Automated video-based assessment of facial bradykinesia in de-novo Parkinson's disease
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NV19-04-00120
Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
NV19-04-00120
Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
NV19-04-00120
Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
NV19-04-00120
Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
NV19-04-00120
Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
NV19-04-00120
Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
PubMed
35851859
PubMed Central
PMC9293947
DOI
10.1038/s41746-022-00642-5
PII: 10.1038/s41746-022-00642-5
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Even though hypomimia is a hallmark of Parkinson's disease (PD), objective and easily interpretable tools to capture the disruption of spontaneous and deliberate facial movements are lacking. This study aimed to develop a fully automatic video-based hypomimia assessment tool and estimate the prevalence and characteristics of hypomimia in de-novo PD patients with relation to clinical and dopamine transporter imaging markers. For this cross-sectional study, video samples of spontaneous speech were collected from 91 de-novo, drug-naïve PD participants and 75 age and sex-matched healthy controls. Twelve facial markers covering areas of forehead, nose root, eyebrows, eyes, lateral canthal areas, cheeks, mouth, and jaw were used to quantitatively describe facial dynamics. All patients were evaluated using Movement Disorder Society-Unified PD Rating Scale and Dopamine Transporter Single-Photon Emission Computed Tomography. Newly developed automated facial analysis tool enabled high-accuracy discrimination between PD and controls with area under the curve of 0.87. The prevalence of hypomimia in de-novo PD cohort was 57%, mainly associated with dysfunction of mouth and jaw movements, and decreased variability in forehead and nose root wrinkles (p < 0.001). Strongest correlation was found between reduction of lower lip movements and nigro-putaminal dopaminergic loss (r = 0.32, p = 0.002) as well as limb bradykinesia/rigidity scores (r = -0.37 p < 0.001). Hypomimia represents a frequent, early marker of motor impairment in PD that can be robustly assessed via automatic video-based analysis. Our results support an association between striatal dopaminergic deficit and hypomimia in PD.
Zobrazit více v PubMed
Gowers, W. R., A manual of diseases of the nervous system (J. & A. Churchill, London, 1886–1888).
Zhang ZX, Dong ZH, Roman GC. Early descriptions of Parkinson disease in ancient China. Arch. Neurol. 2006;63:782–784. doi: 10.1001/archneur.63.5.782. PubMed DOI
Bologna M, et al. Facial bradykinesia, J. Neurol. Neurosurg. Psychiatry. 2012;84:1–5. PubMed
Fereshtehnejad SM, Skogar O, Lokk J. Evolution of orofacial symptoms and disease progression in idiopathic Parkinson’s disease: longitudinal data from The Jonkoping Parkinson Registry. Parkinsons Dis. 2017;2017:7802819. PubMed PMC
Postuma RB, Lang AE, Gagnon JF. How does parkinsonism start? Prodromal parkinsonism motor changes in idiopathic REM sleep behaviour disorder. Brain. 2012;6:1860–1870. doi: 10.1093/brain/aws093. PubMed DOI
Ricciardi L, De Angelis A, Marsili L. Hypomimia in Parkinson’s disease: an axial sign responsive to levodopa. Eur. J. Neurol. 2020;27:2422–2429. doi: 10.1111/ene.14452. PubMed DOI
Gasca-Salas C, Urso D. Association between hypomimia and mild cognitive impairment in de novo Parkinson’s Disease patients. Can. J. Neurol. Sci. 2020;47:855–857. doi: 10.1017/cjn.2020.93. PubMed DOI
McGettigan C, Scott SK. Voluntary and involuntary processes affect the production of verbal and non-verbal signals by the human voice. Behav. Brain. Sci. 2014;37:564–565. doi: 10.1017/S0140525X13004123. PubMed DOI
Graf H.P. et al. Visual prosody: Facial movements accompanying speech. Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition. IEEE, 2002.
Ricciardi L, et al. Emotional facedness in Parkinson’s disease. J. Neural. Transm. (Vienna) 2018;125:1819–1827. doi: 10.1007/s00702-018-1945-6. PubMed DOI
Ratajska AM, et al. Laterality of motor symptom onset and facial expressivity in Parkinson disease using face digitization. Laterality. 2021;5:1–14. PubMed PMC
Caligiuri MP. Labial kinematics during speech in patients with parkinsonian rigidity. Brain. 1987;110:1033–1044. doi: 10.1093/brain/110.4.1033. PubMed DOI
Hunker CJ, Abbs JH, Barlow SM. The relationship between parkinsonian rigidity and hypokinesia in the orofacial system: a quantitative analysis. Neurology. 1982;32:749–754. doi: 10.1212/WNL.32.7.749. PubMed DOI
Pasquini J, Pavese N. Striatal dopaminergic denervation and hypomimia in Parkinson’s disease. Eur. J. Neurol. 2021;28:e2–e3. doi: 10.1111/ene.14483. PubMed DOI
Ricciardi L, et al. Reduced facial expressiveness in Parkinson’s disease: a pure motor disorder? J. Neurol. Sci. 2015;358:125–130. doi: 10.1016/j.jns.2015.08.1516. PubMed DOI
Abrami A, et al. Automated computer vision assessment of hypomimia in Parkinson Disease: Proof-of-Principle Pilot Study. J. Med. Internet Res. 2021;23:e21037. doi: 10.2196/21037. PubMed DOI PMC
Bowers D, et al. Faces of emotion in Parkinsons disease: Micro-expressivity and bradykinesia during voluntary facial expressions. J. Clin. Exp. Neuropsychol. 2006;12:765–773. PubMed
Wu P. et al. Objectifying facial expressivity assessment of Parkinson’s patients: preliminary study. Comput. Math. Methods Med. 427826, 10.1155/2014/427826 (2014). PubMed PMC
Vinokurov N., Arkadir D., Linetsky E., Bergman H., Weinshall D., Quantifying hypomimia in Parkinson patients using a depth camera, In: Serino S, Matic A, Giakoumis D, Lopez G, Cipresso P (eds) Pervasive computing paradigms for mental health, mindcare, communications in computer and information science, 604, Springer, Cham. 10.1007/978-3-319-32270-4_7 (2015).
Bandini A, et al. Analysis of facial expressions in parkinson’s disease through video-based automatic methods. J. Neurosci. Methods. 2017;281:7–20. doi: 10.1016/j.jneumeth.2017.02.006. PubMed DOI
Ali MR, et al. Facial expressions can detect Parkinson’s disease: preliminary evidence from videos collected online. NPJ Digit. Med. 2021;4:129. doi: 10.1038/s41746-021-00502-8. PubMed DOI PMC
Joshi A., Tickle-Degnen L., Gunnery S., Ellis T., Betke M. Predicting active facial expressivity in people with Parkinson’s Disease. Paper presented at: 9th ACM International Conference on PErvasive Technologies Related to Assistive Environments - PETRA ‘16, June 29, Corfu, Greece. 10.1145/2910674.2910686 (2016).
Joshi A. et al. Context-sensitive prediction of facial expression using multimodal hierarchical Bayesian neural networks. Paper presented at: 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), May 15, Xi’an, China (2018).
Grammatikopoulou A., Grammalidis N., Bostantjopoulou A., Katsarou Z. Detecting hypomimia symptoms by selfie photo analysis: for early Parkinson disease detection. Paper presented at: 12th ACM International Conference on PErvasive Technologies Related to Assistive Environments (PETRA ‘19), June, Rhodes. 10.1145/3316782.3322756 (2019).
Skibińska J., Burget R. Parkinson’s Disease Detection based on Changes of Emotions during Speech. Paper presented at: 12th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), October 15 10.1109/ICUMT51630.2020.9222446 (2020).
Su G, et al. Detection of hypomimia in patients with Parkinson’s disease via smile videos. Ann. Transl. Med. 2021;9:1307. doi: 10.21037/atm-21-3457. PubMed DOI PMC
Su G, et al. Hypomimia recognition in Parkinson’s Disease with semantic features. ACM Trans. Multimed. Comput. Commun. 2021;2:383–391.
Jakubowski J, Potulska-Chromik A, Bialek K, Njoszewska M, Kostera Pruszcyk A. A study on the possible diagnosis of Parkinson’s disease on the basis of facial image analysis. Electronics. 2021;10:2832. doi: 10.3390/electronics10222832. DOI
Gomez-Gomez L.F., Morales A., Orozco J.R., Daza R., Fierrez J. Improving Parkinson Detection Using Dynamic Features From Evoked Expressions in Video. Paper presented at: IEEE/CVF Conference on Computer Vision and Pattern Recognition. 10.1109/CVPRW53098.2021.00172 (2021).
Yang L, et al. Changes in facial expressions in patients with Parkinson’s disease during the phonation test and their correlation with disease severity. Comput. Speech Lang. 2022;72:101286. doi: 10.1016/j.csl.2021.101286. DOI
Rajnoha M. et al. Towards Identification of Hypomimia in Parkinson’s Disease Based on Face Recognition Methods. In 2018 10th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT 2018): Emerging Technologies For Connected Society. New York: IEEE, 1–4 10.1109/ICUMT.2018.8631249 (2018).
Smith MC, Smith MK, Ellgring H. Spontaneous and posed facial expression in Parkinson’s disease. J. Int Neuropsychol. Soc. 1996;2:383–391. doi: 10.1017/S1355617700001454. PubMed DOI
Ekman P, Davidson RJ, Friesen WV. The Duchenne smile: emotional expression and brain physiology II. J. Pers. Soc. Psychol. 1990;58:342–353. doi: 10.1037/0022-3514.58.2.342. PubMed DOI
Sagonas C, Antonakos E, Tzimiropoulos G, Zafeiriou S, Pantic M. 300 faces in-the-wild challenge: database and results. Image Vis. Comput. 2016;47:3–18. doi: 10.1016/j.imavis.2016.01.002. DOI
Katsikitis M, Pilowsky I. A controlled quantitative study of facial expression in Parkinson’s disease and depression. J. Nerv. Ment. Dis. 1991;179:683–688. doi: 10.1097/00005053-199111000-00006. PubMed DOI
Postuma RB, et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord. 2015;30:1591–1601. doi: 10.1002/mds.26424. PubMed DOI
Goetz CG, et al. Movement Disorder Society‐sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS‐UPDRS): scale presentation and clinimetric testing results. Mov. Disord. 2008;23:2129–2170. doi: 10.1002/mds.22340. PubMed DOI
Nasreddine ZS, et al. The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005;53:695–699. doi: 10.1111/j.1532-5415.2005.53221.x. PubMed DOI
Beck A.T., Steer R.A., Brown G.K. Manual for the Beck Depression Inventory-II. San Antonio, TX: Psychological Corporation, 10.1007/978-1-4419-1005-9_441 (1996).
Darcourt J, et al. EANM procedure guidelines for brain neurotransmission SPECT using (123)I-labelled dopamine transporter ligands, version 2. Eur. J. Nucl. Med. Mol. Imagin. 2010;37:443–450. doi: 10.1007/s00259-009-1267-x. PubMed DOI
Dusek P, et al. Relations of non-motor symptoms and dopamine transporter binding in REM sleep behavior disorder. Sci. Rep. 2019;9:15463. doi: 10.1038/s41598-019-51710-y. PubMed DOI PMC
Calvini P, et al. The basal ganglia matching tools package for striatal uptake semi-quantification: description and validation. Eur. J. Nucl. Med. Mol. Imaging. 2007;34:1240–1253. doi: 10.1007/s00259-006-0357-2. PubMed DOI
Moccia M, et al. Dopamine transporter availability in motor subtypes of de novo drug-naïve Parkinson’s disease. J. Neurol. 2014;261:2112–2118. doi: 10.1007/s00415-014-7459-8. PubMed DOI
Bulat A., Tzimiropoulos G. How far are we from solving the 2d & 3d face alignment problem? (and a dataset of 230,000 3d facial landmarks). In: Proceedings of the IEEE International Conference on Computer Vision; 1021–1030. 10.1109/ICCV.2017.116 (2017).
Gross R, Matthews I, Cohn J, Kanade T, Baker S. Multi-PIE. Proc. Int Conf. Autom. Face Gesture Recognit. 2010;28:807–813. PubMed PMC