Stehling O, et al. The human mitochondrial ISCA1, ISCA2, and IBA57 proteins are required for [4Fe–4S] protein maturation. Mol Biol Cell. 2012;23:1157–1166. PubMed PMC
Alaimo JT, Besse A, Alston CL, et al. Loss-of-function mutations in ISCA2 disrupt 4Fe–4S cluster machinery and cause a fatal leukodystrophy with hyperglycinemia and mtDNA depletion. Hum Mutat. 2018;39:537–549. PubMed PMC
Brancaccio D, Gallo A, Mikolajczyk M, et al. Formation of [4Fe–4S] clusters in the mitochondrial iron–sulfur cluster assembly machinery. J Am Chem Soc. 2014;136:16240–16250. PubMed
Mühlenhoff U, Gerl MJ, Flauger B, et al. The ISC proteins Isa1 and Isa2 are required for the function but not for the de novo synthesis of the Fe/S clusters of biotin synthase in Saccharomyces cerevisiae. Eukaryot Cell. 2007;6:495–504. PubMed PMC
Mühlenhoff U, Richter N, Pines O, et al. Specialized function of yeast Isa1 and Isa2 proteins in the maturation of mitochondrial [4Fe–4S] proteins. J Biol Chem. 2011;286:41205–41216. PubMed PMC
Kaut A, Lange H, Diekert K, et al. Isa1p is a component of the mitochondrial machinery for maturation of cellular iron–sulfur proteins and requires conserved cysteine residues for function. J Biol Chem. 2000;275:15955–15961. PubMed
Gelling C, Dawes IW, Richhardt N, et al. Mitochondrial Iba57p is required for Fe/S cluster formation on aconitase and activation of radical SAM enzymes. Mol Cell Biol. 2008;28:1851–1861. PubMed PMC
Sánchez LA, Gomez-Gallardo M, Díaz-Pérez AL, et al. Iba57p participates in maturation of a [2Fe–2S]-cluster Rieske protein and in formation of supercomplexes III/IV of Saccharomyces cerevisiae electron transport chain. Mitochondrion. 2018 PubMed
Braymer JJ, Lill R. Iron–sulfur cluster biogenesis and trafficking in mitochondria. J Biol Chem. 2017;292:12754–12763. PubMed PMC
Sheftel AD, Stehling O, Pierik AJ, et al. Human Ind1, an iron–sulfur cluster assembly factor for respiratory complex I. Mol Cell Biol. 2009;29:6059–6073. PubMed PMC
Bych K, Kerscher S, Netz DJA, et al. The iron–sulphur protein Ind1 is required for effective complex I assembly. EMBO J. 2008;27:1736–1746. PubMed PMC
Tong W-H, Jameson GNL, Huynh BH, Rouault TA. Subcellular compartmentalization of human Nfu, an iron–sulfur cluster scaffold protein, and its ability to assemble a [4Fe–4S] cluster. Proc Natl Acad Sci USA. 2003;100:9762–9767. PubMed PMC
Léon S, Touraine B, Ribot C, et al. Iron–sulphur cluster assembly in plants: distinct NFU proteins in mitochondria and plastids from Arabidopsis thaliana. Biochem J. 2003;371:823–830. PubMed PMC
Melber A, Na U, Vashisht A, et al. Role of Nfu1 and Bol3 in iron–sulfur cluster transfer to mitochondrial clients. Elife. 2016;5:186. PubMed PMC
Gao H, Subramanian S, Couturier J, et al. Arabidopsis thaliana Nfu2 accommodates [2Fe–2S] or [4Fe–4S] clusters and is competent for in vitro maturation of chloroplast [2Fe–2S] and [4Fe–4S] cluster-containing proteins. Biochemistry. 2013;52:6633–6645. PubMed PMC
Wachnowsky C, Fidai I, Cowan JA. Iron–sulfur cluster exchange reactions mediated by the human Nfu protein. J Biol Inorg Chem. 2016;21:825–836. PubMed PMC
Benoit SL, Holland AA, Johnson MK, Maier RJ. Iron–sulfur protein maturation in Helicobacter pylori: identifying a Nfu-type cluster carrier protein and its iron–sulfur protein targets. Mol Microbiol. 2018 PubMed PMC
Tonduti D, Dorboz I, Imbard A, et al. New spastic paraplegia phenotype associated to mutation of NFU1. Orphanet J Rare Dis. 2015;10:13. PubMed PMC
Navarro-Sastre A, Tort F, Stehling O, et al. A fatal mitochondrial disease is associated with defective NFU1 function in the maturation of a subset of mitochondrial Fe–S proteins. Am J Hum Genet. 2011;89:656–667. PubMed PMC
Cameron JM, Janer A, Levandovskiy V, et al. Mutations in iron–sulfur cluster scaffold genes NFU1 and BOLA3 cause a fatal deficiency of multiple respiratory chain and 2-oxoacid dehydrogenase enzymes. Am J Hum Genet. 2011;89:486–495. PubMed PMC
Uzarska MA, Nasta V, Weiler BD, et al. Mitochondrial Bol1 and Bol3 function as assembly factors for specific iron–sulfur proteins. Elife. 2016;5:e16673. PubMed PMC
Willems P, Wanschers BFJ, Esseling J, et al. BOLA1 Is an aerobic protein that prevents mitochondrial morphology changes induced by glutathione depletion. Antioxid Redox Signal. 2013;18:129–138. PubMed PMC
Frey AG, Palenchar DJ, Wildemann JD, Philpott CC. A glutaredoxin BolA complex serves as an iron–sulfur cluster chaperone for the cytosolic cluster assembly machinery. J Biol Chem. 2016;291:22344–22356. PubMed PMC
Sipos K, Lange H, Fekete Z, et al. Maturation of cytosolic iron–sulfur proteins requires glutathione. J Biol Chem. 2002;277:26944–26949. PubMed
Kispal G, Csere P, Prohl C, Lill R. The mitochondrial proteins Atm1p and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins. EMBO J. 1999;18:3981–3989. PubMed PMC
Leighton J, Schatz G. An ABC transporter in the mitochondrial inner membrane is required for normal growth of yeast. EMBO J. 1995;14:188–195. PubMed PMC
Balk J, Pierik AJ, Netz DJA, et al. The hydrogenase-like Nar1p is essential for maturation of cytosolic and nuclear iron–sulphur proteins. EMBO J. 2004;23:2105–2115. PubMed PMC
Stehling O, Lill R. The role of mitochondria in cellular iron–sulfur protein biogenesis: mechanisms, connected processes, and diseases. Cold Spring Harb Perspect Biol. 2013;5:a011312. PubMed PMC
Srinivasan V, Pierik AJ, Lill R. Crystal structures of nucleotide-free and glutathione-bound mitochondrial ABC transporter Atm1. Science. 2014;343:1137–1140. PubMed
Roy A, Solodovnikova N, Nicholson T, et al. A novel eukaryotic factor for cytosolic Fe–S cluster assembly. EMBO J. 2003;22:4826–4835. PubMed PMC
Hausmann A, Aguilar Netz DJ, Balk J, et al. The eukaryotic P loop NTPase Nbp35: an essential component of the cytosolic and nuclear iron–sulfur protein assembly machinery. Proc Natl Acad Sci USA. 2005;102:3266–3271. PubMed PMC
Netz DJA, Pierik AJ, Stümpfig M, et al. The Cfd1–Nbp35 complex acts as a scaffold for iron–sulfur protein assembly in the yeast cytosol. Nat Chem Biol. 2007;3:278–286. PubMed
Boyd JM, Drevland RM, Downs DM, Graham DE. Archaeal ApbC/Nbp35 homologs function as iron–sulfur cluster carrier proteins. J Bacteriol. 2009;191:1490–1497. PubMed PMC
Netz DJA, Pierik AJ, Stumpfig M, et al. A bridging [4Fe–4S] cluster and nucleotide binding are essential for function of the Cfd1–Nbp35 complex as a scaffold in iron–sulfur protein maturation. J Biol Chem. 2012;287:12365–12378. PubMed PMC
Stehling O, Netz DJA, Niggemeyer B, et al. Human Nbp35 is essential for both cytosolic iron–sulfur protein assembly and iron homeostasis. Mol Cell Biol. 2008;28:5517–5528. PubMed PMC
Bych K, Netz DJA, Vigani G, et al. The essential cytosolic iron–sulfur protein Nbp35 acts without Cfd1 partner in the green lineage. J Biol Chem. 2008;283:35797–35804. PubMed
Pyrih J, Pyrihová E, Kolísko M, et al. Minimal cytosolic iron–sulfur cluster assembly machinery of Giardia intestinalis is partially associated with mitosomes. Mol Microbiol. 2016;102:701–714. PubMed
Netz DJA, Stümpfig M, Doré C, et al. Tah18 transfers electrons to Dre2 in cytosolic iron–sulfur protein biogenesis. Nat Chem Biol. 2010;6:758–765. PubMed
Zhang Y, Lyver ER, Nakamaru-Ogiso E, et al. Dre2, a conserved eukaryotic Fe/S cluster protein, functions in cytosolic Fe/S protein biogenesis. Mol Cell Biol. 2008;28:5569–5582. PubMed PMC
Peleh V, Riemer J, Dancis A, Herrmann JM. Protein oxidation in the intermembrane space of mitochondria is substrate-specific rather than general. Microb Cell. 2014;1:81–93. PubMed PMC
Banci L, Bertini I, Ciofi-Baffoni S, et al. Anamorsin is a [2Fe–2S] cluster-containing substrate of the Mia40-dependent mitochondrial protein trapping machinery. Chem Biol. 2011;18:794–804. PubMed
Netz DJA, Genau HM, Weiler BD, et al. The conserved protein Dre2 uses essential [2Fe–2S] and [4Fe–4S] clusters for its function in cytosolic iron–sulfur protein assembly. Biochem J. 2016;473:2073–2085. PubMed
Banci L, Ciofi-Baffoni S, Gajda K, et al. N-terminal domains mediate [2Fe–2S] cluster transfer from glutaredoxin-3 to anamorsin. Nat Chem Biol. 2015;11:772–778. PubMed
Balk J, Aguilar Netz DJ, Tepper K, et al. The essential WD40 protein Cia1 is involved in a late step of cytosolic and nuclear iron–sulfur protein assembly. Mol Cell Biol. 2005;25:10833–10841. PubMed PMC
Stehling O, Vashisht AA, Mascarenhas J, et al. MMS19 assembles iron–sulfur proteins required for DNA metabolism and genomic integrity. Science. 2012;337:195–199. PubMed PMC
Gari K, Ortiz AML, Borel V, et al. MMS19 links cytoplasmic iron–sulfur cluster assembly to DNA metabolism. Science. 2012;337:243–245. PubMed
Odermatt DC, Gari K. The CIA targeting complex is highly regulated and provides two distinct binding sites for client iron–sulfur proteins. Cell Rep. 2017;18:1434–1443. PubMed PMC
Srinivasan V, Netz DJA, Webert H, et al. Structure of the yeast WD40 domain protein Cia1, a component acting late in iron–sulfur protein biogenesis. Structure. 2007;15:1246–1257. PubMed
Prakash L, Prakash S. Three additional genes involved in pyrimidine dimer removal in Saccharomyces cerevisiae: RAD7, RAD14 and MMS19. Mol Gen Genet. 1979;176:351–359. PubMed
Li F, Martienssen R, Cande WZ. Coordination of DNA replication and histone modification by the Rik1–Dos2 complex. Nature. 2011;475:244–248. PubMed PMC
Eisenstein RS. Iron regulatory proteins and the molecular control of mammalian iron metabolism. Annu Rev Nutr. 2000;20:627–662. PubMed
Mühlenhoff U, Molik S, Godoy JR, et al. Cytosolic monothiol glutaredoxins function in intracellular iron sensing and trafficking via their bound iron–sulfur cluster. Cell Metab. 2010;12:373–385. PubMed PMC
Yarunin A, Panse VG, Petfalski E, et al. Functional link between ribosome formation and biogenesis of iron–sulfur proteins. EMBO J. 2005;24:580–588. PubMed PMC
Van Ho A, Ward DM, Kaplan J. Transition metal transport in yeast. Annu Rev Microbiol. 2002;56:237–261. PubMed
Ojeda L, Keller G, Mühlenhoff U, et al. Role of glutaredoxin-3 and glutaredoxin-4 in the iron regulation of the Aft1 transcriptional activator in Saccharomyces cerevisiae. J Biol Chem. 2006;281:17661–17669. PubMed
Pujol-Carrion N, Bellí G, Herrero E, et al. Glutaredoxins Grx3 and Grx4 regulate nuclear localisation of Aft1 and the oxidative stress response in Saccharomyces cerevisiae. J Cell Sci. 2006;119:4554–4564. PubMed
Chen OS, Crisp RJ, Valachovic M, et al. Transcription of the yeast iron regulon does not respond directly to iron but rather to iron–sulfur cluster biosynthesis. J Biol Chem. 2004;279:29513–29518. PubMed
Rutherford JC, Ojeda L, Balk J, et al. Activation of the iron regulon by the yeast Aft1/Aft2 transcription factors depends on mitochondrial but not cytosolic iron–sulfur protein biogenesis. J Biol Chem. 2005;280:10135–10140. PubMed
Kumánovics A, Chen OS, Li L, et al. Identification of FRA1 and FRA2 as genes involved in regulating the yeast iron regulon in response to decreased mitochondrial iron–sulfur cluster synthesis. J Biol Chem. 2008;283:10276–10286. PubMed PMC
Li Y. Yeast global transcriptional regulators Sin4 and Rgr1 are components of mediator complex/RNA polymerase II holoenzyme. Proc Natl Acad Sci USA. 1995;92:10864–10868. PubMed PMC
Aldea M, Hernández-Chico C, la Campa de AG, et al. Identification, cloning, and expression of bolA, an ftsZ-dependent morphogene of Escherichia coli. J Bacteriol. 1988;170:5169–5176. PubMed PMC
Li H, Mapolelo DT, Dingra NN, et al. Histidine 103 in Fra2 is an iron–sulfur cluster ligand in the [2Fe–2S] Fra2-Grx3 complex and is required for in vivo iron signaling in yeast. J Biol Chem. 2011;286:867–876. PubMed PMC
Haunhorst P, Berndt C, Eitner S, et al. Characterization of the human monothiol glutaredoxin 3 (PICOT) as iron–sulfur protein. Biochem Biophys Res Commun. 2010;394:372–376. PubMed
Hampl V, Hug L, Leigh JW, et al. Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups”. Proc Natl Acad Sci USA. 2009;106:3859–3864. PubMed PMC
Derelle R, Torruella G, Klimeš V, et al. Bacterial proteins pinpoint a single eukaryotic root. Proc Natl Acad Sci USA. 2015;112:E693–E699. PubMed PMC
Lukeš J, Basu S. Fe/S protein biogenesis in trypanosomes—a review. Biochim Biophys Acta. 2015;1853:1481–1492. PubMed
Hannaert V, Bringaud F, Opperdoes FR, Michels PA. Evolution of energy metabolism and its compartmentation in Kinetoplastida. Kinetoplastid Biol Dis. 2003;2:11. PubMed PMC
Basu S, Horáková E, Lukeš J. Iron-associated biology of Trypanosoma brucei. BBA Gen Subjects. 2016;1860:363–370. PubMed
Smíd O, Horáková E, Vilímová V, et al. Knock-downs of iron–sulfur cluster assembly proteins IscS and IscU down-regulate the active mitochondrion of procyclic Trypanosoma brucei. J Biol Chem. 2006;281:28679–28686. PubMed
Paris Z, Changmai P, Rubio MAT, et al. The Fe/S cluster assembly protein Isd11 is essential for tRNA thiolation in Trypanosoma brucei. J Biol Chem. 2010;285:22394–22402. PubMed PMC
Changmai P, Horáková E, Long S, et al. Both human ferredoxins equally efficiently rescue ferredoxin deficiency in Trypanosoma brucei. Mol Microbiol. 2013;89:135–151. PubMed
Comini MA, Rettig J, Dirdjaja N, et al. Monothiol glutaredoxin-1 is an essential iron–sulfur protein in the mitochondrion of african trypanosomes. J Biol Chem. 2008;283:27785–27798. PubMed
Long S, Jirků M, Ayala FJ, Lukeš J. Mitochondrial localization of human frataxin is necessary but processing is not for rescuing frataxin deficiency in Trypanosoma brucei. Proc Natl Acad Sci USA. 2008;105:13468–13473. PubMed PMC
Long S, Changmai P, Tsaousis AD, et al. Stage-specific requirement for Isa1 and Isa2 proteins in the mitochondrion of Trypanosoma brucei and heterologous rescue by human and Blastocystis orthologues. Mol Microbiol. 2011;81:1403–1418. PubMed
Horáková E, Changmai P, Paris Z, et al. Simultaneous depletion of Atm and Mdl rebalances cytosolic Fe–S cluster assembly but not heme import into the mitochondrion of Trypanosoma brucei. FEBS J. 2015;282:4157–4175. PubMed
Basu S, Leonard JC, Desai N, et al. Divergence of Erv1-associated mitochondrial import and export pathways in trypanosomes and anaerobic protists. Eukaryot Cell. 2013;12:343–355. PubMed PMC
Haindrich AC, Boudová M, Vancová M, et al. The intermembrane space protein Erv1 of Trypanosoma brucei is essential for mitochondrial Fe–S cluster assembly and operates alone. Mol Biochem Parasitol. 2017;214:47–51. PubMed
Kovářová J, Horáková E, Changmai P, et al. Mitochondrial and nucleolar localization of cysteine desulfurase Nfs and the scaffold protein Isu in Trypanosoma brucei. Eukaryot Cell. 2014;13:353–362. PubMed PMC
Benz C, Kovářová J, Králová-Hromadová I, et al. Roles of the Nfu Fe–S targeting factors in the trypanosome mitochondrion. Int J Parasitol. 2016;46:641–651. PubMed
Saunders EC, Ng WW, Kloehn J, et al. Induction of a stringent metabolic response in intracellular stages of Leishmania mexicana leads to increased dependence on mitochondrial metabolism. PLoS Pathog. 2014;10:e1003888. PubMed PMC
Pratap Singh K, Zaidi A, Anwar S, et al. Reactive oxygen species regulates expression of iron–sulfur cluster assembly protein IscS of Leishmania donovani. Free Radic Biol Med. 2014;75:195–209. PubMed
Filser M, Comini MA, Molina-Navarro MM, et al. Cloning, functional analysis, and mitochondrial localization of Trypanosoma brucei monothiol glutaredoxin-1. Biol Chem. 2008;389:21–32. PubMed
Comini MA, Krauth-Siegel RL, Bellanda M. Mono- and dithiol glutaredoxins in the trypanothione-based redox metabolism of pathogenic trypanosomes. Antioxid Redox Signal. 2013;19:708–722. PubMed PMC
Manta B, Pavan C, Sturlese M, et al. Iron–sulfur cluster binding by mitochondrial monothiol glutaredoxin-1 of Trypanosoma brucei: molecular basis of iron–sulfur cluster coordination and relevance for parasite infectivity. Antioxid Redox Signal. 2013;19:665–682. PubMed PMC
Pánek T, Čepička I. Diversity of heterolobosea. Genet Divers Microorg. 2012
De Jonckheere JF, Baumgartner M, Opperdoes FR, Stetter KO. Marinamoeba thermophila, a new marine heterolobosean amoeba growing at 50 °C. Eur J Protistol. 2009;45:231–236. PubMed
Park JS, Simpson AGB, Lee WJ, Cho BC. Ultrastructure and phylogenetic placement within Heterolobosea of the previously unclassified, extremely halophilic heterotrophic flagellate Pleurostomum flabellatum (Ruinen 1938) Ann Anat. 2007;158:397–413. PubMed
De Jonckheere JF. Isolation and molecular identification of free-living amoebae of the genus Naegleria from Arctic and sub-Antarctic regions. Eur J Protistol. 2006;42:115–123. PubMed
Park JS, Simpson AGB. Diversity of heterotrophic protists from extremely hypersaline habitats. Ann Anat. 2015;166:422–437. PubMed
Geisen S, Bonkowski M, Zhang J, De Jonckheere JF. Heterogeneity in the genus Allovahlkampfia and the description of the new genus Parafumarolamoeba (Vahlkampfiidae; Heterolobosea) Eur J Protistol. 2015;51:335–349. PubMed
Baumgartner M, Eberhardt S, De Jonckheere JF, Stetter KO. Tetramitus thermacidophilus n. sp., an amoeboflagellate from acidic hot springs. J Eukaryot Microbiol. 2009;56:201–206. PubMed
Visvesvara GS, Sriram R, Qvarnstrom Y, et al. Paravahlkampfia francinae n. sp. masquerading as an agent of primary amoebic meningoencephalitis. J Eukaryot Microbiol. 2009;56:357–366. PubMed
O’Kelly CJ, Silberman JD, Amaral Zettler LA, et al. Monopylocystis visvesvarai n. gen., n. sp. and Sawyeria marylandensis n. gen., n. sp.: two new amitochondrial heterolobosean amoebae from anoxic environments. Ann Anat. 2003;154:281–290. PubMed
Barbera MJ, Ruiz-Trillo I, Tufts JYA, et al. Sawyeria marylandensis (Heterolobosea) has a hydrogenosome with novel metabolic properties. Eukaryot Cell. 2010;9:1913–1924. PubMed PMC
Broers CA, Stumm CK, Vogels GD, Brugerolle G. Psalteriomonas lanterna gen. nov., sp. nov., a free-living amoeboflagellate isolated from freshwater anaerobic sediments. Eur J Protistol. 1990;25:369–380. PubMed
de Graaf RM, Duarte I, van Alen TA, et al. The hydrogenosomes of Psalteriomonas lanterna. BMC Evol Biol. 2009;9:287. PubMed PMC
Pánek T, Silberman JD, Yubuki N, et al. Diversity, evolution and molecular systematics of the Psalteriomonadidae, the main lineage of anaerobic/microaerophilic heteroloboseans (excavata: discoba) Protist. 2012;163:807–831. PubMed
Pánek T, Simpson AGB, Hampl V, Čepička I. Creneis carolina gen. et sp. nov. (Heterolobosea), a novel marine anaerobic protist with strikingly derived morphology and life cycle. Ann Anat. 2014 PubMed
Smirnov AV, Fenchel T. Vahlkampfia anaerobica n. sp. and Vannella peregrinia n. sp. (Rhizopoda)—anaerobic amoebae from a marine sediment. Arch Protistenkd. 1996;147:189–198.
Lang BF, Burger G, O’Kelly CJ, et al. An ancestral mitochondrial DNA resembling a eubacterial genome in miniature. Nature. 1997;387:493–497. PubMed
Lara E, Chatzinotas A, Simpson AGB. Andalucia (n. gen.)-the deepest branch within jakobids (Jakobida; Excavata), based on morphological and molecular study of a new flagellate from soil. J Eukaryot Microbiol. 2006;53:112–120. PubMed
He D, Fu C-J, Baldauf SL. Multiple origins of eukaryotic cox15 suggest horizontal gene transfer from bacteria to jakobid mitochondrial DNA. Mol Biol Evol. 2015;33:122–133. PubMed
Burger G, Gray MW, Forget L, Lang BF. Strikingly bacteria-like and gene-rich mitochondrial genomes throughout jakobid protists. Genome Biol Evol. 2013;5:418–438. PubMed PMC
Leger MM, Eme L, Hug LA, Roger AJ. Novel hydrogenosomes in the microaerophilic jakobid Stygiella incarcerata. Mol Biol Evol MSW. 2016 PubMed PMC
Dolezal P, Dagley MJ, Kono M, et al. The essentials of protein import in the degenerate mitochondrion of Entamoeba histolytica. PLoS Pathog. 2010;6:e1000812. PubMed PMC
Rada P, Makki AR, Zimorski V, et al. N-terminal presequence-independent import of phosphofructokinase into hydrogenosomes of Trichomonas vaginalis. Eukaryot Cell. 2015;14:1264–1275. PubMed PMC
Garg S, Stölting J, Zimorski V, et al. Conservation of transit peptide-independent protein import into the mitochondrial and hydrogenosomal matrix. Genome Biol Evol. 2015;7:2716–2726. PubMed PMC
Xu F, Jerlström-Hultqvist J, Einarsson E, et al. The genome of Spironucleus salmonicida highlights a fish pathogen adapted to fluctuating environments. PLoS Genet. 2014;10:e1004053. PubMed PMC
Zhang Q, Táborský P, Silberman JD, et al. Marine isolates of Trimastix marina form a plesiomorphic deep-branching lineage within Preaxostyla, separate from other known trimastigids (Paratrimastix n. gen.) Protist. 2015;166:468–491. PubMed
Tovar J, León-Avila G, Sánchez LB, et al. Mitochondrial remnant organelles of Giardia function in iron–sulphur protein maturation. Nature. 2003;426:172–176. PubMed
Rada P, Smid O, Sutak R, et al. The monothiol single-domain glutaredoxin is conserved in the highly reduced mitochondria of Giardia intestinalis. Eukaryot Cell. 2009;8:1584–1591. PubMed PMC
Dolezal P, Šmid O, Rada P, et al. Giardia mitosomes and trichomonad hydrogenosomes share a common mode of protein targeting. Proc Natl Acad Sci USA. 2005;102:10924–10929. PubMed PMC
Jedelský PL, Dolezal P, Rada P, et al. The minimal proteome in the reduced mitochondrion of the parasitic protist Giardia intestinalis. PLoS One. 2011;6:e17285. PubMed PMC
Rout S, Zumthor JP, Schraner EM, et al. An interactome-centered protein discovery approach reveals novel components involved in mitosome function and homeostasis in Giardia lamblia. PLoS Pathog. 2016;12:e1006036. PubMed PMC
Regoes A, Zourmpanou D, León-Avila G, et al. Protein import, replication, and inheritance of a vestigial mitochondrion. J Biol Chem. 2005;280:30557–30563. PubMed
Jerlström-Hultqvist J, Einarsson E, Xu F, et al. Hydrogenosomes in the diplomonad Spironucleus salmonicida. Nat Commun. 2013;4:2493. PubMed PMC
Millet COM, Cable J, Lloyd D. The diplomonad fish parasite Spironucleus vortens produces hydrogen. J Eukaryot Microbiol. 2010;57:400–404. PubMed
Horváthová L, Šafaříková L, Basler M, et al. Transcriptomic identification of iron-regulated and iron-independent gene copies within the heavily duplicated Trichomonas vaginalis genome. Genome Biol Evol. 2012;4:1017–1029. PubMed PMC
Beltrán NC, Horváthová L, Jedelský PL, et al. Iron-induced changes in the proteome of Trichomonas vaginalis hydrogenosomes. PLoS One. 2013;8:e65148. PubMed PMC
Gorrell TE. Effect of culture medium iron content on the biochemical composition and metabolism of Trichomonas vaginalis. J Bacteriol. 1985;161:1228–1230. PubMed PMC
Figueroa-Angulo E, Calla-Choque J, Mancilla-Olea M, Arroyo R. RNA-binding proteins in Trichomonas vaginalis: atypical multifunctional proteins. Biomolecules. 2015;5:3354–3395. PubMed PMC
Clemens DL, Johnson PJ. Failure to detect DNA in hydrogenosomes of Trichomonas vaginalis by nick translation and immunomicroscopy. Mol Biochem Parasitol. 2000;106:307–313. PubMed
Dolezal P, Dancis A, Lesuisse E, et al. Frataxin, a conserved mitochondrial protein, in the hydrogenosome of Trichomonas vaginalis. Eukaryot Cell. 2007;6:1431–1438. PubMed PMC
Sutak R, Dolezal P, Fiumera HL, et al. Mitochondrial-type assembly of FeS centers in the hydrogenosomes of the amitochondriate eukaryote Trichomonas vaginalis. Proc Natl Acad Sci USA. 2004;101:10368–10373. PubMed PMC
Schneider RE, Brown MT, Shiflett AM, et al. The Trichomonas vaginalis hydrogenosome proteome is highly reduced relative to mitochondria, yet complex compared with mitosomes. Int J Parasitol. 2011;41:1421–1434. PubMed PMC
Smutná T, Pilarová K, Tarábek J, et al. Novel functions of an iron–sulfur flavoprotein from Trichomonas vaginalis hydrogenosomes. Antimicrob Agents Chemother. 2014;58:3224–3232. PubMed PMC
Ferry JG. Enzymology of the fermentation of acetate to methane by Methanosarcina thermophila. BioFactors. 1997;6:25–35. PubMed
Zhao T, Cruz F, Ferry JG. Iron–sulfur flavoprotein (Isf) from Methanosarcina thermophila is the prototype of a widely distributed family. J Bacteriol. 2001;183:6225–6233. PubMed PMC
Hampl V, Silberman JD, Stechmann A, et al. Genetic evidence for a mitochondriate ancestry in the “amitochondriate” flagellate Trimastix pyriformis. PLoS One. 2008;3:e1383. PubMed PMC
Kurihara T, Mihara H, Kato S-I, et al. Assembly of iron–sulfur clusters mediated by cysteine desulfurases, IscS, CsdB and CSD, from Escherichia coli. Biochim Biophys Acta. 2003;1647:303–309. PubMed
Loiseau L, Gerez C, Bekker M, et al. ErpA, an iron sulfur (Fe S) protein of the A-type essential for respiratory metabolism in Escherichia coli. Proc Natl Acad Sci USA. 2007;104:13626–13631. PubMed PMC
Lu J, Yang J, Tan G, Ding H. Complementary roles of SufA and IscA in the biogenesis of iron–sulfur clusters in Escherichia coli. Biochem J. 2008;409:535–543. PubMed
Jensen LT, Culotta VC. Role of Saccharomyces cerevisiae ISA1 and ISA2 in iron homeostasis. Mol Cell Biol. 2000;20:3918–3927. PubMed PMC
Johnson DC, Unciuleac MC, Dean DR. Controlled expression and functional analysis of iron–sulfur cluster biosynthetic components within Azotobacter vinelandii. J Bacteriol. 2006;188:7551–7561. PubMed PMC
Boyd ES, Thomas KM, Dai Y, et al. Interplay between oxygen and Fe–S cluster biogenesis: insights from the Suf pathway. Biochemistry. 2014;53:5834–5847. PubMed PMC
Riboldi GP, Larson TJ, Frazzon J. Enterococcus faecalis sufCDSUB complements Escherichia coli sufABCDSE. FEMS Microbiol Lett. 2011;320:15–24. PubMed
Riboldi GP, Verli H, Frazzon J. Structural studies of the Enterococcus faecalis SufU [Fe–S] cluster protein. BMC Biochem. 2009;10:3–10. PubMed PMC
Xu XM, Møller SG. AtNAP7 is a plastidic SufC-like ATP-binding cassette/ATPase essential for Arabidopsis embryogenesis. Proc Natl Acad Sci USA. 2004;101:9143–9148. PubMed PMC
Xu XM, Adams S, Chua N-H, Møller SG. AtNAP1 represents an atypical SufB protein in Arabidopsis plastids. J Biol Chem. 2005;280:6648–6654. PubMed PMC
Møller SG, Kunkel T, Chua NH. A plastidic ABC protein involved in intercompartmental communication of light signaling. Genes Dev. 2001;15:90–103. PubMed PMC
Romsang A, Duang-Nkern J, Leesukon P, et al. The iron–sulphur cluster biosynthesis regulator IscR contributes to iron homeostasis and resistance to oxidants in Pseudomonas aeruginosa. PLoS One. 2014;9:e86763. PubMed PMC
van der Gulik PTS, Hoff WD, Speijer D. In defence of the three-domains of life paradigm. BMC Evol Biol. 2017;17:218. PubMed PMC
Embley TM. Multiple secondary origins of the anaerobic lifestyle in eukaryotes. Philos Trans R Soc Lond B Biol Sci. 2006;361:1055–1067. PubMed PMC
A Uniquely Complex Mitochondrial Proteome from Euglena gracilis