Evolution of Telomeres in Schizosaccharomyces pombe and Its Possible Relationship to the Diversification of Telomere Binding Proteins
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
P01 CA019014
NCI NIH HHS - United States
R01 ES013773
NIEHS NIH HHS - United States
R01 GM031819
NIGMS NIH HHS - United States
R56 ES013773
NIEHS NIH HHS - United States
PubMed
27101289
PubMed Central
PMC4839565
DOI
10.1371/journal.pone.0154225
PII: PONE-D-15-38813
Knihovny.cz E-zdroje
- MeSH
- DNA vazebné proteiny genetika metabolismus ultrastruktura MeSH
- elektronová mikroskopie MeSH
- fluorescenční polarizace MeSH
- fylogeneze MeSH
- genetická variace MeSH
- lidé MeSH
- molekulární evoluce MeSH
- oligonukleotidy genetika metabolismus MeSH
- proteiny vázající telomery klasifikace genetika metabolismus ultrastruktura MeSH
- retardační test MeSH
- Schizosaccharomyces pombe - proteiny genetika metabolismus ultrastruktura MeSH
- Schizosaccharomyces genetika MeSH
- sekvence nukleotidů MeSH
- telomery genetika metabolismus ultrastruktura MeSH
- transkripční faktory genetika metabolismus ultrastruktura MeSH
- vazba proteinů MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- DNA vazebné proteiny MeSH
- oligonukleotidy MeSH
- proteiny vázající telomery MeSH
- Schizosaccharomyces pombe - proteiny MeSH
- taz1 protein, S pombe MeSH Prohlížeč
- Teb1 protein, S pombe MeSH Prohlížeč
- transkripční faktory MeSH
Telomeres of nuclear chromosomes are usually composed of an array of tandemly repeated sequences that are recognized by specific Myb domain containing DNA-binding proteins (telomere-binding proteins, TBPs). Whereas in many eukaryotes the length and sequence of the telomeric repeat is relatively conserved, telomeric sequences in various yeasts are highly variable. Schizosaccharomyces pombe provides an excellent model for investigation of co-evolution of telomeres and TBPs. First, telomeric repeats of S. pombe differ from the canonical mammalian type TTAGGG sequence. Second, S. pombe telomeres exhibit a high degree of intratelomeric heterogeneity. Third, S. pombe contains all types of known TBPs (Rap1p [a version unable to bind DNA], Tay1p/Teb1p, and Taz1p) that are employed by various yeast species to protect their telomeres. With the aim of reconstructing evolutionary paths leading to a separation of roles between Teb1p and Taz1p, we performed a comparative analysis of the DNA-binding properties of both proteins using combined qualitative and quantitative biochemical approaches. Visualization of DNA-protein complexes by electron microscopy revealed qualitative differences of binding of Teb1p and Taz1p to mammalian type and fission yeast telomeres. Fluorescence anisotropy analysis quantified the binding affinity of Teb1p and Taz1p to three different DNA substrates. Additionally, we carried out electrophoretic mobility shift assays using mammalian type telomeres and native substrates (telomeric repeats, histone-box sequences) as well as their mutated versions. We observed relative DNA sequence binding flexibility of Taz1p and higher binding stringency of Teb1p when both proteins were compared directly to each other. These properties may have driven replacement of Teb1p by Taz1p as the TBP in fission yeast.
Zobrazit více v PubMed
de Lange T (2005) Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 19: 2100–2110. PubMed
de Lange T (2009) How telomeres solve the end-protection problem. Science 326: 948–952. 10.1126/science.1170633 PubMed DOI PMC
McEachern MJ, Krauskopf A, Blackburn EH (2000) Telomeres and their control. Annu Rev Genet 34: 331–358. PubMed
Palm W, de Lange T (2008) How shelterin protects mammalian telomeres. Annu Rev Genet 42: 301–334. 10.1146/annurev.genet.41.110306.130350 PubMed DOI
Lewis KA, Wuttke DS (2012) Telomerase and telomere-associated proteins: structural insights into mechanism and evolution. Structure 20: 28–39. 10.1016/j.str.2011.10.017 PubMed DOI PMC
Visacka K, Hofr C, Willcox S, Necasova I, Pavlouskova J, Sepsiova R et al. (2012) Synergism of the two Myb domains of Tay1 protein results in high affinity binding to telomeres. J Biol Chem 287: 32206–32215. 10.1074/jbc.M112.385591 PubMed DOI PMC
Gunisova S, Elboher E, Nosek J, Gorkovoy V, Brown Y, Lucier JF et al. (2009) Identification and comparative analysis of telomerase RNAs from Candida species reveal conservation of functional elements. RNA 15: 546–559. 10.1261/rna.1194009 PubMed DOI PMC
Lue NF (2010) Plasticity of telomere maintenance mechanisms in yeast. Trends Biochem Sci 35: 8–17. 10.1016/j.tibs.2009.08.006 PubMed DOI PMC
Steinberg-Neifach O, Lue NF (2015) Telomere DNA recognition in Saccharomycotina yeast: potential lessons for the co-evolution of ssDNA and dsDNA-binding proteins and their target sites. Front Genet 6: 162 10.3389/fgene.2015.00162 PubMed DOI PMC
Steinberg-Neifach O, Wellington K, Vazquez L, Lue NF (2015) Combinatorial recognition of a complex telomere repeat sequence by the Candida parapsilosis Cdc13AB heterodimer. Nucleic Acids Res 43: 2164–2176. PubMed PMC
Li B, Oestreich S, de Lange T (2000) Identification of human Rap1: implications for telomere evolution. Cell 101: 471–483. PubMed
Arat NO, Griffith JD (2012) Human Rap1 interacts directly with telomeric DNA and regulates TRF2 localization at the telomere. J Biol Chem 287: 41583–41594. 10.1074/jbc.M112.415984 PubMed DOI PMC
Buchman AR, Lue NF, Kornberg RD (1988) Connections between transcriptional activators, silencers, and telomeres as revealed by functional analysis of a yeast DNA-binding protein. Mol Cell Biol 8: 5086–5099. PubMed PMC
Shore D, Nasmyth K (1987) Purification and cloning of a DNA binding protein from yeast that binds to both silencer and activator elements. Cell 51: 721–732. PubMed
Lieb JD, Liu X, Botstein D, Brown PO (2001) Promoter-specific binding of Rap1 revealed by genome-wide maps of protein-DNA association. Nat Genet 28: 327–334. PubMed
Pina B, Fernandez-Larrea J, Garcia-Reyero N, Idrissi FZ (2003) The different (sur)faces of Rap1p. Mol Genet Genomics 268: 791–798. PubMed
Rhodin Edso J, Gustafsson C, Cohn M (2011) Single- and double-stranded DNA binding proteins act in concert to conserve a telomeric DNA core sequence. Genome Integr 2: 2 10.1186/2041-9414-2-2 PubMed DOI PMC
Yu EY, Yen WF, Steinberg-Neifach O, Lue NF (2010) Rap1 in Candida albicans: an unusual structural organization and a critical function in suppressing telomere recombination. Mol Cell Biol 30: 1254–1268. 10.1128/MCB.00986-09 PubMed DOI PMC
Brevet V, Berthiau AS, Civitelli L, Donini P, Schramke V, Géli V et al. (2003) The number of vertebrate repeats can be regulated at yeast telomeres by Rap1-independent mechanisms. EMBO J 22: 1697–1706. PubMed PMC
Henning KA, Moskowitz N, Ashlock MA, Liu PP (1998) Humanizing the yeast telomerase template. Proc Natl Acad Sci U S A 95: 5667–5671. PubMed PMC
Hogues H, Lavoie H, Sellam A, Mangos M, Roemer T, Purisima E et al. (2008) Transcription factor substitution during the evolution of fungal ribosome regulation. Mol Cell 29: 552–562. 10.1016/j.molcel.2008.02.006 PubMed DOI PMC
Kramara J, Willcox S, Gunisova S, Kinsky S, Nosek J, Griffith JD et al. (2010) Tay1 protein, a novel telomere binding factor from Yarrowia lipolytica. J Biol Chem 285: 38078–38092. 10.1074/jbc.M110.127605 PubMed DOI PMC
Sanchez-Alonso P, Guzman P (2008) Predicted elements of telomere organization and function in Ustilago maydis. Fungal Genet Biol 45 Suppl 1: S54–62. 10.1016/j.fgb.2008.04.009 PubMed DOI
Spink KG, Evans RJ, Chambers A (2000) Sequence-specific binding of Taz1p dimers to fission yeast telomeric DNA. Nucleic Acids Res 28: 527–533. PubMed PMC
Vassetzky NS, Gaden F, Brun C, Gasser SM, Gilson E (1999) Taz1p and Teb1p, two telobox proteins in Schizosaccharomyces pombe, recognize different telomere-related DNA sequences. Nucleic Acids Res 27: 4687–4694. PubMed PMC
Valente LP, Dehe PM, Klutstein M, Aligianni S, Watt S, Bähler J et al. (2013) Myb-domain protein Teb1 controls histone levels and centromere assembly in fission yeast. EMBO J 32: 450–460. 10.1038/emboj.2012.339 PubMed DOI PMC
Kanoh J, Ishikawa F (2001) spRap1 and spRif1, recruited to telomeres by Taz1, are essential for telomere function in fission yeast. Curr Biol 11: 1624–1630. PubMed
Pitt CW, Valente LP, Rhodes D, Simonsson T (2008) Identification and characterization of an essential telomeric repeat binding factor in fission yeast. J Biol Chem 283: 2693–2701. PubMed
Cooper JP, Nimmo ER, Allshire RC, Cech TR (1997) Regulation of telomere length and function by a Myb-domain protein in fission yeast. Nature 385: 744–747. PubMed
Cooper JP, Watanabe Y, Nurse P (1998) Fission yeast Taz1 protein is required for meiotic telomere clustering and recombination. Nature 392: 828–831. PubMed
Tomaska L, Willcox S, Slezakova J, Nosek J, Griffith JD (2004) Taz1 binding to a fission yeast model telomere: formation of telomeric loops and higher order structures. J Biol Chem 279: 50764–50772. PubMed
Deng W, Wu J, Wang F, Kanoh J, Dehe PM, Inoue H et al. (2015) Fission yeast telomere-binding protein Taz1 is a functional but not a structural counterpart of human TRF1 and TRF2. Cell Res 25: 881–884. 10.1038/cr.2015.76 PubMed DOI PMC
Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685. PubMed
Stansel RM, de Lange T, Griffith JD (2001) T-loop assembly in vitro involves binding of TRF2 near the 3' telomeric overhang. EMBO J 20: 5532–5540. PubMed PMC
Sugawara NF (1988) DNA sequences at the telomeres of the fission yeast S. pombe. PhD thesis, Harvard University, 464 pp.
Griffith JD, Christiansen G (1978) Electron microscope visualization of chromatin and other DNA-protein complexes. Annu Rev Biophys Bioeng 7: 19–35. PubMed
Janouskova E, Necasova I, Pavlouskova J, Zimmermann M, Hluchy M, Marini V et al. (2015) Human Rap1 modulates TRF2 attraction to telomeric DNA. Nucleic Acids Res 43: 2691–2700. 10.1093/nar/gkv097 PubMed DOI PMC
Heyduk T, Lee JC (1990) Application of fluorescence energy transfer and polarization to monitor Escherichia coli cAMP receptor protein and lac promoter interaction. Proc Natl Acad Sci U S A 87: 1744–1748. PubMed PMC
Kuzmic P (1996) Program DYNAFIT for the analysis of enzyme kinetic data: application to HIV proteinase. Anal Biochem 237: 260–273. PubMed
Leonardi J, Box JA, Bunch JT, Baumann P (2008) TER1, the RNA subunit of fission yeast telomerase. Nat Struct Mol Biol 15: 26–33. PubMed
Rhind N, Chen Z, Yassour M, Thompson DA, Haas BJ, Habib N et al. (2011) Comparative functional genomics of the fission yeasts. Science 332: 930–936. 10.1126/science.1203357 PubMed DOI PMC
Lukes J, Archibald JM, Keeling PJ, Doolittle WF, Gray MW (2011) How a neutral evolutionary ratchet can build cellular complexity. IUBMB Life 63: 528–537. 10.1002/iub.489 PubMed DOI
Lustig AJ (2016) Hypothesis: Paralog formation from progenitor proteins and paralog mutagenesis spur the rapid evolution of telomere binding proteins. Front Genet 7: 10 10.3389/fgene.2016.00010 PubMed DOI PMC
Mata J, Lyne R, Burns G, Bahler J (2002) The transcriptional program of meiosis and sporulation in fission yeast. Nat Genet 32: 143–147. PubMed
Jin Y, Uzawa S, Cande WZ (2002) Fission yeast mutants affecting telomere clustering and meiosis-specific spindle pole body integrity. Genetics 160: 861–876. PubMed PMC
Klutstein M, Fennell A, Fernandez-Alvarez A, Cooper JP (2015) The telomere bouquet regulates meiotic centromere assembly. Nat Cell Biol 17: 458–469. 10.1038/ncb3132 PubMed DOI PMC
Nimmo ER, Pidoux AL, Perry PE, Allshire RC (1998) Defective meiosis in telomere-silencing mutants of Schizosaccharomyces pombe. Nature 392: 825–828. PubMed
Cisse OH, Almeida JM, Fonseca A, Kumar AA, Salojarvi J, Overmyer K et al. (2013) Genome sequencing of the plant pathogen Taphrina deformans, the causal agent of peach leaf curl. MBio 4: e00055–13. 10.1128/mBio.00055-13 PubMed DOI PMC
Guzman PA, Sanchez JG (1994) Characterization of telomeric regions from Ustilago maydis. Microbiology 140: 551–557. PubMed
Kinsky S, Mihalikova A, Kramara J, Nosek J, Tomaska L (2010) Lack of the catalytic subunit of telomerase leads to growth defects accompanied by structural changes at the chromosomal ends in Yarrowia lipolytica. Curr Genet 56: 413–425. 10.1007/s00294-010-0310-6 PubMed DOI
McEachern MJ, Blackburn EH (1994) A conserved sequence motif within the exceptionally diverse telomeric sequences of budding yeasts. Proc Natl Acad Sci U S A 91: 3453–3457. PubMed PMC
Hiraoka Y, Henderson E, Blackburn EH (1998) Not so peculiar: Fission yeast telomere repeats. Trends Biochem Sci 23: 126 PubMed
Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 52: 696–704. PubMed