How a neutral evolutionary ratchet can build cellular complexity

. 2011 Jul ; 63 (7) : 528-37.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid21698757

Grantová podpora
MOP-4124 Canadian Institutes of Health Research - Canada
MOP-42517 Canadian Institutes of Health Research - Canada
MOP-4467 Canadian Institutes of Health Research - Canada
ROP-85016 Canadian Institutes of Health Research - Canada

Complex cellular machines and processes are commonly believed to be products of selection, and it is typically understood to be the job of evolutionary biologists to show how selective advantage can account for each step in their origin and subsequent growth in complexity. Here, we describe how complex machines might instead evolve in the absence of positive selection through a process of "presuppression," first termed constructive neutral evolution (CNE) more than a decade ago. If an autonomously functioning cellular component acquires mutations that make it dependent for function on another, pre-existing component or process, and if there are multiple ways in which such dependence may arise, then dependence inevitably will arise and reversal to independence is unlikely. Thus, CNE is a unidirectional evolutionary ratchet leading to complexity, if complexity is equated with the number of components or steps necessary to carry out a cellular process. CNE can explain "functions" that seem to make little sense in terms of cellular economy, like RNA editing or splicing, but it may also contribute to the complexity of machines with clear benefit to the cell, like the ribosome, and to organismal complexity overall. We suggest that CNE-based evolutionary scenarios are in these and other cases less forced than the selectionist or adaptationist narratives that are generally told.

Citace poskytuje Crossref.org

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Lessons from the deep: mechanisms behind diversification of eukaryotic protein complexes

. 2023 Dec ; 98 (6) : 1910-1927. [epub] 20230619

Complete minicircle genome of Leptomonas pyrrhocoris reveals sources of its non-canonical mitochondrial RNA editing events

. 2021 Apr 06 ; 49 (6) : 3354-3370.

A Uniquely Complex Mitochondrial Proteome from Euglena gracilis

. 2020 Aug 01 ; 37 (8) : 2173-2191.

Gene fragmentation and RNA editing without borders: eccentric mitochondrial genomes of diplonemids

. 2020 Mar 18 ; 48 (5) : 2694-2708.

Massive mitochondrial DNA content in diplonemid and kinetoplastid protists

. 2018 Dec ; 70 (12) : 1267-1274. [epub] 20181006

Trypanosomatid mitochondrial RNA editing: dramatically complex transcript repertoires revealed with a dedicated mapping tool

. 2018 Jan 25 ; 46 (2) : 765-781.

Evolution of Telomeres in Schizosaccharomyces pombe and Its Possible Relationship to the Diversification of Telomere Binding Proteins

. 2016 ; 11 (4) : e0154225. [epub] 20160421

From simple to supercomplex: mitochondrial genomes of euglenozoan protists

. 2016 ; 5 () : . [epub] 20160323

Gene Loss and Error-Prone RNA Editing in the Mitochondrion of Perkinsela, an Endosymbiotic Kinetoplastid

. 2015 Dec 01 ; 6 (6) : e01498-15. [epub] 20151201

Unexpectedly Streamlined Mitochondrial Genome of the Euglenozoan Euglena gracilis

. 2015 Nov 20 ; 7 (12) : 3358-67. [epub] 20151120

Mitochondrial and nucleolar localization of cysteine desulfurase Nfs and the scaffold protein Isu in Trypanosoma brucei

. 2014 Mar ; 13 (3) : 353-62. [epub] 20131115

Dual core processing: MRB1 is an emerging kinetoplast RNA editing complex

. 2013 Feb ; 29 (2) : 91-9. [epub] 20130108

Gene fragmentation: a key to mitochondrial genome evolution in Euglenozoa?

. 2011 Aug ; 57 (4) : 225-32. [epub] 20110505

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...