Mitochondrial and nucleolar localization of cysteine desulfurase Nfs and the scaffold protein Isu in Trypanosoma brucei
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24243795
PubMed Central
PMC3957590
DOI
10.1128/ec.00235-13
PII: EC.00235-13
Knihovny.cz E-zdroje
- MeSH
- aktivní transport - buněčné jádro MeSH
- buněčné jádro metabolismus MeSH
- ferredoxiny metabolismus MeSH
- frataxin MeSH
- jaderné lokalizační signály MeSH
- lyasy štěpící vazby C-S chemie genetika metabolismus MeSH
- mitochondriální proteiny metabolismus MeSH
- mitochondrie metabolismus MeSH
- molekulární sekvence - údaje MeSH
- multimerizace proteinu MeSH
- proteiny asociované s jadernou matrix chemie genetika metabolismus MeSH
- proteiny vázající železo metabolismus MeSH
- protozoální proteiny chemie genetika metabolismus MeSH
- sekvence aminokyselin MeSH
- Trypanosoma brucei brucei enzymologie genetika metabolismus MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cysteine desulfurase MeSH Prohlížeč
- ferredoxiny MeSH
- jaderné lokalizační signály MeSH
- lyasy štěpící vazby C-S MeSH
- mitochondriální proteiny MeSH
- proteiny asociované s jadernou matrix MeSH
- proteiny vázající železo MeSH
- protozoální proteiny MeSH
Trypanosoma brucei has a complex life cycle during which its single mitochondrion is subjected to major metabolic and morphological changes. While the procyclic stage (PS) of the insect vector contains a large and reticulated mitochondrion, its counterpart in the bloodstream stage (BS) parasitizing mammals is highly reduced and seems to be devoid of most functions. We show here that key Fe-S cluster assembly proteins are still present and active in this organelle and that produced clusters are incorporated into overexpressed enzymes. Importantly, the cysteine desulfurase Nfs, equipped with the nuclear localization signal, was detected in the nucleolus of both T. brucei life stages. The scaffold protein Isu, an interacting partner of Nfs, was also found to have a dual localization in the mitochondrion and the nucleolus, while frataxin and both ferredoxins are confined to the mitochondrion. Moreover, upon depletion of Isu, cytosolic tRNA thiolation dropped in the PS but not BS parasites.
Zobrazit více v PubMed
Fenn K, Matthews KR. 2007. The cell biology of Trypanosoma brucei differentiation. Curr. Opin. Microbiol. 10:539–546. 10.1016/j.mib.2007.09.014 PubMed DOI PMC
Schnaufer A, Clark-Walker GD, Steinberg AG, Stuart K. 2005. The F1-ATP synthase complex in bloodstream stage trypanosomes has an unusual and essential function. EMBO J. 24:4029–4040. 10.1038/sj.emboj.7600862 PubMed DOI PMC
Schnaufer A, Domingo GJ, Stuart K. 2002. Natural and induced dyskinetoplastic trypanosomatids: how to live without mitochondrial DNA. Int. J. Parasitol. 32:1071–1084. 10.1016/S0020-7519(02)00020-6 PubMed DOI
Cristodero M, Seebeck T, Schneider A. 2010. Mitochondrial translation is essential in bloodstream forms of Trypanosoma brucei. Mol. Microbiol. 78:757–769. 10.1111/j.1365-2958.2010.07368.x PubMed DOI
Alfonzo JD, Lukeš J. 2011. Assembling Fe/S-clusters and modifying tRNAs: ancient co-factors meet ancient adaptors. Trends Parasitol. 27:235–238. 10.1016/j.pt.2011.02.003 PubMed DOI PMC
Halbig K, Nova-Ocampo MDE, Cruz-Reyes J. 2004. Complete cycles of bloodstream trypanosome RNA editing in vitro. RNA 10:914–920. 10.1261/rna.5157704 PubMed DOI PMC
Kafková L, Ammerman ML, Faktorová D, Fisk JC, Zimmer SL, Sobotka R, Read LK, Lukeš J, Hashimi H. 2012. Functional characterization of two paralogs that are novel RNA binding proteins influencing mitochondrial transcripts of Trypanosoma brucei. RNA 18:1846–1861. 10.1261/rna.033852.112 PubMed DOI PMC
Schneider A, Martin JAY, Agabian N. 1994. A nuclear encoded tRNA of Trypanosoma brucei is imported into mitochondria. Mol. Cell. Biol. 14:2317–2322. 10.1128/MCB.14.4.2317 PubMed DOI PMC
Schneider A. 2001. Unique aspects of mitochondrial biogenesis in trypanosomatids. Int. J. Parasitol. 31:1403–1415. 10.1016/S0020-7519(01)00296-X PubMed DOI
Lukeš J, Archibald JM, Keeling PJ, Doolittle WF, Gray MW. 2011. How a neutral evolutionary ratchet can build cellular complexity. IUBMB Life 63:528–537. 10.1002/iub.489 PubMed DOI
Chaudhuri M, Ott RD, Hill GC. 2006. Trypanosome alternative oxidase: from molecule to function. Trends Parasitol. 22:484–491. 10.1016/j.pt.2006.08.007 PubMed DOI
Surve S, Heestand M, Panicucci B, Schnaufer A, Parsons M. 2012. Enigmatic presence of mitochondrial complex I in Trypanosoma brucei bloodstream forms. Eukaryot. Cell 11:183–193. 10.1128/EC.05282-11 PubMed DOI PMC
Timms MW, Deursen Van FJ, Hendriks EF, Matthews KR. 2002. Mitochondrial development during life cycle differentiation of African trypanosomes: evidence for a kinetoplast-dependent differentiation control point. Mol. Biol. Cell 13:3747–3759. 10.1091/mbc.E02-05-0266 PubMed DOI PMC
Tasker M, Timms M, Hendriks E, Matthews K. 2001. Cytochrome oxidase subunit VI of Trypanosoma brucei is imported without a cleaved presequence and is developmentally regulated at both RNA and protein levels. Mol. Microbiol. 39:272–285. 10.1046/j.1365-2958.2001.02252.x PubMed DOI PMC
Hannaert V, Bringaud F, Opperdoes FR, Michels PAM. 2003. Evolution of energy metabolism and its compartmentation in Kinetoplastida. Kinetoplastid Biol. Dis. 30:1–30. 10.1186/1475-9292-2-11 PubMed DOI PMC
Stephens JL, Lee SH, Paul KS, Englund PT. 2007. Mitochondrial fatty acid synthesis in Trypanosoma brucei. J. Biol. Chem. 282:4427–4436. 10.1074/jbc.M609037200 PubMed DOI
Clayton AM, Guler JL, Povelones ML, Gluenz E, Gull K, Smith TK, Jensen RE, Englund PT. 2011. Depletion of mitochondrial acyl carrier protein in bloodstream-form Trypanosoma brucei causes a kinetoplast segregation defect. Eukaryot. Cell 10:286–292. 10.1128/EC.00290-10 PubMed DOI PMC
Xiong Z, Ridgley EL, Enis D, Olness F, Ruben L. 1997. Selective transfer of calcium from an acidic compartment to the mitochondrion of Trypanosoma brucei. J. Biol. Chem. 272:31022–31028. 10.1074/jbc.272.49.31022 PubMed DOI
Vercesi AE, Docampo R, Moreno SN. 1992. Energization-dependent Ca2+ accumulation in Trypanosoma brucei bloodstream and procyclic trypomastigotes mitochondria. Mol. Biochem. Parasitol. 56:251–257. 10.1016/0166-6851(92)90174-I PubMed DOI
Hashimi H, McDonald L, Stříbrná E, Lukeš J. 2013. Trypanosome Letm1 protein is essential for mitochondrial potassium homeostasis. J. Biol. Chem. 288:26914–26925. 10.1074/jbc.M113.495119 PubMed DOI PMC
Hellemond Van JJ, Bakker BM, Tielens AGM. 2005. Energy metabolism and its compartmentation in Trypanosoma brucei. Adv. Microb. Physiol. 50:199–226. 10.1016/S0065-2911(05)50005-5 PubMed DOI
Docampo R, Lukeš J. 2012. Trypanosomes and the solution to a 50-year mitochondrial calcium mystery. Trends Parasitol. 28:31–37. 10.1016/j.pt.2011.10.007 PubMed DOI PMC
Schnaufer A, Panigrahi AK, Panicucci B, Igo RP, Salavati R, Stuart K. 2001. An RNA ligase essential for RNA editing and survival of the bloodstream form of Trypanosoma brucei. Science 291:2159–2162. 10.1126/science.1058655 PubMed DOI
Lill R. 2009. Function and biogenesis of iron-sulphur proteins. Nature 460:831–838. 10.1038/nature08301 PubMed DOI
Pierik AJ, Netz DJA, Lill R. 2009. Analysis of iron-sulfur protein maturation in eukaryotes. Nat. Protoc. 4:753–766. 10.1038/nprot.2009.39 PubMed DOI
Rouault TA. 2012. Biogenesis of iron-sulfur clusters in mammalian cells: new insights and relevance to human disease. Dis. Model Mech. 5:155–164. 10.1242/dmm.009019 PubMed DOI PMC
Paris Z, Changmai P, Rubio MAT, Zíková A, Stuart KD, Alfonzo JD, Lukeš J. 2010. The Fe/S cluster assembly protein Isd11 is essential for tRNA thiolation in Trypanosoma brucei. J. Biol. Chem. 285:22394–22402. 10.1074/jbc.M109.083774 PubMed DOI PMC
Smíd O, Horáková E, Vilímová V, Hrdý I, Cammack R, Horváth A, Lukeš J, Tachezy J. 2006. Knock-downs of iron-sulfur cluster assembly proteins IscS and IscU down-regulate the active mitochondrion of procyclic Trypanosoma brucei. J. Biol. Chem. 281:28679–28686. 10.1074/jbc.M513781200 PubMed DOI
Long S, Changmai P, Tsaousis AD, Skalický T, Verner Z, Wen Y-Z, Roger AJ, Lukeš J. 2011. Stage-specific requirement for Isa1 and Isa2 proteins in the mitochondrion of Trypanosoma brucei and heterologous rescue by human and Blastocystis orthologues. Mol. Microbiol. 81:1403–1418. 10.1111/j.1365-2958.2011.07769.x PubMed DOI
Long S, Jirků M, Ayala FJ, Lukeš J. 2008. Mitochondrial localization of human frataxin is necessary but processing is not for rescuing frataxin deficiency in Trypanosoma brucei. Proc. Natl. Acad. Sci. U. S. A. 105:13468–13473. 10.1073/pnas.0806762105 PubMed DOI PMC
Changmai P, Horáková E, Long S, Cernotíková-Stříbrná E, McDonald LM, Bontempi EJ, Lukeš J. 2013. Both human ferredoxins equally efficiently rescue ferredoxin deficiency in Trypanosoma brucei. Mol. Microbiol. 89:135–151. 10.1111/mmi.12264 PubMed DOI
Yoon T, Cowan JA. 2003. Iron-sulfur cluster biosynthesis. Characterization of frataxin as an iron donor for assembly of [2Fe-2S] clusters in ISU-type proteins. J. Am. Chem. Soc. 125:6078–6084. 10.1021/ja027967i PubMed DOI
Gentry LE, Thacker MA, Doughty R, Timkovich R, Busenlehner LS. 2013. His86 from the N-terminus of frataxin coordinates iron and is required for Fe-S cluster synthesis. Biochemistry 52:6085–6096. 10.1021/bi400443n PubMed DOI PMC
Schmucker S, Martelli A, Colin F, Page A, Wattenhofer-Donzé M, Reutenauer L, Puccio H. 2011. Mammalian frataxin: an essential function for cellular viability through an interaction with a preformed ISCU/NFS1/ISD11 iron-sulfur assembly complex. PLoS One 6:e16199. 10.1371/journal.pone.0016199 PubMed DOI PMC
Long S, Jirků M, Mach J, Ginger ML, Sutak R, Richardson D, Tachezy J, Lukeš J. 2008. Ancestral roles of eukaryotic frataxin: mitochondrial frataxin function and heterologous expression of hydrogenosomal Trichomonas homologues in trypanosomes. Mol. Microbiol. 69:94–109. 10.1111/j.1365-2958.2008.06260.x PubMed DOI
Comini MA, Rettig J, Dirdjaja N, Hanschmann E-M, Berndt C, Krauth-Siegel RL. 2008. Monothiol glutaredoxin-1 is an essential iron-sulfur protein in the mitochondrion of African trypanosomes. J. Biol. Chem. 283:27785–27798. 10.1074/jbc.M802010200 PubMed DOI
Pusnik M, Charrière F, Mäser P, Waller RF, Dagley MJ, Lithgow T, Schneider A. 2009. The single mitochondrial porin of Trypanosoma brucei is the main metabolite transporter in the outer mitochondrial membrane. Mol. Biol. Evol. 26:671–680. 10.1093/molbev/msn288 PubMed DOI
Basu S, Leonard JC, Desai N, Mavridou DA, Tang KH, Goddard AD, Ginger ML, Lukeš J, Allen JW. 2013. Divergence of Erv1-associated mitochondrial import and export pathways in trypanosomes and anaerobic protists. Eukaryot. Cell 12:343–355. 10.1128/EC.00304-12 PubMed DOI PMC
Zíková A, Panigrahi AK, Uboldi AD, Dalley R, Handman E, Stuart K. 2008. Structural and functional association of Trypanosoma brucei MIX protein with cytochrome c oxidase complex. Eukaryot. Cell 7:1994–2003. 10.1128/EC.00204-08 PubMed DOI PMC
Foldynová-Trantírková S, Paris Z, Sturm NR, Campbell DA, Lukeš J. 2005. The Trypanosoma brucei La protein is a candidate poly(U) shield that impacts spliced leader RNA maturation and tRNA intron removal. Int. J. Parasitol. 35:359–366. 10.1016/j.ijpara.2004.12.012 PubMed DOI
Mayhew TM, Lucocq JM, Griffiths G. 2002. Relative labelling index: a novel stereological approach to test for non-random immunogold labelling of organelles and membranes on transmission electron microscopy thin sections. J. Microsc. 205:153–164. 10.1046/j.0022-2720.2001.00977.x PubMed DOI
Vondrušková E, van den Burg J, Zíková A, Ernst NL, Stuart K, Benne R, Lukeš J. 2005. RNA interference analyses suggest a transcript-specific regulatory role for mitochondrial RNA-binding proteins MRP1 and MRP2 in RNA editing and other RNA processing in Trypanosoma brucei. J. Biol. Chem. 280:2429–2438. 10.1074/jbc.M405933200 PubMed DOI
Naamati A, Regev-Rudzki N, Galperin S, Lill R, Pines O. 2009. Dual targeting of Nfs1 and discovery of its novel processing enzyme, Icp55. J. Biol. Chem. 284:30200–30208. 10.1074/jbc.M109.034694 PubMed DOI PMC
Westergaard GG, Bercovich N, Reinert MD, Vazquez MP. 2010. Analysis of a nuclear localization signal in the p14 splicing factor in Trypanosoma cruzi. Int. J. Parasitol. 40:1029–1035. 10.1016/j.ijpara.2010.02.011 PubMed DOI
Marchetti MA, Tschudi C, Kwon H, Wolin SL, Ullu E. 2000. Import of proteins into the trypanosome nucleus and their distribution at karyokinesis. J. Cell Sci. 113:899–906 PubMed
Boucher N, Dacheux D, Giroud C, Baltz T. 2007. An essential cell cycle-regulated nucleolar protein relocates to the mitotic spindle where it is involved in mitotic progression in Trypanosoma brucei. J. Biol. Chem. 282:13780–13790. 10.1074/jbc.M700780200 PubMed DOI
Hellman K, Prohaska K, Williams N. 2007. Trypanosoma brucei RNA binding proteins p34 and p37 mediate NOPP44/46 cellular localization via the exportin 1 nuclear export pathway. Eukaryot. Cell 6:2206–2213. 10.1128/EC.00176-07 PubMed DOI PMC
Cámara MDLM, Bouvier LA, Canepa GE, Miranda MR, Pereira CA. 2013. Molecular and functional characterization of a Trypanosoma cruzi nuclear adenylate kinase isoform. PLoS Negl. Trop. Dis. 7:e2044. 10.1371/journal.pntd.0002044 PubMed DOI PMC
Li K, Tong W-H, Hughes RM, Rouault TA. 2006. Roles of the mammalian cytosolic cysteine desulfurase, ISCS, and scaffold protein, ISCU, in iron-sulfur cluster assembly. J. Biol. Chem. 281:12344–12351. 10.1074/jbc.M600582200 PubMed DOI
Nakai Y, Nakai M, Hayashi H, Kagamiyama H. 2001. Nuclear localization of yeast Nfs1p is required for cell survival. J. Biol. Chem. 276:8314–8320. 10.1074/jbc.M007878200 PubMed DOI
Mühlenhoff U, Balk J, Richhardt N, Kaiser JT, Sipos K, Kispal G, Lill R. 2004. Functional characterization of the eukaryotic cysteine desulfurase Nfs1p from Saccharomyces cerevisiae. J. Biol. Chem. 279:36906–36915. 10.1074/jbc.M406516200 PubMed DOI
Nakai Y, Nakai M, Lill R, Suzuki T, Hayashi H. 2007. Thio modification of yeast cytosolic tRNA is an iron-sulfur protein-dependent pathway. Mol. Cell. Biol. 27:2841–2847. 10.1128/MCB.01321-06 PubMed DOI PMC
Marelja Z, Stöcklein W, Nimtz M, Leimkühler S. 2008. A novel role for human Nfs1 in the cytoplasm: Nfs1 acts as a sulfur donor for MOCS3, a protein involved in molybdenum cofactor biosynthesis. J. Biol. Chem. 283:25178–25185. 10.1074/jbc.M804064200 PubMed DOI
Claros MG, Vincens P. 1996. Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur. J. Biochem. 241:779–786. 10.1111/j.1432-1033.1996.00779.x PubMed DOI
An X, Xiong W, Yang Y, Li F, Zhou X, Wang Z, Deng Z, Liang J. 2012. A novel target of IscS in Escherichia coli: participating in DNA phosphorothioation. PLoS One 7:e51265. 10.1371/journal.pone.0051265 PubMed DOI PMC
Wang L, Chen S, Vergin KL, Giovannoni SJ, Chan SW, DeMott MS, Taghizadeh K, Cordero OX, Cutler M, Timberlake S, Alm EJ, Polz MF, Pinhassi J, Deng Z, Dedon PC. 2011. DNA phosphorothioation is widespread and quantized in bacterial genomes. Proc. Natl. Acad. Sci. U. S. A. 108:2963–2968. 10.1073/pnas.1017261108 PubMed DOI PMC
Eckstein F. 2007. Phosphorothioation of DNA in bacteria. Nat. Chem. Biol. 3:689–690. 10.1038/nchembio1107-689 PubMed DOI
Wang L, Chen S, Xu T, Taghizadeh K, Wishnok JS, Zhou X, You D, Deng Z, Dedon PC. 2007. Phosphorothioation of DNA in bacteria by dnd genes. Nat. Chem. Biol. 3:709–710. 10.1038/nchembio.2007.39 PubMed DOI
Mühlenhoff U, Richter N, Pines O, Pierik AJ, Lill R. 2011. Specialized function of yeast Isa1 and Isa2 proteins in the maturation of mitochondrial [4Fe-4S] proteins. J. Biol. Chem. 286:41205–41216. 10.1074/jbc.M111.296152 PubMed DOI PMC
Tovar J, León-Avila G, Sánchez LB, Sutak R, Tachezy J, van der Giezen M, Hernández M, Müller M, Lucocq JM. 2003. Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature 426:172–176. 10.1038/nature01945 PubMed DOI
Sutak R, Doležal P, Fiumera HL, Hrdý I, Dancis A, Delgadillo-Correa M, Johnson PJ, Müller M, Tachezy J. 2004. Mitochondrial-type assembly of FeS centers in the hydrogenosomes of the amitochondriate eukaryote Trichomonas vaginalis. Proc. Natl. Acad. Sci. U. S. A. 101:10368–10373. 10.1073/pnas.0401319101 PubMed DOI PMC
Tachezy J, Sánchez LB, Müller M. 2001. Mitochondrial type iron-sulfur cluster assembly in the amitochondriate eukaryotes Trichomonas vaginalis and Giardia intestinalis, as indicated by the phylogeny of IscS. Mol. Biol. Evol. 18:1919–1928. 10.1093/oxfordjournals.molbev.a003732 PubMed DOI
Nilsson D, Gunasekera K, Mani J, Osteras M, Farinelli L, Baerlocher L, Roditi I, Ochsenreiter T. 2010. Spliced leader trapping reveals widespread alternative splicing patterns in the highly dynamic transcriptome of Trypanosoma brucei. PLoS Pathog. 6:e1001037. 10.1371/journal.ppat.1001037 PubMed DOI PMC
Fe-S cluster assembly in the supergroup Excavata